
Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP Frameworks

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP frameworks we consider

• Apache Storm

• Twitter Heron

• Apache Flink (with lab)

• Apache Spark Streaming (with lab)

• Kafka Streaming (lab)

• Cloud-based frameworks

– Google Cloud Dataflow
– Amazon Kinesis

1V. Cardellini - SABD 2021/22

Apache Storm

• Apache Storm https://storm.apache.org
– Open-source, real-time, scalable streaming system
– Provides an abstraction layer to execute DSP

applications
– Initially developed by Twitter
– Current version: 2.4

• Main concept: topology

– DAG of spouts (sources of streams) and bolts
(operators and data sinks)

– Top-level abstraction
submitted to Storm for
execution

2V. Cardellini - SABD 2021/22

Storm: topology API

• Storm uses tuples as its data model

– Tuple: named list of values, and a field in a tuple
can be an object of any type

– Storm supports all primitive types, strings, and
byte arrays as tuple field values

– To use an object of another type, you need to
implement a serializer for the type

V. Cardellini - SABD 2021/22 3

Storm: stream grouping

• Stream grouping defines how to send send tuples
between two topology nodes
– Remember of data parallelism: spouts and bolts execute in

parallel (multiple threads of execution)

• Shuffle grouping
– Randomly partitions the tuples

• Field grouping
– Stream is partitioned by the fields specified in the grouping

V. Cardellini - SABD 2021/22 4

Storm: stream grouping

• All grouping (i.e., broadcast)
– Stream is replicated to all the bolt’s tasks

• Global grouping
– Stream goes to a single one of the bolt's task

• Direct grouping
– The producer of the tuple decides which task of the

consumer will receive this tuple

V. Cardellini - SABD 2021/22 5

Storm: a simple topology

• First example: exclamation
– Spout emits words, each bolt appends "!!!" to its input

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java

V. Cardellini - SABD 2021/22 6

setSpout and setBolt
methods take as input:

• user-specified id

• object containing the
processing logic

• amount of parallelism
for the operator

"words":
TestWordSpout()

"words":
TestWordSpout()

"words":
TestWordSpout()

"words":
TestWordSpout()"words":

TestWordSpout()

10

"exclaim1":
ExclamationBolt()

"exclaim1":
ExclamationBolt()"exclaim1":

ExclamationBolt()

3

"exclaim1":
ExclamationBolt()

"exclaim2":
ExclamationBolt()

2

Shuffle

grouping
Shuffle

grouping

Storm: another topology

• Example: WordCount

Full example at https://github.com/apache/storm/blob/master/examples/storm-

starter/src/jvm/org/apache/storm/starter/WordCountTopology.java

• Bolts can be defined in any language
– Bolts written in another language are executed as subprocesses,

and Storm communicates with them using JSON messages over
stdin/stdout

– Communication protocol for Python available in an adapter library
https://streamparse.readthedocs.io/

V. Cardellini - SABD 2021/22 7

Storm: windowing

8

• Windowing support in core Storm: sliding and
tumbling windows

• Windows can be based on time duration or event
count
– Count-based windows

• Based on tuples count (no relation to clock time)

– Time-based windows

• Based on time duration

V. Cardellini - SABD 2021/22

Storm: Stream APIs

• Alternative interface to Storm: provides a

typed API for expressing streaming

computations and supports functional style

operations (similar to Spark and Flink)

– Still experimental
https://storm.apache.org/releases/2.4.0/Stream-API.html

• Stream APIs: Stream and PairStream

• Support a wide range of operations:

transformations, filters, windowing,

aggregations, branching, joins, stateful,

output and debugging operations

V. Cardellini - SABD 2021/22 9

Stream APIs

• Example

• A Stream supports two kinds of operations:
– Transformations: produce another stream from the current

one (e.g., map, flatMap)

– Output operations: produce a result (e.g., forEach)

V. Cardellini - SABD 2021/22 10

Storm: architecture

11V. Cardellini - SABD 2021/22

• Master-worker architecture

Storm components: Nimbus and Zookeeper

• Nimbus

– Master node
– Clients submit topologies to it
– Responsible for distributing and coordinating the

topology execution

• Zookeeper

– Nimbus uses a combination of local disk(s) and
Zookeeper to store state about the topology

