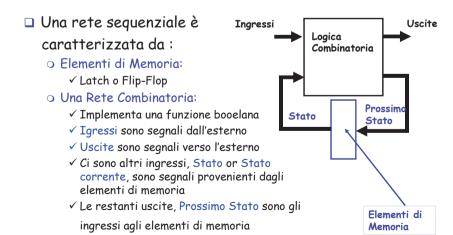
Architetture dei Calcolatori

Reti Sequenziali

Prof. Francesco Lo Presti

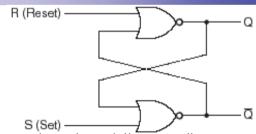
Rete Sequenziale



Circuiti Sequenziali

- ☐ Si introduce il concetto di stato
- □ I valori in uscita influenzano gli ingressi (feedback)
- □ Asincroni: il cambio di stato di un elemento influenza immediatamente gli ingressi del circuito
- □ Sincroni: il cambio di stato di uno o più elementi influenza gli ingressi del circuito solo in istanti predeterminati, uquali per tutti

Latch SR



- ☐ Gli ingressi dipendono dalle uscite!!
- □ È un elemento di memoria
 - o Memorizza 1 bit
- □ Q è il bit memorizzato nel latch SR
- ☐ Ha due stati:

2

- o set: Q=1 (\overline{Q} =0)
- \circ reset: Q=0 (\overline{Q} =1)
- □ Gli ingressi S e R possono essere utilizzati per cambiare lo stato del latch

Latch SR

 Prossimo Stato in funzione degli ingressi e dello stato corrente

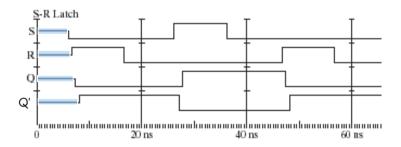
S	R	Q(k)	Q(k+1)		
0	0	0	0	1	reset (stabile)
0	0	1	1	0	set (stabile)
0	1	0	0	1	reset (stabile)
0	1	1	0	1	reset (transiente)
1	0	0	1	0	Set (transiente)
1	0	1	1	0	Set (stabile)
1	1	0	0	0	<i>!!</i>
1	1	1	0	0	<i>!!</i>

1

Fyitare S=R=1...

- Quando entrambi gli ingressi commutano da 1 a 0 avviene una race condition
- □ Entambe le uscite vengono portate da 0 a 1
- □ A causa delle differenze anche minime tra due NOR gates i tempi di commutazione possono differire tra loro -> uno delle due uscite commuta prima dell'altra
 - La commutazione della prima porta impedisce la commutazione dell'altra
- □ Conclusione: il valore di uscita non è predicibile

Comportamento di un Latch SR nel tempo



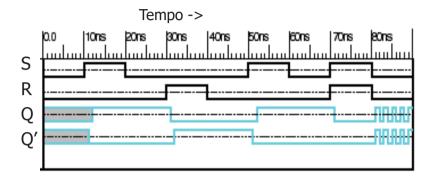
5

Evitare S=R=1...

- Quando entrambi gli ingressi commutano da 1 a 0 avviene una race condition
- □ Entambe le uscite vengono portate da 0 a 1
- □ Entrambe le porte NOR commutano nello stesso instante
 - \circ Questo comporta la commutazione delle uscite da 0 a 1
 - ...che a sua volta comporta la commutazione delle uscite da 1 a 0
 - \circ ...che a loro volta faranno commutare nuovamente le uscite da \circ a \circ
 - o ...etc. etc. etc.
- □ Conclusione: le uscite oscilleranno tra 0 e 1!

6

,



S	R	Q _{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	

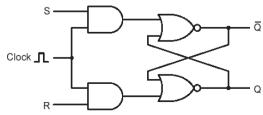
0

Aggiungiamo un segnale di clock al latch SR

□ Un segnale di clock è usato per assicurarsi che il latch possa commutare solo in determinati momenti

Segnale di clock

□ Il latch reagisce ai valori di S e R solo quando il clock è pari a 1

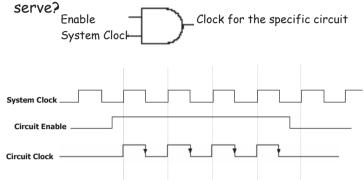


Il ruolo del segnale di clock

- □ Il segnale di clock assicura che le modifiche agli ingressi si propaghino alle uscite solo quando richiesto
- □ Clock di Sistema: segnare periodico di periodo T e frequenza f=1/T

Clock di un circuito a partire dal clock di sistema

□ Il clock di Sistema commuta ogni ciclo: come si può contrallare un particolare circuito solo quando



12

...di consequenza...

