
8

Combining bandwidth and storage . . .
enables swift and reliable access to
the ever-expanding troves of content
on the proliferating disks and . . .
repositories of the Internet.

George Gilder
The End Is Drawing Nigh, 2000

Storage, Networks,
and Other
Peripherals

8.1 Introduction 566
8.2 Disk Storage and Dependability 569
8.3 Networks 580
8.4 Buses and Other Connections between Processors, Memory, and I/O

Devices 581
8.5 Interfacing I/O Devices to the Processor, Memory, and Operating

System 588
8.6 I/O Performance Measures: Examples from Disk and File Systems 597
8.7 Designing an I/O System 600
8.8 Real Stuff: A Digital Camera 603
8.9 Fallacies and Pitfalls 606
8.10 Concluding Remarks 609
8.11 Historical Perspective and Further Reading 611
8.12 Exercises 611

The Five Classic Components of a Computer

566 Chapter 8

Although users can get frustrated if their computer hangs and must be rebooted,
they become apoplectic if their storage system crashes and they lose information.
Thus, the bar for dependability is much higher for storage than for computation.
Networks also plan for failures in communication, including several mechanisms
to detect and recover from such failures. Hence, I/O systems generally place much
greater emphasis on dependability and cost, while processors and memory focus
on performance and cost.

I/O systems must also plan for expandability and for diversity of devices, which
is not a concern for processors. Expandability is related to storage capacity, which
is another design parameter for I/O systems; systems may need a lower bound of
storage capacity to fulfill their role.

Although performance plays a smaller role for I/O, it is more complex. For
example, with some devices we may care primarily about access latency, while
with others throughput is crucial. Furthermore, performance depends on many
aspects of the system: the device characteristics, the connection between the
device and the rest of the system, the memory hierarchy, and the operating sys-
tem. Figure 8.1 shows the structure of a simple system with its I/O. All of the com-
ponents, from the individual I/O devices to the processor to the system software,
will affect the dependability, expandability, and performance of tasks that include
I/O.

I/O devices are incredibly diverse. Three characteristics are useful in organizing
this wide variety:

■ Behavior: Input (read once), output (write only, cannot be read), or storage
(can be reread and usually rewritten).

■ Partner: Either a human or a machine is at the other end of the I/O device,
either feeding data on input or reading data on output.

■ Data rate: The peak rate at which data can be transferred between the I/O
device and the main memory or processor. It is useful to know what maxi-
mum demand the device may generate.

For example, a keyboard is an input device used by a human with a peak data rate
of about 10 bytes per second. Figure 8.2 shows some of the I/O devices connected
to computers.

In Chapter 1, we briefly discussed four important and characteristic I/O
devices: mice, graphics displays, disks, and networks. In this chapter we go into
much more depth on disk storage and networks.

8.1 Introduction 8.1

8.1 Introduction 567

How we should assess I/O performance often depends on the application. In
some environments, we may care primarily about system throughput. In these
cases, I/O bandwidth will be most important. Even I/O bandwidth can be mea-
sured in two different ways:

1. How much data can we move through the system in a certain time?

2. How many I/O operations can we do per unit of time?

Which performance measurement is best may depend on the environment. For
example, in many multimedia applications, most I/O requests are for long streams
of data, and transfer bandwidth is the important characteristic. In another
environment, we may wish to process a large number of small, unrelated accesses
to an I/O device. An example of such an environment might be a tax-processing
office of the National Income Tax Service (NITS). NITS mostly cares about pro-
cessing a large number of forms in a given time; each tax form is stored separately
and is fairly small. A system oriented toward large file transfer may be satisfactory,
but an I/O system that can support the simultaneous transfer of many small files
may be cheaper and faster for processing millions of tax forms.

FIGURE 8.1 A typical collection of I/O devices. The connections between the I/O devices, pro-
cessor, and memory are usually called buses. Communication among the devices and the processor use both
interrupts and protocols on the bus, as we will see in this chapter. Figure 8.11 on page 585 shows the organi-
zation for a desktop PC.

