
Spark Streaming:
Hands-on Session

A.A. 2016/17

Matteo Nardelli

Laurea Magistrale in
Ingegneria Informatica - II anno

Università degli Studi di Roma “Tor Vergata”
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Matteo Nardelli - SABD 2016/17

1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Apache Spark
Book
• Learning Spark. Karau, Konwinski, Wendell, Zaharia. O'Reilly. 2015.

Papers
• Zaharia, Das, Li, Hunter, Shenker, Stoica. Discretized Streams: A

Fault-Tolerant Model for Scalable Stream Processing. Berkeley
EECS

• Zaharia, Chowdhury, Franklin, Shenker, Stoica. Spark: Cluster
Computing with Working Sets. HotCloud 10

Online References
• Apache Spark: http://spark.apache.org/

• Spark Documentation:
http://spark.apache.org/docs/latest/api/python/index.html

2 Matteo Nardelli - SABD 2016/17

http://spark.apache.org/
http://spark.apache.org/docs/latest/api/python/index.html

Apache Spark
• Fast and general-purpose engine for large-scale data processing

– Not a modified version of Hadoop
– The leading candidate for “successor to MapReduce”

• Spark can efficiently support more types of computations

– interactive queries, stream processing

• Can read/write to any Hadoop-supported system (e.g., HDFS)

• Speed:

– in-memory data storage for very fast iterative queries

– the system is also more efficient than MapReduce for complex
applications running on disk

– up to 40x faster than Hadoop

3 Matteo Nardelli - SABD 2016/17

Apache Spark
• Data can be ingested from many sources: Kafka, Twitter, HDFS,

TCP sockets

• Results can be pushed out to file-systems, databases, live
dashboards, but not only

4 Matteo Nardelli - SABD 2016/17

Apache Spark
• Spark Core: basic functionality of Spark (task scheduling, memory

management, fault recovery, storage systems interaction).
• Spark SQL: package for working with structured data queried via

SQL as well as HiveQL
• Spark Streaming: a component that enables processing of live

streams of data (e.g., logfiles, status updates messages)

5 Matteo Nardelli - SABD 2016/17

Spark Streaming: Abstractions
micro-batch architecture
• the stream is treated as a series of batches of data
• new batches are created at regular time intervals
• the size of the time intervals is called the batch interval
• the batch interval is typically between 500 ms and several seconds

6 Matteo Nardelli - SABD 2016/17

Spark Streaming: DStream
Discretized Stream (DStream)
• basic abstraction provided by Spark Streaming

• represents a continuous stream of data

– either input stream or generated by transforming the input stream

• internally, a DStream is represented by a continuous series of

RDDs. Each RDD in a DStream contains data from a certain

interval.

7 Matteo Nardelli - SABD 2016/17

Spark Streaming: DStream
Any operation applied on a DStream translates to operations on the
underlying RDDs

• RDD transformations are computed by the Spark engine
• the DStream operations hide most of these details

8 Matteo Nardelli - SABD 2016/17

Spark Streaming: DStream
Basic data sources
• File Streams: For reading data from files on any file system

compatible with the HDFS API (that is, HDFS, S3, NFS, etc.), a
DStream can be created as:

• Streams based on Custom Receivers: DStreams can be created
with data streams received through custom receivers, extending the
Receiver<T> class

• Queue of RDDs as a Stream: For testing a Spark Streaming
application with test data, one can also create a DStream based on
a queue of RDDs, using

9 Matteo Nardelli - SABD 2016/17

 ... = streamingContext.fileStream<...>(directory);

 ... = streamingContext.queueStream(queueOfRDDs)

Spark Streaming: Streaming Context
To execute a SparkStreaming application, we need to define the
StreamingContext
• specializes SparkContext for streaming applications
• in Java can be defined as follows

10 Matteo Nardelli - SABD 2016/17

JavaStreamingContext ssc =
 new JavaStreamingContext(sparkConf, batchInterval);

where:
• master is a Spark, Mesos or YARN cluster URL; to run your code in local

mode, use "local[K]" where K>=2 represents the parallelism
• appname is the name of your application
• batchinterval time interval (in seconds) of each batch

Spark Streaming: DStream
Once built, they offer two types of operations:

• Transformations which yield a new DStream from a previous one.
For example, one common transformation is filtering data.

