
Time Series Database
A.A. 2021/22

Matteo Nardelli

Laurea Magistrale in Ingegneria Informatica - II anno

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Matteo Nardelli - SABD 2021/22

The reference Big Data stack

2

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Matteo Nardelli - SABD 2021/22

Time Series
• Time series data are measurements (or events)

collected over time
• Usually taken at equally spaced data points
• Discrete-time measurements

3

Matteo Nardelli - SABD 2021/22

Store Time Series
• Where to store data?
• Flat files

– Limited utility for time series, data will outgrow them, access is inefficient
• Relational DBMS

– Possible scalability issues
• NoSQL

– Better scaling, efficient queries based on time range
– The design can be challenging:

– Row key as time series ID, column as time offset ?
– Wide table stores data point-by-point
– Hybrid design with wide tables and blob (aggregation of points)

4RDBMS
NoSQL

Matteo Nardelli - SABD 2021/22

Time Series Database (TSDB)
• Optimized for time series data

– Key notion: time
– Database optimized for handling time-stamped data
– Examples: application performance monitoring, network data, sensor data,

events, clicks, trades in a market, and many other types of analytics data.
• Similar to a key/value store:

– Where the key is a timestamp
– The value is the measurement, which can have multiple fields.

• A TSBD is optimized for measuring changes over time
– Considers data lifecycle management
– Optimizes data storage: storage, compression, data retention, and

sharding
– Optimizes data query: time-aware queries, data aggregation, large range

scan of records

5

Matteo Nardelli - SABD 2021/22

Time Series Database (TSDB)
• Ranking of TSDBs on DB-Engines

6

https://db-engines.com/en/ranking/time+series+dbms

Matteo Nardelli - SABD 2021/22

InfluxDB
• Natively built to manage time series data
• InfluxDB is part of an ecosystem that supports:

– Collection: Telegraf
– Storage: InfluxDB
– Monitoring/Processing: Kapacitor
– Visualization: Choronograf
– Alerting

7

Matteo Nardelli - SABD 2021/22

InfluxDB
• Data model:

– Measurement: string (indexed)
– Tag-set: key-value pairs (indexed, only string allowed)
– Field-set: key-value pairs (values can be of numbers, booleans or

strings)
– Timestamp: can have second, millisecond, microsecond, or nanosecond

precision

• Data compression depends on the level of precision
• Data storage (on disk):

– Data is organized in a columnar style format
– Contiguous blocks of time are set for the measurement, tagset, field.
– Each field is organized sequentially on disk for blocks of time, which

make calculating aggregates on a single field a very fast operation.
– There is no limit to the number of tags and fields that can be used.

8

measurement-name tag-set field-set timestamp

Example: cpu host=serverA,region=uswest idle=23,user=42,system=12 1464623548s

Matteo Nardelli - SABD 2021/22

InfluxDB
• InfluxDB creates a shard for each block of time, whose

size depends on the retention policy:
– describes how long to keep data (retention)
– how many copies (replication factor)
– the time range covered by shard groups (shard group duration)

• Each shard maps to un underlying database with
• A WAL file:

– Write-optimized storage format (durable writes, but not
easily queryable)

– Writes to the WAL are appended to segments of a fixed
size.

• A TSM file:
– Contains sorted, compressed series data.
– Read-only files that are memory mapped.

9

Matteo Nardelli - SABD 2021/22

InfluxDB: Query and Manipulation Language

• Flux is InfluxData’s functional data scripting language
designed for querying, analyzing, and acting on data

• Flux supports multiple data source types, including:
– Time series databases (such as InfluxDB)
– Relational SQL databases (such as MySQL and PostgreSQL)
– CSV

• Flux unifies code for querying, processing, writing,
and acting on data into a single syntax.

10

Matteo Nardelli - SABD 2021/22

InfluxDB: Flux
Like treating water, a Flux query does the following:

1. Retrieves a specified amount of data from a source.
2. Filters data based on time or column values.
3. Processes and shapes data into expected results.
4. Returns the result.

11

 from(bucket: "example-bucket") // ── Source
 |> range(start: -1d) // ── Filter on time
 |> filter(fn: (r) => r._field == "foo") // ── Filter on column values
 |> group(columns: ["sensorID"]) // ── Shape
 |> mean() // ── Process

Matteo Nardelli - SABD 2021/22

InfluxDB: Flux

• from() to retrieve data from the data source.
• pipe-forward operator (|>) to send the output of each function to

the next function as input.
• range(), filter(), or both to filter data based on column values.
• mean() to calculate the average of values returned from the data

source.
• yield() to yield results to the user.