Disk Disk

Processor

Cache

Memory- I/O bus

Main
memory

I/O
controller

I/O
controller

I/O
controller

Graphics
output

Network

Interrupts

568 Chapter 8

In other applications, we care primarily about response time, which you will
recall is the total elapsed time to accomplish a particular task. If the I/O requests
are extremely large, response time will depend heavily on bandwidth, but in many
environments most accesses will be small, and the I/O system with the lowest
latency per access will deliver the best response time. On single-user machines
such as desktop computers and laptops, response time is the key performance
characteristic.

A large number of applications, especially in the vast commercial market for
computing, require both high throughput and short response times. Examples
include automatic teller machines (ATMs), order entry and inventory tracking
systems, file servers, and Web servers. In such environments, we care about both
how long each task takes and how many tasks we can process in a second. The
number of ATM requests you can process per hour doesn’t matter if each one
takes 15 minutes—you won’t have any customers left! Similarly, if you can process
each ATM request quickly but can only handle a small number of requests at once,
you won’t be able to support many ATMs, or the cost of the computer per ATM
will be very high.

In summary, the three classes of desktop, server, and embedded computers are
sensitive to I/O dependability and cost. Desktop and embedded systems are more

Device Behavior Partner Data rate (Mbit/sec)

Keyboard input human 30,000.0001

Mouse input human 30,000.0038

Voice input input human 30,000.2640

Sound input input machine 30,003.0000

Scanner input human 30,003.2000

Voice output output human 30,000.2640

Sound output output human 30,008.0000

Laser printer output human 30,003.2000

Graphics display output human 800.0000–8000.0000

Modem input or output machine 0.0160–0.0640

Network/LAN input or output machine 100.0000–1000.0000

Network/wireless LAN input or output machine 11.0000–54.0000

Optical disk storage machine 30,080.0000

Magnetic tape storage machine 0032.0000

Magnetic disk storage machine 240.0000–2560.0000

FIGURE 8.2 The diversity of I/O devices. I/O devices can be distinguished by whether they serve as
input, output, or storage devices; their communication partner (people or other computers); and their peak
communication rates. The data rates span eight orders of magnitude. Note that a network can be an input
or an output device, but cannot be used for storage. Transfer rates for devices are always quoted in base 10,
so that 10 Mbit/sec = 10,000,000 bits/sec.

I/O requests Reads or writes to
I/O devices.

8.2 Disk Storage and Dependability 569

focused on response time and diversity of I/O devices, while server systems are
more focused on throughput and expandability of I/O devices.

As mentioned in Chapter 1, magnetic disks rely on a rotating platter coated with a
magnetic surface and use a moveable read/write head to access the disk. Disk stor-
age is nonvolatile—the data remains even when power is removed. A magnetic
disk consists of a collection of platters (1–4), each of which has two recordable
disk surfaces. The stack of platters is rotated at 5400 to 15,000 RPM and has a
diameter from an inch to just over 3.5 inches. Each disk surface is divided into
concentric circles, called tracks. There are typically 10,000 to 50,000 tracks per
surface. Each track is in turn divided into sectors that contain the information;
each track may have 100 to 500 sectors. Sectors are typically 512 bytes in size,
although there is an initiative to increase the sector size to 4096 bytes. The
sequence recorded on the magnetic media is a sector number, a gap, the informa-
tion for that sector including error correction code (see Appendix B, page B-
64), a gap, the sector number of the next sector, and so on. Originally, all tracks
had the same number of sectors and hence the same number of bits, but with the
introduction of zone bit recording (ZBR) in the early 1990s, disk drives changed
to a varying number of sectors (and hence bits) per track, instead keeping the
spacing between bits constant. ZBR increases the number of bits on the outer
tracks and thus increases the drive capacity.

As we saw in Chapter 1, to read and write information the read/write heads
must be moved so that they are over the correct location. The disk heads for each
surface are connected together and move in conjunction, so that every head is
over the same track of every surface. The term cylinder is used to refer to all the
tracks under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a three-stage
process. The first step is to position the head over the proper track. This operation
is called a seek, and the time to move the head to the desired track is called the
seek time.