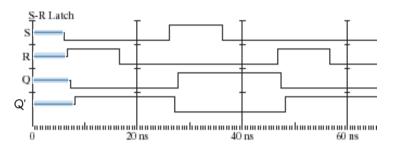
□ Nel caso di commutazione da (S=1,R=0) a (S=0,R=1) o da (S=0,R=1) a (S=1,R=0) le uscite del latch SR per un piccolo intervalló tempo potrebbero trovarsi nello stato dove entrambe le uscite sono 0

	Stato inizial e	Cambio ingresso	Stato Transiente	Stato Stabile		
S	1	0	0	0		
R	0	1	1	1		
Q	1	1	0	0		
Q	0	0	0	1		

 \square Se Q e $\overline{\mathbb{Q}}$ sono ingressi ad un circuito, quest'ultimo riceve ingressi con valori errati (per un certo intervallo di tempo) causando uscite con valori errati (sempre per un certo intervallo di tempo)

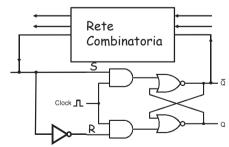
Un problema sottile...

□ Con il clock=1, le uscite del latch continuano a cambiare ogni qual volta cambiano gli ingressi

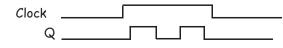


...una consequenza...

Consideriamo il sequence circuito



Quando C=1, il valore di Q può continuare ad cambiare O Quante volte?

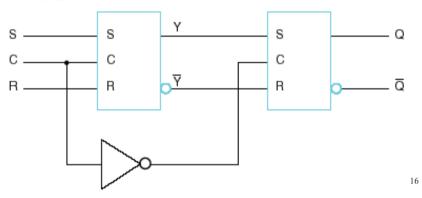


Desiderato: Il valore di Q deve cambiare (al più) una ed una sola volta durante uns

ciclo di clock

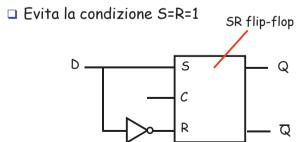
Soluzione: Circuito Flip-Flop master slave

- □ Due latch SR (master e slave)
 - O Il master (collegato agli ingressi del circuito) può cambiare il suo stato solo quando il suo stato guando il Clock=1
 - Lo slave (collegato alle uscite) cambia il suo stato quando il clock=0



Flip Flop D (Delay)

- ☐ Un unico ingrresso D
 - $\circ R = \overline{5}$



Soluzione: Circuito Flip-Flop master slave

- □ Due latch SR (master e slave)
 - Il master (collegato agli ingressi del circuito) può cambiare il suo stato solo quando il suo stato quando il Clock=1
 - Lo slave (collegato alle uscite) cambia il suo stato quando il clock=0
- □ Pertanto:
 - Lo slave legge in ingresso l'output del master solo dopo che questo si è stabilizzato (clock=0)
 - Un eventuale circuito a valle riceve in ingresso i valori in uscita dello slave quando le uscite saranno stabilizzate (clock=1)
- Questo permette di controllare quando l'uscita di un circuito a monte impatta gli ingressi del circuito a valle

17

Flip Flop D (Delay)

- □ Il flip-flop D rappresenta una cella di memoria
 - Memorizza (e rende disponibile in uscita il valore presentato in ingresso

Simbolo

Tabella di Verità

$$\begin{array}{c|c} D & Q_{n+1} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \end{array}$$

Automa a Stati Finiti (ASF) Finite State Machine (FSM)

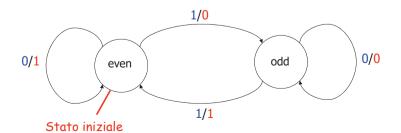
- □ Modello Formale per descrivere un circuito sequenziale
- □ Descritto tramite una tabella di transizioni tra stati in funzione degli ingressi
- 🗖 e una tabella di uscite in funzione degli ingressi e/o stato
- □ Due Modelli formali:
 - O Modello di Moore: uscite sono funzione solo dello stato
 - O Modello di Mealy: uscite sono funzione dello stato e degli ingressi

20

22

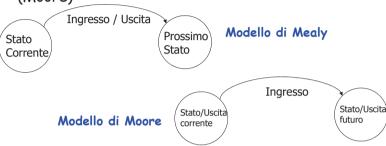
Esempio

□ ASF con ingresso binario x, e uscita binaria z. L'uscita è z=1 se e solo se il numero di 1 nella sequenza in ingresso è pari, 0 altrimenti



Rappresentazione Grafica

□ Stati sono rappresentate da nodi, transizioni da archi orientate tra stati, ingressi da etichette degli archi, le uscite da etichette degli archi (Mealy) o stati (Moore)



Descrizione tabellare dell'ASF

Stato Corrente

odd

Prossimo state
in funzione
dello stato
corrente e
dell'ingresso

Uscita in
funzione dello
stato corrente
e dell'ingreso

0	even	0	even		
2	even	1	odd		
SO	odd	0	odd		
	odd	1	even		
dello	Stato Corrente	Ingresso	Prossimo Stato		
dello rente		Ingresso 0	Prossimo Stato		
dello rente eso	Corrente	Ingresso 0 1	Prossimo Stato 1 0		