V. Cardellini - SABD 2021/22 12

worker process

executor executor
THREAD THREAD

JAVA PROCESS

task

task

task

task

task

Storm components: worker

• Task: operator instance

– Actual work for bolt or spout is done by task

• Executor: smallest schedulable entity

– Execute one or more tasks related to same operator

• Worker process: Java process running one or

more executors

• Worker node: computing

resource, a container for

one or more worker processes

13V. Cardellini - SABD 2021/22

Storm components: supervisor

• Each worker node runs a supervisor

The supervisor:

– receives assignments from Nimbus (through
ZooKeeper) and spawns workers based on the
assignment

– sends to Nimbus (through ZooKeeper) a periodic
heartbeat

– advertises the topologies that they are currently
running, and any vacancies that are available to
run more topologies

V. Cardellini - SABD 2021/22 14

Storm: running topology

• Application developer can configure the parallelism of
a topology
– Number of worker processes

– Number of executors (threads)

– Number of tasks

V. Cardellini - SABD 2021/22 15

• Parallelism of running
topology can be
changed manually
using rebalance
command

See
https://storm.apache.org/releases/2.4.0/
Understanding-the-parallelism-of-a-
Storm-topology.html

Storm: reliable message processing

• What happens if a bolt fails to process a tuple?
• Storm provides a mechanism by which the originating

spout can replay the failed tuple
– Needs to maintain the link between the spout tuple and its

child tuples so to detect when the tree of tuples is fully

processed: anchoring

– And needs to ack or fail the spout tuple appropriately

• If ack is not received within a specified timeout time period, the
tuple processing is considered as failed

• Storm offers at-least-once semantics
– Use Trident (high-level abstraction on top of Storm) for

exactly-once semantics

V. Cardellini - SABD 2021/22 16

Storm: application monitoring

V.
 C

ar
de

llin
i -

SA
BD

 2
02

1/
22

17See https://storm.apache.org/releases/2.4.0/STORM-UI-REST-API.html

• # of messages executed * average
execute latency / time window

– Latency

• For spouts: completeLatency (total
latency for processing the message)

– Ignore value if acking is disabled

• For bolts: executeLatency (avg time the
bolt spends in the execute method) and
processLatency (avg time from starting
execute to ack)

• Storm has a built-in monitoring and metrics system
– Built-in and user-defined metrics

• Built-in metrics include:
– Capacity

⎼ JVM memory usage and garbage collection

• Metrics can be queried via Storm’s UI REST API or reported to

a registered consumer (e.g., Graphite)

Layers on top of Storm

• Trident

– Alternative interface to Storm, provides exactly-
once processing

• SQL

– To run SQL queries over streaming data
https://storm.apache.org/releases/2.4.0/storm-sql.html

V. Cardellini - SABD 2021/22 18

Twitter Heron

• Real-time, distributed, fault-tolerant stream

processing engine from Twitter

• Developed as direct successor of Storm

– Released as open source in 2016
https://heron.incubator.apache.org/

– Stream data processing engine used at Twitter

• Goal of overcoming Storm’s performance,

reliability, and other shortcomings

• Compatibility with Storm

– API compatible with Storm: no code change is
required for migration

V. Cardellini - SABD 2021/22 19

Heron: in common with Storm

• Same terminology of Storm

– Topology, spout, bolt

• Same stream groupings

– Shuffle, fields, all, global

• Example: WordCount topology

V. Cardellini - SABD 2021/22 20

Heron: design goals

• Isolation

– Process-based topologies rather than thread-based
– Each process runs in isolation (easy debugging,

profiling, and troubleshooting)
– Goal: overcoming Storm’s performance, reliability,

and other shortcomings

• Resource constraints

– Safe to run in shared infrastructure: topologies use
only initially allocated resources and never exceed
bounds

• Compatibility

– Fully API and data model compatible with Storm

V. Cardellini - SABD 2021/22 21

Heron: design goals

• Backpressure

– Built-in rate control mechanism to ensure that
topologies can self-adjust in case components lag

– Heron dynamically adjusts the rate at which data
flows through the topology using backpressure

• Performance

– Higher throughput and lower latency than Storm
– Enhanced configurability to fine-tune potential

latency/throughput trade-offs
• Semantic guarantees

– Support for both at-most-once and at-least-once
processing semantics

• Efficiency

– Minimum possible resource usage
V. Cardellini - SABD 2021/22 22

Heron: topology

• Similarly to Storm, a Heron topology is a DAG

used to process streams of data and consists

of spouts and bolts

– Spouts inject data from external sources like pub-
sub messaging systems (Apache Kafka, Apache
Pulsar, etc.)