Disk manufacturers report minimum seek time, maximum seek time, and
average seek time in their manuals. The first two are easy to measure, but the aver-
age is open to wide interpretation because it depends on the seek distance. The
industry has decided to calculate average seek time as the sum of the time for all
possible seeks divided by the number of possible seeks. Average seek times are
usually advertised as 3 ms to 14 ms, but, depending on the application and sched-
uling of disk requests, the actual average seek time may be only 25% to 33% of the

8.2 Disk Storage and Dependability 8.2

nonvolatile Storage device
where data retains its value even
when power is removed.

track One of thousands of con-
centric circles that makes up the
surface of a magnetic disk.

sector One of the segments
that make up a track on a mag-
netic disk; a sector is the small-
est amount of information that
is read or written on a disk.

seek The process of positioning
a read/write head over the
proper track on a disk.

570 Chapter 8

advertised number because of locality of disk references. This locality arises both
because of successive accesses to the same file and because the operating system
tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sec-
tor to rotate under the read/write head. This time is called the rotational latency
or rotational delay. The average latency to the desired information is halfway
around the disk. Because the disks rotate at 5400 RPM to 15,000 RPM, the average
rotational latency is between

and

The last component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and
the recording density of a track. Transfer rates in 2004 are between 30 and 80
MB/sec. The one complication is that most disk controllers have a built-in cache
that stores sectors as they are passed over; transfer rates from the cache are typi-
cally higher and may be up to 320 MB/sec in 2004. Today, most disk transfers are
multiple sectors in length.

A disk controller usually handles the detailed control of the disk and the transfer
between the disk and the memory. The controller adds the final component of
disk access time, controller time, which is the overhead the controller imposes in
performing an I/O access. The average time to perform an I/O operation will con-
sist of these four times plus any wait time incurred because other processes are
using the disk.

Disk Read Time

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 10,000 RPM? The advertised average seek time is 6 ms, the transfer
rate is 50 MB/sec, and the controller overhead is 0.2 ms. Assume that the disk
is idle so that there is no waiting time.

rotation latency Also called
delay. The time required for the
desired sector of a disk to rotate
under the read/write head; usu-
ally assumed to be half the
rotation time.

Average rotational latency 0.5 rotation
5400 RPM
----------------------------= 0.5 rotation

5400 RPM 60 seconds
minute

------------------Ë ¯
Ê ˆ§

--=

0.0056= seconds 5.6 ms=

Average rotational latency 0.5 rotation

15,000 RPM
---------------------------=

0.5 rotation

15,000 RPM 60 seconds
minute

------------------Ë ¯
Ê ˆ§

--=

0.0020= seconds 2.0 ms=

EXAMPLE

8.2 Disk Storage and Dependability 571

Disk densities have continued to increase for more than 50 years. The impact
of this compounded improvement in density and the reduction in physical size of
a disk drive has been amazing, as Figure 8.3 shows. The aims of different disk
designers have led to a wide variety of drives being available at any particular time.
Figure 8.4 shows the characteristics of three magnetic disks. In 2004, these disks
from a single manufacturer cost between $0.50 and $5 per gigabyte, depending on
size, interface, and performance. The smaller drive has advantages in power and
volume per byte.

Elaboration: Most disk controllers include caches. Such caches allow for fast
access to data that was recently read between transfers requested by the CPU. They
use write through and do not update on a write miss. They often also include prefetch
algorithms to try to anticipate demand. Of course, such capabilities complicate the
measurement of disk performance and increase the importance of workload choice.

Dependability, Reliability, and Availability

Users crave dependable storage, but how do you define it? In the computer indus-
try, it is harder than looking it up in the dictionary. After considerable debate, the
following is considered the standard definition (Laprie 1985):

Computer system dependability is the quality of delivered service such that reli-
ance can justifiably be placed on this service. The service delivered by a system
is its observed actual behavior as perceived by other system(s) interacting with
this system’s users. Each module also has an ideal specified behavior, where a
service specification is an agreed description of the expected behavior. A system
failure occurs when the actual behavior deviates from the specified behavior.