12

 from(bucket: "example-bucket") // ── Source
 |> range(start: -1d) // ── Filter on time
 |> filter(fn: (r) => r._field == "foo") // ── Filter on column values
 |> group(columns: ["sensorID"]) // ── Shape
 |> mean() // ── Process

Matteo Nardelli - SABD 2021/22

InfluxDB: The Flux Data Model
The Flux data model comprises the following:
• Stream of tables: returned by data sources
• Table: collection of columns partitioned by group key
• Column: collection of values of the same basic type that contains

one value for each row.
• Row: a collection of associated column values.
• Group key: key-value pairs, where each key represents a column

name and each value represents the column value included in
the table.
• All rows in a table contain the same values in group keys. All

tables in a stream of tables have a unique group key
• e.g., each group key represents a table containing data for a

unique location

13https://docs.influxdata.com/flux/v0.x/get-started/data-model

https://docs.influxdata.com/flux/v0.x/get-started/data-model

Matteo Nardelli - SABD 2021/22

InfluxDB: Flux
• The majority of basic Flux queries include the

following steps: Source, Filter, Shape, Process
• Source:

– Flux input functions retrieve data from a data source.
– All input functions return a stream of tables.
– Flux supports multiple data sources including, time series

databases (such as InfluxDB and Prometheus), relational
databases (such as MySQL and PostgreSQL), CSV, and
more.

• Filter:
– Filter functions iterate over and evaluate each input row to

see if it matches specified conditions.
– range(): filter data based on time.
– filter(): use a predicate function (fn) to filter data based on

column values.
14

https://docs.influxdata.com/flux/v0.x/function-types/
https://docs.influxdata.com/flux/v0.x/get-started/syntax-basics/

https://docs.influxdata.com/flux/v0.x/function-types/
https://docs.influxdata.com/flux/v0.x/get-started/syntax-basics/

Matteo Nardelli - SABD 2021/22

InfluxDB: Flux
• Shape data:

– Queries may require to change the structure of data
– Functions that reshape data include:

– group(): modify group keys
– window(): modify _start and _stop values of rows to group data by time
– pivot(): pivot column values into rows
– drop(): drop specific columns
– keep(): keep scientific columns and drop all others

• Process:
– Aggregate data: into a single row (e.g., count(), mean(), sum(), quantile())
– Select specific data points: return specific rows from each input table.

– e.g., distinct(), first(), last(), min(), max(), limit(), top(), unique()
– Rewrite rows: tranform values (e.g., maths operations, process strings,

add new columns)
– e.g., map(), which by default drops not explicitly mapped columns, the with

operator updates a column if it already exists and includes all existing
columns: map(fn: (r) => ({ r with newColumn: r._value * 2 }))

– Send notifications

15https://docs.influxdata.com/flux/v0.x/function-types/

https://docs.influxdata.com/flux/v0.x/function-types/

Matteo Nardelli - SABD 2021/22

Hands-on InfluxDB
(Docker image)

Matteo Nardelli - SABD 2021/22

InfluxDB with Docker

17

• We use the official standalone InfluxDB image

• We can now create an instance of InfluxDB

• Chronograf can be reached at http://localhost:8086

$ docker pull influxdb:2.0

$ docker run -p 8086:8086 \

-v $PWD:/var/lib/influxdb2 \

 influxdb:2.0

http://localhost:8086

Matteo Nardelli - SABD 2021/22

Loading Sample Data

18

import "influxdata/influxdb/sample"

sample.data(set: "airSensor")
 |> to(
 org: "example-org",
 bucket: "example-bucket"
)

Matteo Nardelli - SABD 2021/22

Get Raw Temperature Data

19

from(bucket: "example-bucket")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "airSensors")
|> filter(fn: (r) => r["_field"] == "temperature")
|> yield(name: "raw values")

Matteo Nardelli - SABD 2021/22

Get Sensor’s Temperature Data

20

from(bucket: "example-bucket")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "airSensors")
|> filter(fn: (r) => r["_field"] == “temperature")
|> filter(fn: (r) => r["sensor_id"] == "TLM0100")
|> yield(name: "raw values")

Matteo Nardelli - SABD 2021/22

Get Average Sensor’s Temperature Data

21

from(bucket: "example-bucket")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "airSensors")
|> filter(fn: (r) => r["_field"] == “temperature")
|> filter(fn: (r) => r["sensor_id"] == “TLM0100")
|> group(columns: ["sensorID"])
|> mean()

Since InfluxDB groups data by series, mean() returns a table for each
unique sensor_id containing a single row with the average value in the
_value column.

Here, since we query for a single sensor, we could have omitted the
group() operation; however, if we are interested in computing the
average value across all sensors, we really need to group() correctly
data.

Matteo Nardelli - SABD 2021/22

Get Average Temperature Data

22

from(bucket: "example-bucket")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "airSensors")
|> filter(fn: (r) => r["_field"] == “temperature")
|> filter(fn: (r) => r["sensor_id"] == “TLM0100")
|> group(columns: ["sensorID"])
|> mean()

Not filterning on a single sensor_id, group() allows to
compute the mean value across all sensors