– Bolts apply user-defined processing logic to data
supplied by spouts, can be stateless or stateful

V. Cardellini - SABD 2021/22 23

Heron APIs

V. Cardellini - SABD 2021/22 24

• Main APIs

– Heron Topology API
– Heron Streamlet API

• Topology API: lower-level API based on

Storm topology API

– Specify spout and bolt logic directly
– Same window types as in Storm: tumbling and

sliding
– As in Storm windows can be based on count or

time (4 total types of windows)
– Available in Java and Python

• As in Storm, shift from procedural to

functional style

• Let’s examine Heron Streamlet API

V. Cardellini - SABD 2021/22 25

Heron Streamlet API

Heron Streamlet API

• Processing graphs consist of streamlets
– One or more supplier streamlets inject data into DAG to be

processed by downstream operators

• Operations (similar to Spark)

V. Cardellini - SABD 2021/22 26

Heron API: shift to functional style

• Operations (continued)

V. Cardellini - SABD 2021/22 27

Heron: topology lifecycle

• Topology lifecycle managed through Heron’s

CLI tool

• Stages

– Submit topology to cluster
– Activate topology
– Restart active topology if, e.g., after updating its

configuration
– Deactivate topology
– Kill topology to completely remove it from cluster

V. Cardellini - SABD 2021/22 28

Heron topology: logical and physical plans

• Topology’s logical plan:
maps out basic operations
associated with a topology

• Topology’s physical plan:
determines the “physical”
execution logic of a topology,
i.e. how topology processes
are divided between Heron
containers

• Both are automatically created
by Heron

V. Cardellini - SABD 2021/22 29

Heron architecture per topology

• Master-work architecture

• One Topology Master (TM)

– Manages a topology throughout its entire lifecycle

• Multiple Containers

– Each Container contains:
• multiple Heron Instances

• a Stream Manager

• a Metrics Manager

– Heron Instance: process that handles a single task
of a spout or bolt

– Containers communicate with TM to ensure that
the topology forms a fully connected graph

V. Cardellini - SABD 2021/22 30

Heron architecture per topology

V. Cardellini - SABD 2021/22 31

Heron architecture per topology

• Stream Manager (SM): routing engine for data
streams
– Each Heron container connects to its local SM, while all of

the SMs in a given topology connect to one another to form

a network

– Responsible for propagating backpressure

V. Cardellini - SABD 2021/22 32

Unbounded vs. bounded streams

V. Cardellini - SABD 2021/22 33

• Bounded streams
– Have a defined start and end

– Can be processed by ingesting

all data before performing any

computations

– Ordered ingestion is not

required because bounded

data can always be sorted

• Data can be processed as bounded or

unbounded streams

• Unbounded streams
– Have a start but no defined end

– Provide data as it is generated

– Must be continuously processed

– Not possible to wait for all input

data to arrive

– Processing unbounded data

often requires that events are

ingested in a specific order

Batch processing vs. stream processing

• Batch processing as special case of stream

processing

V. Cardellini - SABD 2021/22 34

Batch processing vs. stream processing

• Batched/stateless: scheduled in batches

– Short-lived tasks (Hadoop, Spark)
– Distributed streaming over batches (Spark

Streaming)

• Dataflow/stateful: continuously processed,

typically scheduled once (Storm, Heron,

Flink)

– Long-lived task execution
– State is kept inside tasks

V. Cardellini - SABD 2021/22 35

Apache Flink

• Distributed processing system for stateful computation
over bounded and bounded data streams
– One common runtime for data streaming and batch processing

• Integrated with many other projects in Big data open-
source ecosystem

• Originated from Stratosphere project by TU Berlin,
Humboldt Univ. and Hasso Plattner Institute

• Current stable version: 1.15

V. Cardellini - SABD 2021/22 36

Flink: Stateful computation

• Flink’s operations can be stateful
– E.g., counting events per minute to display on dashboard,

computing features for fraud detection model

• State is optimized for local access
– Maintained in memory or in access-efficient on-disk data

structures

– Goals: high throughput and low latency

V. Cardellini - SABD 2021/22 37

• State is partitioned: the set of parallel
instances of a stateful operator is a
sharded key-value store