Average disk access time is equal to Average seek time + Average rotational
delay + Transfer time + Controller overhead. Using the advertised average
seek time, the answer is

If the measured average seek time is 25% of the advertised average time, the
answer is

Notice that when we consider measured average seek time, as opposed to
advertised average seek time, the rotational latency can be the largest compo-
nent of the access time.

ANSWER

6.0 ms 0.5 rotation
10,000 RPM
--------------------------- 0.5 KB

50 MB/sec
----------------------- 0.2 ms+ + + 6.0 3.0 0.01 0.2+ + + 9.2 ms= =

1.5 ms 3.0 ms 0.01 ms 0.2 ms+ + + 4.7 ms=

8.5 Interfacing I/O Devices to the Processor, Memory, and Operating System 589

Giving Commands to I/O Devices

To give a command to an I/O device, the processor must be able to address the
device and to supply one or more command words. Two methods are used to
address the device: memory-mapped I/O and special I/O instructions. In
memory-mapped I/O, portions of the address space are assigned to I/O devices.
Reads and writes to those addresses are interpreted as commands to the I/O
device.

For example, a write operation can be used to send data to an I/O device where
the data will be interpreted as a command. When the processor places the address
and data on the memory bus, the memory system ignores the operation because
the address indicates a portion of the memory space used for I/O. The device con-
troller, however, sees the operation, records the data, and transmits it to the device
as a command. User programs are prevented from issuing I/O operations directly
because the OS does not provide access to the address space assigned to the I/O
devices and thus the addresses are protected by the address translation. Memory-
mapped I/O can also be used to transmit data by writing or reading to select
addresses. The device uses the address to determine the type of command, and the
data may be provided by a write or obtained by a read. In any event, the address
encodes both the device identity and the type of transmission between processor
and device.

■ The OS handles the interrupts generated by I/O devices, just as it handles
the exceptions generated by a program.

■ The OS tries to provide equitable access to the shared I/O resources, as well
as schedule accesses in order to enhance system throughput.

To perform these functions on behalf of user programs, the operating system
must be able to communicate with the I/O devices and to prevent the user pro-
gram from communicating with the I/O devices directly. Three types of commu-
nication are required:

1. The OS must be able to give commands to the I/O devices. These com-
mands include not only operations like read and write, but also other oper-
ations to be done on the device, such as a disk seek.

2. The device must be able to notify the OS when the I/O device has com-
pleted an operation or has encountered an error. For example, when a disk
completes a seek, it will notify the OS.

3. Data must be transferred between memory and an I/O device. For example,
the block being read on a disk read must be moved from disk to memory.

In the next few sections, we will see how these communications are performed.

memory-mapped I/O An I/O
scheme in which portions of
address space are assigned to
I/O devices and reads and writes
to those addresses are inter-
preted as commands to the I/O
device.

590 Chapter 8

Actually performing a read or write of data to fulfill a program request usually
requires several separate I/O operations. Furthermore, the processor may have to
interrogate the status of the device between individual commands to determine
whether the command completed successfully. For example, a simple printer has
two I/O device registers—one for status information and one for data to be
printed. The Status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or out
of paper. Each byte of data to be printed is put into the Data register. The proces-
sor must then wait until the printer sets the done bit before it can place another
character in the buffer. The processor must also check the error bit to determine if
a problem has occurred. Each of these operations requires a separate I/O device
access.

Elaboration: The alternative to memory-mapped I/O is to use dedicated I/O instruc-
tions in the processor. These I/O instructions can specify both the device number and
the command word (or the location of the command word in memory). The processor
communicates the device address via a set of wires normally included as part of the
I/O bus. The actual command can be transmitted over the data lines in the bus. Exam-
ples of computers with I/O instructions are the Intel IA-32 and the IBM 370 computers.
By making the I/O instructions illegal to execute when not in kernel or supervisor
mode, user programs can be prevented from accessing the devices directly.

Communicating with the Processor

The process of periodically checking status bits to see if it is time for the next I/O
operation, as in the previous example, is called polling. Polling is the simplest way
for an I/O device to communicate with the processor. The I/O device simply puts
the information in a Status register, and the processor must come and get the
information. The processor is totally in control and does all the work.