Ingresso

Prossimo Stato

1

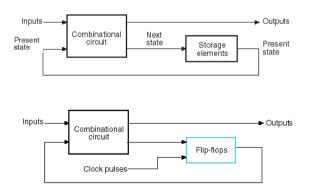
Processo di Astrazione

- ☐ ASF descrive una rete sequenziale (RS)
- □ RS implementa un Automa a Stati Finiti
- L'analisi di una RS permette di risalire al corrispondente ASF
- □ La RS che implementa un dato ASF si ottiene tramite il processo di sintesi
- □ Simile a quanto fatto con funzioni booleane e circuiti combinatori
 - O Una Funzione Booleana descrive una rete combinatoria
 - O Una Rete Combinatoria implementa una Funzione Booleana

24

26

Schema di una Rete Sequenziale

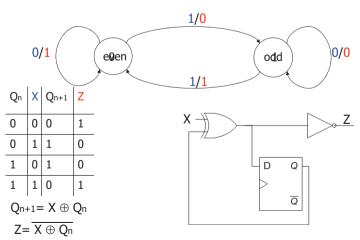


Sintesi di una Rete Sequenziale

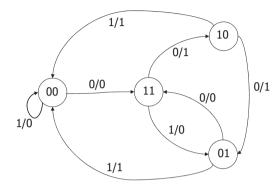
- □ Identificare ingressi, uscite e lo stato
 - O Quanti Flip Flop sono necessari?
 - O Per un ASF con n stati sono necessari k FFs con $2^k \ge n$
 - O Etichetta ogni stato con una stringa di k bit
- □ Identificare le tabella di verità per le uscite in funzione dello stato e degli ingressi e sintetizzare la relativa rete combinatoria
- ☐ Identificare le tabella di verità corrispondente alla tabella di transizione (prossimo stato in funzione dello stato e degli ingress) e sintetizzare la relativa rete combinatoria
- Determinare la tipologia di Flip Flop per memorizzare lo stato
 - O Flip Flop tipo D sono la scelta più semplice

25

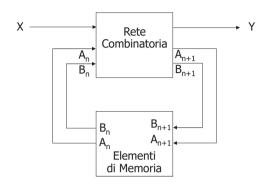
Esempio



Esempio 1



Esempio 1: Schema Rete



29

28

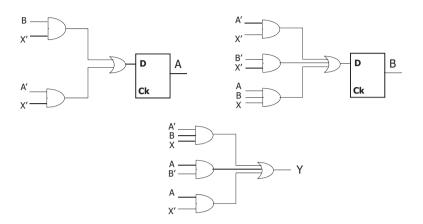
Example 1: Tabelle di Transizione

A_n	B _n	Х	Υ	A _{n+1}	B _{n+1}
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	0	0	1

Esempio 1: Minimizzazione

Variabili di Stato											Uscita			
A _{n+1}		Х			B _{n+1}		Х			Υ		X		
		0	1				0	1				0	1	
AB	11	1	0		AB	11	0	1		AB	00	0	0	
	01	1	0			01	1	0			01	0	1	
	00	1	0			00	1	0			11	1	0	
	10	0	0			10	1	0			10	1	1	

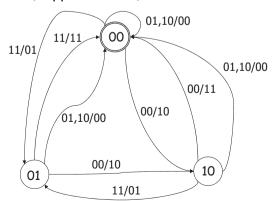
Esempio 1: circuito logico



32

Esempio 2: Automa a Stati Finiti

□ Stato iniziale (doppio cerchio)



Esempio 2

□ Rete sequenziale con due ingressi

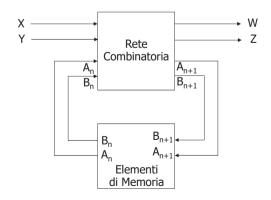
□ L'uscita è:

- o 10 quando il numero di ingressi consecutivi 00 è dispari
- O 01 quando il numero di ingressi consecutivi 11 è dispari
- o 11 quando il numero di ingressi consecutivi 00 o 11 è pari
- o 00 altrimenti

■ Esempio:

INPUT	01	01	00	00	00	11	11	10	11	11	11	11
OUTPUT	00	00	10	11	10	01	11	00	01	11	01	11

Esempio 2: Schema Rete Sequenziale



Esempio 2: tabella di transizione

A_n	B _n	Х	Υ	W	Z	A _{n+1}	B _{n+1}	
0	0	0	0	1	0	1	0	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	1	0	1	0	1	Non specificiati in
0	1	0	0	1	0	1	0	quanto lo stato 11
0	1	0	1	0	0	0	0	non è presente
0	1	1	0	0	0	0	0	с р. сосс
0	1	1	1	1	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	0	0	0	0	
1	0	1	0	0	0	0	0	
1	0	1	1	0	1	0	1	
1	1	0	0)
1	1	0	1					
1	1	1	0					
1	1	1	1					36
-	1 -	1	-			l		36

Esempio 2: circuito logico