Flink: fault tolerance

• Flink guarantees exactly-once state consistency in
case of failures by periodically and asynchronously
checkpointing local state to durable storage (state
snapshot)
– State of operators can be restored from checkpoint to an

earlier point in time and records are reset to the point of the

state snapshot

Flink docs: https://nightlies.apache.org/flink/flink-docs-stable/

V. Cardellini - SABD 2021/22 38

DSP and time

• Different notions of time in a DSP application:
– Processing time: time at which an event is observed in the

system (system time of the machine executing the operator)

– Event time: time at which an event actually occurred on its

producing device

• Usually described by a timestamp in the event

– Ingestion time: time when an event enters the dataflow at the

source operator(s)

V. Cardellini - SABD 2021/22 39

Flink: time

• Flink supports all the 3 notions of time
– Internally, ingestion time is treated similarly to event time

• Event time makes it easy to compute over streams
where events arrive out-of-order, and where events
may arrive delayed

• How to measure the progress of event time?
– Flink uses watermarks

V. Cardellini - SABD 2021/22 40

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/concepts/time/

Flink: backpressure

• Continuous streaming with backpressure

– Flink’s streaming runtime provides flow control:
slow downstream operators backpressure faster
upstream operators

– Flink’s UI allows to monitor backpressure behavior
of running jobs

• Back pressure warning (e.g., High) for an upstream

operator

V. Cardellini - SABD 2021/22 41

Flink: windows

• Highly flexible streaming windows

– Also user-defined windows

• Supported types of windows:

– Tumbling: no overlap
– Sliding: overlap
– Session
– Global

V. Cardellini - SABD 2021/22 42

Flink: windows

• Session windows
– To group elements by sessions

of activity

– Differently from tumbling and

sliding windows, do not overlap

and do not have a fixed start

and end time

– A session window closes when

a gap of inactivity occurs

• Global windows
– To assign all elements with the

same key to the same single

global window

– Only useful if you also specify

a custom trigger

V. Cardellini - SABD 2021/22 43

Flink: APIs

V. Cardellini - SABD 2021/22 44

• Different levels of abstraction to develop
streaming/batch applications

• On top: libraries with high-level APIs for different use
cases

• APIs in Java, Scala and Python

Flink: APIs

• Data streaming applications: DataStream API

– Supports transformations on data streams (e.g.,
filtering, updating state, defining windows,
aggregating), with user-defined state and flexible
windows

– Provides fine-grained control over state and time

• Table API & SQL

– Two relational APIs for unified stream and batch
processing

• Python API

– Python API for Apache Flink: PyFlink DataStream
API and PyFlink Table API

• See lab lesson
V. Cardellini - SABD 2021/22 45

Flink: programming model

• Applications are composed of streaming dataflows
that are transformed by user-defined operators
– Streams: unbounded, partitioned, immutable sequence of

events

• Streaming dataflows form directed graphs (usually
DAGs) that start with one or more sources, and end
in one or more sinks
– DAGs basic building blocks: streams and transformation

operators

V. Cardellini - SABD 2021/22 46

Flink: programming model

• Stream operators

– Stream transformations that take one or more
streams as input, and produce one or more output
streams as a result

V. Cardellini - SABD 2021/22 47

Flink: programming model

• Parallel dataflows: operator parallelism

– Same solution as in Storm and Heron

V. Cardellini - SABD 2021/22 48

Flink: programming model

• Stateful operators: require to remember information
across multiple events
– E.g., counting events per minute to display on a dashboard,

or computing features for a fraud detection model

– State is maintained in a sort of embedded key/value store

– Access to key/value state is only possible on keyed streams
after keyBy(), which re-partitions by hashing the key

V. Cardellini - SABD 2021/22 49

Flink: control events

• Control events: special events injected in the

data stream by operators

• Two types of control events in Flink

⎼ Watermarks
⎼ Checkpoint barriers

V. Cardellini - SABD 2021/22 50

Flink: watermarks

• Watermarks (W) mark the progress of event time
within a data stream

• Generated at, or directly after, source functions
• Flow as part of data stream and carry a timestamp t

V. Cardellini - SABD 2021/22 51

– W(t) declares that event time

has reached time t in that

stream, meaning that there

should be no more elements

with timestamp t’ <= t
– Crucial for out-of-order

streams, where events are

not ordered by their

timestamps

Flink: watermarks

• By default, late elements are dropped when the
watermark is past the end of the window

• However, Flink allows to specify a maximum allowed
lateness for window operator
– By how much time elements can be late before they are

dropped (0 by default)