Polling can be used in several different ways. Real-time embedded applications
poll the I/O devices since the I/O rates are predetermined and it makes I/O over-
head more predictable, which is helpful for real time. As we will see, this allows
polling to be used even when the I/O rate is somewhat higher.

The disadvantage of polling is that it can waste a lot of processor time because
processors are so much faster than I/O devices. The processor may read the Status
register many times, only to find that the device has not yet completed a compara-
tively slow I/O operation, or that the mouse has not budged since the last time it
was polled. When the device completes an operation, we must still read the status
to determine whether it was successful.

The overhead in a polling interface was recognized long ago, leading to the
invention of interrupts to notify the processor when an I/O device requires atten-
tion from the processor. Interrupt-driven I/O, which is used by almost all systems

I/O instructions A dedicated
instruction that is used to give a
command to an I/O device and
that specifies both the device
number and the command
word (or the location of the
command word in memory).

polling The process of periodi-
cally checking the status of an
I/O device to determine the
need to service the device.

interrupt-driven I/O An I/O
scheme that employs interrupts
to indicate to the processor that
an I/O device needs attention.

8.5 Interfacing I/O Devices to the Processor, Memory, and Operating System 591

for at least some devices, employs I/O interrupts to indicate to the processor that
an I/O device needs attention. When a device wants to notify the processor that it
has completed some operation or needs attention, it causes the processor to be
interrupted.

An I/O interrupt is just like the exceptions we saw in Chapters 5, 6, and 7, with
two important exceptions:

1. An I/O interrupt is asynchronous with respect to the instruction execution.
That is, the interrupt is not associated with any instruction and does not
prevent the instruction completion. This is very different from either page
fault exceptions or exceptions such as arithmetic overflow. Our control unit
need only check for a pending I/O interrupt at the time it starts a new
instruction.

2. In addition to the fact that an I/O interrupt has occurred, we would like to
convey further information such as the identity of the device generating the
interrupt. Furthermore, the interrupts represent devices that may have dif-
ferent priorities and whose interrupt requests have different urgencies asso-
ciated with them.

To communicate information to the processor, such as the identity of the
device raising the interrupt, a system can use either vectored interrupts or an
exception Cause register. When the processor recognizes the interrupt, the device
can send either the vector address or a status field to place in the Cause register. As
a result, when the OS gets control, it knows the identity of the device that caused
the interrupt and can immediately interrogate the device. An interrupt mecha-
nism eliminates the need for the processor to poll the device and instead allows
the processor to focus on executing programs.

Interrupt Priority Levels

To deal with the different priorities of the I/O devices, most interrupt mechanisms
have several levels of priority: UNIX operating systems use four to six levels. These
priorities indicate the order in which the processor should process interrupts.
Both internally generated exceptions and external I/O interrupts have priorities;
typically, I/O interrupts have lower priority than internal exceptions. There may
be multiple I/O interrupt priorities, with high-speed devices associated with the
higher priorities.

To support priority levels for interrupts, MIPS provides the primitives that let
the operating system implement the policy, similar to how MIPS handles TLB
misses. Figure 8.13 shows the key registers, and Section A.7 in Appendix A
gives more details.

The Status register determines who can interrupt the computer. If the interrupt
enable bit is 0, then none can interrupt. A more refined blocking of interrupts is
available in the interrupt mask field. There is a bit in the mask corresponding to

592 Chapter 8

each bit in the pending interrupt field of the Cause register. To enable the corre-
sponding interrupt, there must be a 1 in the mask field at that bit position. Once
an interrupt occurs, the operating system can find the reason in the exception
code field of the Status register: 0 means an interrupt occurred, with other values
for the exceptions mentioned in Chapter 7.

Here are the steps that must occur in handling an interrupt:

1. Logically AND the pending interrupt field and the interrupt mask field to
see which enabled interrupts could be the culprit. Copies are made of these
two registers using the mfc0 instruction.