– stateless transformations: the processing of each batch does not
depend on the data of its previous batches.
Examples are: map(), filter(), and reduceByKey()

– stateful transformations: use data from previous batches to compute
the results of the current batch.
They include sliding windows, tracking state across time

• Output operations which write data to an external system.
Each streaming application has to define an output operation.

Note that a streaming context can be started only once, and must be
started after we set up all the DStreams and output operations.

11 Matteo Nardelli - SABD 2016/17

Spark Streaming: DStream
Most of the transformations have the same syntax as the one applied to
RDDs

12 Matteo Nardelli - SABD 2016/17

Transformation Meaning
map(func) Return a new DStream by passing each element of the

source DStream through a function func.

flatMap(func) Similar to map, but each input item can be mapped to 0 or
more output items.

filter(func) Return a new DStream by selecting only the records of the
source DStream on which func returns true.

union(otherStream) Return a new DStream that contains the union of the elements
in the source DStream and otherDStream.

join(otherStream) When called on two DStreams of (K, V) and (K, W) pairs,
return a new DStream of (K, (V, W)) pairs with all pairs of
elements for each key.

Spark Streaming: DStream

13 Matteo Nardelli - SABD 2016/17

Transformation Meaning
reduce(func) Return a new DStream of single-element RDDs by

aggregating the elements in each RDD of the source
DStream using a function func (which takes two arguments
and returns one). The function should be associative so that it
can be computed in parallel.

reduceByKey(func) When called on a DStream of (K, V) pairs, return a new
DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function.

count() Return a new DStream of single-element RDDs by counting
the number of elements in each RDD of the source DStream.

collect() Return all elements from the RDD.
transform(func) Return a new DStream by applying a RDD-to-RDD function to

every RDD of the source DStream. This can be used to do
arbitrary RDD operations on the DStream.

updateStateByKey(func) Return a new "state" DStream where the state for each key is
updated by applying the given function on the previous state
of the key and the new values for the key. This can be used to
maintain arbitrary state data for each key.

Example: Network Word Count

14 Matteo Nardelli - SABD 2016/17

...
SparkConf sparkConf = new SparkConf()
 .setMaster("local[2]").setAppName("NetworkWordCount");
 JavaStreamingContext ssc = ...

 JavaReceiverInputDStream<String> lines =
 ssc.socketTextStream(...);

 JavaDStream<String> words = lines.flatMap(...);

 JavaPairDStream<String, Integer> wordCounts =
 words.mapToPair(s -> new Tuple2<>(s, 1))
 .reduceByKey((i1, i2) -> i1 + i2);

 wordCounts.print();
...

Excerpt of NetworkWordCount.java

Spark Streaming: Window
Windowed computations allow you to apply transformations over a
sliding window of data. Any window operation needs to specify two
parameters:
• window length

The duration of the window in secs
• sliding interval

The interval at which the window operation is performed in secs
These parameters must be multiples of the batch interval

15 Matteo Nardelli - SABD 2016/17

Batch interval: 1 s
Window length: 3 s
Sliding interval: 2 s

Spark Streaming: Window
window(windowLength, slideInterval)
Return a new DStream which is computed based on windowed
batches.

16 Matteo Nardelli - SABD 2016/17

...
JavaStreamingContext ssc = ...

JavaReceiverInputDStream<String> lines = ...