– Late elements that arrive after the watermark has passed the

end of the window but before it passes the end of the

window plus the allowed lateness, are still added to the

window

V. Cardellini - SABD 2021/22 52

Flink: watermarks

V. Cardellini - SABD 2021/22 53

• Flink does not provide ordering guarantees after any
form of stream partitioning or broadcasting
– In such case, dealing with out-of-order tuples is left to the

operator implementation

Flink: checkpoint barriers

• To provide fault tolerance special barrier markers
(called checkpoint barriers) are periodically injected
at streams sources and then pushed downstream up
to sinks

V. Cardellini - SABD 2021/22 54

Fault tolerance

• To provide consistent results, DSP systems need to
be resilient to failures

• How? By periodically capturing a snapshot of the
execution graph which can be used later to restart in
case of failures (checkpointing)
Snapshot: global state of the execution graph, capturing all
necessary information to restart computation from that specific
execution state

• Common approach is to rely on periodic global state
snapshots, but has drawbacks:

V. Cardellini - SABD 2021/22 55

– Stalls overall computation

– Eagerly persists all tuples in

transit along with states,

which results in larger

snapshots than required

Flink: fault tolerance

V. Cardellini - SABD 2021/22 56

• Flink offers a lightweight snapshotting mechanism
– Allows to maintain high throughput and provides strong

consistency guarantees at the same time
• Such mechanism:

– Draws consistent snapshots of stream flows and operators’

state

– Even in presence of failures, the application state will reflect

every record from the data stream exactly once

– State stored at configurable place

– Disabled by default

• Inspired by Chandy-Lamport algorithm for distributed
snapshot and tailored to Flink’s execution model

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/concepts/stateful-

stream-processing/

https://arxiv.org/abs/1506.08603

Chandy-Lamport algorithm

• The observer process (process initiating the snapshot):

– Saves its own local state
– Sends a snapshot request message bearing a snapshot token to all

other processes

• If a process receives the token for the first time:

– Sends the observer process its own saved state
– Attaches the snapshot token to all subsequent messages (to help

propagate the snapshot token)

• When a process that has already received the token receives a

message not bearing the token, it will forward that message to

the observer process

– This message was sent before the snapshot “cut off” (as it does not
bear a snapshot token) and needs to be included in the snapshot

• The observer builds up a complete snapshot: a saved state for

each process and all messages “in the ether” are saved

V. Cardellini - SABD 2021/22 57

Flink: fault tolerance

• Uses checkpoint barriers

– When an operator has received a barrier
for snapshot n from all of its input streams,
it emits a barrier for snapshot n into all of
its outgoing streams. Once a sink operator
has received barrier n from all of its input
streams, it acknowledges that snapshot n
to the checkpoint coordinator. After all
sinks have acknowledged a snapshot, it is
considered completed

V. Cardellini - SABD 2021/22 58

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/learn-flink/fault_tolerance/

Flink: performance and memory management

• High throughput and low latency

• Memory management
– Flink implements its own memory management inside JVM

V. Cardellini - SABD 2021/22 59

Flink: architecture

V. Cardellini - SABD 2021/22 60

• The usual master-worker architecture

Flink: architecture

V. Cardellini - SABD 2021/22 61

• JobManager (master): is responsible to
responsibilities related to coordinate the distributed
execution of Flink applications
– Schedules tasks, coordinates checkpoints, coordinates

recovery on failures, etc.

• Composed by:
– ResourceManager: responsible for resource de-/allocation

and provisioning, manages task slots (unit of resource

scheduling in a Flink cluster)

– Dispatcher: provides a REST interface to submit Flink

applications for execution and starts a new JobMaster for

each submitted job; also runs Flink WebUI

– JobMaster: responsible for managing the execution of a

single JobGraph

https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-
architecture/

Flink: architecture

V. Cardellini - SABD 2021/22 62

• TaskManagers (workers): JVM processes that
execute tasks of a dataflow, and buffer and exchange
the data streams
– Workers use task slots to control the number of tasks they

accept (at least one)

– Each task slot represents a fixed subset of resources of the

worker

Flink: application execution

• The JobManager receives the JobGraph (or Logical
Graph)
– Representation of data flow consisting of operators (JobVertex)

and intermediate results (IntermediateDataSet)

V. Cardellini - SABD 2021/22 63

– Each operator has

properties, like parallelism

and code that it executes

• The JobManager
transforms the JobGraph
into an ExecutionGraph (or
Physical Graph)
– Parallel version of JobGraph