2. Select the higher priority of these interrupts. The software convention is
that the leftmost is the highest priority.

3. Save the interrupt mask field of the Status register.

4. Change the interrupt mask field to disable all interrupts of equal or lower
priority.

5. Save the processor state needed to handle the interrupt.

6. To allow higher-priority interrupts, set the interrupt enable bit of the Cause
register to 1.

7. Call the appropriate interrupt routine.

8. Before restoring state, set the interrupt enable bit of the Cause register to 0.
This allows you to restore the interrupt mask field.

FIGURE 8.13 The Cause and Status registers. This version of the Cause register corresponds to
the MIPS-32 architecture. The earlier MIPS I architecture had three nested sets of kernel/user and interrupt
enable bits to support nested interrupts. Section A.7 in Appendix A has more detials about these regis-
ters.

15 8 4 1 0

Interrupt
mask

U
se

r
m

od
e

E
xc

ep
tio

n
le

ve
l

In
te

rr
up

t
en

ab
le

1531 8 6 2

Pending
interrupts

Branch
delay

Exception
code

8.5 Interfacing I/O Devices to the Processor, Memory, and Operating System 593

Appendix A shows an exception handler for a simple I/O task on pages A-36 to
A-37.

How do the interrupt priority levels (IPL) correspond to these mechanisms? The
IPL is an operating system invention. It is stored in the memory of the process,
and every process is given an IPL. At the lowest IPL, all interrupts are permitted.
Conversely, at the highest IPL, all interrupts are blocked. Raising and lowering the
IPL involves changes to the interrupt mask field of the Status register.

Elaboration: The two least significant bits of the pending interrupt and interrupt
mask fields are for software interrupts, which are lower priority. These are typically
used by higher-priority interrupts to leave work for lower-priority interrupts to do once
the immediate reason for the interrupt is handled. Once the higher-priority interrupt is
finished, the lower-priority tasks will be noticed and handled.

Transferring the Data between a Device and Memory

We have seen two different methods that enable a device to communicate with the
processor. These two techniques—polling and I/O interrupts—form the basis for
two methods of implementing the transfer of data between the I/O device and
memory. Both these techniques work best with lower-bandwidth devices, where
we are more interested in reducing the cost of the device controller and interface
than in providing a high-bandwidth transfer. Both polling and interrupt-driven
transfers put the burden of moving data and managing the transfer on the proces-
sor. After looking at these two schemes, we will examine a scheme more suitable
for higher-performance devices or collections of devices.

We can use the processor to transfer data between a device and memory based
on polling. In real-time applications, the processor loads data from I/O device
registers and stores them into memory.

An alternative mechanism is to make the transfer of data interrupt driven. In
this case, the OS would still transfer data in small numbers of bytes from or to the
device. But because the I/O operation is interrupt driven, the OS simply works on
other tasks while data is being read from or written to the device. When the OS
recognizes an interrupt from the device, it reads the status to check for errors. If
there are none, the OS can supply the next piece of data, for example, by a
sequence of memory-mapped writes. When the last byte of an I/O request has
been transmitted and the I/O operation is completed, the OS can inform the pro-
gram. The processor and OS do all the work in this process, accessing the device
and memory for each data item transferred.

Interrupt-driven I/O relieves the processor from having to wait for every I/O
event, although if we used this method for transferring data from or to a hard
disk, the overhead could still be intolerable, since it could consume a large frac-
tion of the processor when the disk was transferring. For high-bandwidth devices
like hard disks, the transfers consist primarily of relatively large blocks of data

594 Chapter 8

(hundreds to thousands of bytes). Thus, computer designers invented a mecha-
nism for offloading the processor and having the device controller transfer data
directly to or from the memory without involving the processor. This mechanism
is called direct memory access (DMA). The interrupt mechanism is still used by
the device to communicate with the processor, but only on completion of the I/O
transfer or when an error occurs.

DMA is implemented with a specialized controller that transfers data between
an I/O device and memory independent of the processor. The DMA controller
becomes the bus master and directs the reads or writes between itself and mem-
ory. There are three steps in a DMA transfer:

1. The processor sets up the DMA by supplying the identity of the device, the
operation to perform on the device, the memory address that is the source
or destination of the data to be transferred, and the number of bytes to
transfer.