JavaDStream<String> linesInWindow =
 lines.window(WINDOW_SIZE, SLIDING_INTERVAL);

JavaPairDStream<String, Integer> wordCounts =
 linesInWindow.flatMap(SPLIT_LINE)
 .mapToPair(s -> new Tuple2<>(s, 1))
 .reduceByKey((i1, i2) -> i1 + i2);
...

Excerpt of WindowBasedWordCount.java

Spark Streaming: Window
reduceByWindow(func, InvFunc, windowLength, slideInterval)
Return a new single-element stream, created by aggregating elements in the
stream over a sliding interval using func (which should be associative).
The reduce value of each window is calculated incrementally.
• func reduces new data that enters the sliding window
• invFunc “inverse reduces” the old data that leaves the window.

reduceByKeyAndWindow(func, InvFunc, windowLength, slideInterval)
When called on a DStream of (K, V) pairs, returns a new DStream of (K, V)
pairs where the values for each key are aggregated using the given reduce
function func over batches in a sliding window.

For performing these transformations, we need to define a checkpoint
directory

17 Matteo Nardelli - SABD 2016/17

A Window-based WordCount

Matteo Nardelli - SABD 2016/17

18

...
JavaPairDStream<String, Integer> wordCountPairs =
 ssc.socketTextStream(...)
 .flatMap(x -> Arrays.asList(SPACE.split(x)).iterator())
 .mapToPair(s -> new Tuple2<>(s, 1));

JavaPairDStream<String, Integer> wordCounts =
 wordCountPairs.reduceByKeyAndWindow(
 (i1, i2) -> i1 + i2,
 WINDOW_SIZE,
 SLIDING_INTERVAL);

 wordCounts.print();
 wordCounts.foreachRDD(new SaveAsLocalFile());
...

Excerpt of WindowBasedWordCount2.java

We now perform only the reduce operation within a sliding window.
We change our code as follows.

A (More Efficient) Window-based WordCount

Matteo Nardelli - SABD 2016/17

19

...
ssc.checkpoint(LOCAL_CHECKPOINT_DIR);
...
JavaPairDStream<String, Integer> wordCounts =
 wordCountPairs.reduceByKeyAndWindow(

 (i1, i2) -> i1 + i2,
 (i1, i2) -> i1 - i2,
 WINDOW_SIZE, SLIDING_INTERVAL);

...
Excerpt of WindowBasedWordCount3.java

A more efficient version: the reduce value of each window is
calculated incrementally

• a reduce function handles new data that enters the sliding
window;

• an “inverse reduce” function handles old data that leaves the
window.

Note that checkpointing must be enabled for using this operation.

Spark Streaming: Output Operations

20 Matteo Nardelli - SABD 2016/17

Output Operation Meaning
print() Prints the first ten elements of every batch of data

in a DStream on the driver node running the
application.

saveAsTextFiles(prefix,
[suffix])

Save this DStream's contents as text files. The file
name at each batch interval is generated based
on prefix.

saveAsHadoopFiles(prefix,
[suffix])

Save this DStream's contents as Hadoop files.

saveAsObjectFiles(prefix,
[suffix])

Save this DStream's contents
as SequenceFiles of serialized Java objects.

foreachRDD(func) Generic output operator that applies a
function, func, to each RDD generated from the
stream.

Output operations allow DStream’s data to be pushed out to external
systems like a database or a file systems

	Spark Streaming: �Hands-on Session�A.A. 2016/17��Matteo Nardelli
	The reference Big Data stack
	Apache Spark
	Apache Spark
	Apache Spark
	Apache Spark
	Spark Streaming: Abstractions
	Spark Streaming: DStream
	Spark Streaming: DStream
	Spark Streaming: DStream
	Spark Streaming: Streaming Context
	Spark Streaming: DStream
	Spark Streaming: DStream
	Spark Streaming: DStream
	Example: Network Word Count
	Spark Streaming: Window
	Spark Streaming: Window
	Spark Streaming: Window
	A Window-based WordCount
	A (More Efficient) Window-based WordCount
	Spark Streaming: Output Operations