– The nodes are tasks and the

edges indicate input/output-

relationships or partitions of

data streams

Flink: application execution

• Data parallelism
– Different operators of same program may have different

levels of parallelism

– Parallelism of individual operator, data source, or data sink

can be defined by calling its setParallelism() method

V. Cardellini - SABD 2021/22 64

Flink: application execution

• Flink provides a visualization tool for execution plans

V. Cardellini - SABD 2021/22 65

Flink: application monitoring

• Built-in monitoring and metrics system
• Allows gathering and exposing metrics to external

systems
• Built-in metrics include

– Throughput

– Latency: delay between event creation and time at which

results based on this event become visible

– Used JVM heap/non-heap/direct memory

– Availability

– Checkpointing

V. Cardellini - SABD 2021/22 66

Flink: application monitoring

• Throughput
– In terms of rate of outgoing number of records (per

operator/task), e.g.,

• numRecordsOutPerSecond: number of records operator/task
sends per second

• Latency
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/metrics/#end-

to-end-latency-tracking

– Flink supports end-to-end latency tracking: special markers

(called LatencyMarker) are periodically inserted at all

sources in order to obtain a distribution of latency between

sources and each downstream operator

• But does not account for time spent in operator processing (or
in window buffers)

• Assume that all machines clocks are sync
• Disabled by default (can impact performance): to enable
latencyTrackingInterval must be > 0

V. Cardellini - SABD 2021/22 67

Flink: application monitoring

• Application-specific metrics can be added
– E.g., counters for number of invalid records

• All metrics can be
– Queried via Flink’s Monitoring REST-ful API that accepts

HTTP requests and responds with JSON data

https://nightlies.apache.org/flink/flink-docs-release-
1.15/docs/ops/rest_api/

– Visualized in Flink dashboard (Metrics tab)

– Sent to external systems (e.g., Graphite and InfluxDB)

V. Cardellini - SABD 2021/22 68

See https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/metrics/

Flink: deployment

• Designed to run on large-scale clusters with many
thousands of nodes

• Can be run in a fully distributed fashion on a static
(but possibly heterogeneous) standalone cluster

• For a dynamically shared cluster, can be deployed on
YARN, Mesos or Kubernetes

• Docker images for Apache Flink available on Docker
Hub
– Docker official image: https://hub.docker.com/_/flink

– By Flink developers: https://hub.docker.com/r/apache/flink

V. Cardellini - SABD 2021/22 69

Towards strict delivery guarantees

• Most frameworks provide at-least-once delivery
guarantees (e.g., Storm, Samza)
– For stateful non-idempotent operators such as counting, at-

least-once delivery guarantees can give incorrect results

• Flink, Storm plus Trident, and Google’s MillWheel offer
stronger delivery guarantees (i.e., exactly-once)
– Exactly-once low latency stream processing in MillWheel works

as follows:

• The record is checked against de-duplication data from previous
deliveries; duplicates are discarded

• User code is run for the input record, possibly resulting in pending
changes to timers, state, and productions

• Pending changes are committed to the backing store
• Senders are acked
• Pending downstream productions are sent

V. Cardellini - SABD 2021/22 70

Comparing DSP frameworks

• Let’s compare open source DSP frameworks
according to some features

V. Cardellini - SABD 2021/22 71

API Windows Delivery
semantics

Fault tol. State
mgmt.

Flow
control

Operator
elasticity

Storm Low-level
High-level
SQL
No batch

Yes At least once
Exactly once
with Trident

Acking
Checkpoint.
(similar to
Flink)

Limited
Yes with
Trident

Back
pressure

No

Heron Low-level
High-level
No SQL
No batch

Yes At least once
Effectively
once

Limited Back
pressure

Yes (with
Dhalion)

Flink High-level
SQL
Also batch

Yes, also
used-def.