2. The DMA starts the operation on the device and arbitrates for the bus.
When the data is available (from the device or memory), it transfers the
data. The DMA device supplies the memory address for the read or the
write. If the request requires more than one transfer on the bus, the DMA
unit generates the next memory address and initiates the next transfer.
Using this mechanism, a DMA unit can complete an entire transfer, which
may be thousands of bytes in length, without bothering the processor.
Many DMA controllers contain some memory to allow them to deal flexi-
bly with delays either in transfer or those incurred while waiting to become
bus master.

3. Once the DMA transfer is complete, the controller interrupts the processor,
which can then determine by interrogating the DMA device or examining
memory whether the entire operation completed successfully.

There may be multiple DMA devices in a computer system. For example, in a
system with a single processor-memory bus and multiple I/O buses, each I/O bus
controller will often contain a DMA processor that handles any transfers between
a device on the I/O bus and the memory.

Unlike either polling or interrupt-driven I/O, DMA can be used to interface a
hard disk without consuming all the processor cycles for a single I/O. Of course, if
the processor is also contending for memory, it will be delayed when the memory
is busy doing a DMA transfer. By using caches, the processor can avoid having to
access memory most of the time, thereby leaving most of the memory bandwidth
free for use by I/O devices.

Elaboration: To further reduce the need to interrupt the processor and occupy it in
handling an I/O request that may involve doing several actual operations, the I/O con-
troller can be made more intelligent. Intelligent controllers are often called I/O proces-

direct memory access (DMA)
A mechanism that provides a
device controller the ability to
transfer data directly to or from
the memory without involving
the processor.

bus master A unit on the bus
that can initiate bus requests.

8.5 Interfacing I/O Devices to the Processor, Memory, and Operating System 595

sors (as well as I/O controllers or channel controllers). These specialized processors
basically execute a series of I/O operations, called an I/O program. The program may
be stored in the I/O processor, or it may be stored in memory and fetched by the I/O
processor. When using an I/O processor, the operating system typically sets up an
I/O program that indicates the I/O operations to be done as well as the size and
transfer address for any reads or writes. The I/O processor then takes the operations
from the I/O program and interrupts the processor only when the entire program is
completed. DMA processors are essentially special-purpose processors (usually single-
chip and nonprogrammable), while I/O processors are often implemented with general-
purpose microprocessors, which run a specialized I/O program.

Direct Memory Access and the Memory System

When DMA is incorporated into an I/O system, the relationship between the
memory system and processor changes. Without DMA, all accesses to the memory
system come from the processor and thus proceed through address translation
and cache access as if the processor generated the references. With DMA, there is
another path to the memory system—one that does not go through the address
translation mechanism or the cache hierarchy. This difference generates some
problems in both virtual memory systems and systems with caches. These prob-
lems are usually solved with a combination of hardware techniques and software
support.

The difficulties in having DMA in a virtual memory system arise because pages
have both a physical and a virtual address. DMA also creates problems for systems
with caches because there can be two copies of a data item: one in the cache and
one in memory. Because the DMA processor issues memory requests directly to
the memory rather than through the processor cache, the value of a memory loca-
tion seen by the DMA unit and the processor may differ. Consider a read from
disk that the DMA unit places directly into memory. If some of the locations into
which the DMA writes are in the cache, the processor will receive the old value
when it does a read. Similarly, if the cache is write-back, the DMA may read a
value directly from memory when a newer value is in the cache, and the value has
not been written back. This is called the stale data problem or coherence problem.

In a system with virtual memory, should DMA work with virtual addresses or
physical addresses? The obvious problem with virtual addresses is that the DMA
unit will need to translate the virtual addresses to physical addresses. The major
problem with the use of a physical address in a DMA transfer is that the transfer
cannot easily cross a page boundary. If an I/O request crossed a page boundary,
then the memory locations to which it was being transferred would not necessar-
ily be contiguous in the virtual memory. Consequently, if we use physical
addresses, we must constrain all DMA transfers to stay within one page.

Hardware
Software
Interface

	Chapter 8. Storage, Networks, and Other Peripherals
	8.1 Introduction
	8.2 Disk Storage and Dependability