At least once
Exactly once

Checkpoint. Yes Back
pressure

No

A recent need

• A common need for many companies

– Run both batch and stream processing

• Alternative solutions

1. Lambda architecture
2. Unified frameworks
3. Unified programming model

V. Cardellini - SABD 2021/22 72

Lambda architecture

• Data-processing design pattern to integrate batch and
real-time processing

• Streaming framework used to process real-time events,
and, in parallel, batch framework to process the entire
dataset

• Results from the two parallel pipelines are then merged

73Source: https://voltdb.com/products/alternatives/lambda-architecture

V. Cardellini - SABD 2021/22

Lambda architecture: example

V. Cardellini - SABD 2021/22 74

• Lambda architecture used at LinkedIn before Samza
development

Lambda architecture: pros and cons

• Pros:

– Flexibility in the frameworks’ choice

• Cons:

– Implementing and maintaining two separate
frameworks for batch and stream processing can
be hard and error-prone

– Overhead of developing and managing multiple
source codes

• The logic in each fork evolves over time, and keeping

them in sync involves duplicated and complex manual

effort, often with different languages

V. Cardellini - SABD 2021/22 75

Unified frameworks

• Use a unified (Lambda-less) design for

processing both real-time as well as batch

data using the same data structure

• Spark and Flink follow this trend

V. Cardellini - SABD 2021/22 76

Unified programming model: Apache Beam

• A new layer of abstraction

• Provides advanced unified programming model

– Allows to define batch and streaming data processing
pipelines that run on any supported execution engine
(Flink, Spark, Samza, Google Cloud Dataflow)

– Java, Python and Go as programming languages

• Engine-specific runners translate the Apache

Beam code to the target runtime

• Developed by Google and released as open-

source top-level project

V. Cardellini - SABD 2021/22 77

Using Beam: key concepts

• Create the Pipeline

– PipelineOptions object

• Read data input

– E.g., text files

• Apply pipeline transforms

• Write output

– E.g., to a text file

• Run the Pipeline

V. Cardellini - SABD 2021/22 78

Example: WordCount in Python using Beam

V. Cardellini - SABD 2021/22 79

See https://bit.ly/3dk5RLe

Beam: pros and cons

• Pros

– A single, unified programming model
– Flexibility to switch underlying DSP system with

relatively low effort

• Cons:

– Noticeable impact on performance of DSP
systems

• Slowdown >= 3x with respect to same programs

developed using native system APIs

Quantitative Impact Evaluation of an Abstraction Layer for Data
Stream Processing Systems, ICDCS ‘19

V. Cardellini - SABD 2021/22 80

DSP in the Cloud

• Data streaming systems also as Cloud services
– Amazon Kinesis Data Streams

– Google Cloud Dataflow

– IBM Streaming Analytics

– Microsoft Azure Stream Analytics

• Abstract underlying service infrastructure and support
dynamic scaling of computing resources

• Appear to execute in a single data center (i.e., no
geo-distribution)

V. Cardellini - SABD 2021/22 81

Google Cloud Dataflow

• Fully-managed data processing service, supporting
both stream and batch data processing
– Automated resource management

– Dynamic work rebalancing

– Horizontal auto-scaling

• Provides a unified programming model based on
Apache Beam
– Apache Beam SDK in Java and Python

– Enable developers to implement custom extensions and

choose other execution engines

• Provides exactly-once processing
– MillWheel is Google’s internal version of Cloud Dataflow

V. Cardellini - SABD 2021/22 82

Google Cloud Dataflow

• Can be seamlessly integrated with GCP services for
streaming events ingestion (Cloud Pub/Sub), data
warehousing (BigQuery), machine learning (Cloud
Machine Learning)

V. Cardellini - SABD 2021/22 83

Amazon Kinesis Data Streams

• Allows to collect and ingest streaming data at scale for
real-time analytics

V. Cardellini - SABD 2021/22 84

Amazon Kinesis Data Analytics

• Serverless, fully managed Apache Flink: allows to
process data streams in real time
– Based on Apache Flink: same operators to filter, aggregate

and transform streaming data

– Per-hour pricing based on number of Kinesis Processing

Units (KPUs) used to run application

• Horizontal scaling of KPUs

V. Cardellini - SABD 2021/22 85

References

• Akidau, Streaming 101: The world beyond batch, 2015.

• Carbone et al., Beyond Analytics: The Evolution of Stream

Processing Systems, ACM SIGMOD '20.
• Kulkarni et al., Twitter Heron: stream processing at scale, ACM

SIGMOD '15.

• Carbone et al., Apache Flink: Stream and batch processing in a

single engine, Bulletin IEEE Comp. Soc. Tech. Comm. on Data
Eng., 2015.

• Carbone et al., State management in Apache Flink®: consistent

stateful distributed stream processing, Proc.VLDB Endowment,
2017.

V. Cardellini - SABD 2021/22 86

