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DSP frameworks we consider

• Apache Storm 

• Twitter Heron

• Apache Flink (with lab)

• Apache Spark Streaming (with lab)

• Kafka Streaming (lab)

• Cloud-based frameworks

– Google Cloud Dataflow 
– Amazon Kinesis
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Apache Storm

• Apache Storm https://storm.apache.org
– Open-source, real-time, scalable streaming system 
– Provides an abstraction layer to execute DSP 

applications
– Initially developed by Twitter
– Current version: 2.4

• Main concept: topology 

– DAG of spouts (sources of streams) and bolts
(operators and data sinks)

– Top-level abstraction 
submitted to Storm for
execution
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Storm: topology API

• Storm uses tuples as its data model

– Tuple: named list of values, and a field in a tuple 
can be an object of any type

– Storm supports all primitive types, strings, and 
byte arrays as tuple field values

– To use an object of another type, you need to 
implement a serializer for the type
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Storm: stream grouping

• Stream grouping defines how to send send tuples 
between two topology nodes
– Remember of data parallelism: spouts and bolts execute in 

parallel (multiple threads of execution)

• Shuffle grouping
– Randomly partitions the tuples

• Field grouping
– Stream is partitioned by the fields specified in the grouping
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Storm: stream grouping

• All grouping (i.e., broadcast)
– Stream is replicated to all the bolt’s tasks

• Global grouping
– Stream goes to a single one of the bolt's task

• Direct grouping
– The producer of the tuple decides which task of the 

consumer will receive this tuple
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Storm: a simple topology

• First example: exclamation
– Spout emits words, each bolt appends "!!!" to its input

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java
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setSpout and setBolt
methods take as input: 

• user-specified id

• object containing the 
processing logic

• amount of parallelism 
for the operator

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()"words": 

TestWordSpout()

10

"exclaim1": 
ExclamationBolt()

"exclaim1": 
ExclamationBolt()"exclaim1": 

ExclamationBolt()

3

"exclaim1": 
ExclamationBolt()

"exclaim2": 
ExclamationBolt()

2

Shuffle

grouping
Shuffle

grouping

Storm: another topology

• Example: WordCount

Full example at https://github.com/apache/storm/blob/master/examples/storm-

starter/src/jvm/org/apache/storm/starter/WordCountTopology.java

• Bolts can be defined in any language
– Bolts written in another language are executed as subprocesses, 

and Storm communicates with them using JSON messages over 
stdin/stdout

– Communication protocol for Python available in an adapter library 
https://streamparse.readthedocs.io/
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Storm: windowing

8

• Windowing support in core Storm: sliding and 
tumbling windows

• Windows can be based on time duration or event 
count
– Count-based windows

• Based on tuples count (no relation to clock time)

– Time-based windows 

• Based on time duration

V. Cardellini - SABD 2021/22

Storm: Stream APIs

• Alternative interface to Storm: provides a 

typed API for expressing streaming 

computations and supports functional style 

operations (similar to Spark and Flink)

– Still experimental
https://storm.apache.org/releases/2.4.0/Stream-API.html

• Stream APIs: Stream and PairStream

• Support a wide range of operations: 

transformations, filters, windowing, 

aggregations, branching, joins, stateful, 

output and debugging operations
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Stream APIs

• Example

• A Stream supports two kinds of operations:
– Transformations: produce another stream from the current

one (e.g., map, flatMap)

– Output operations: produce a result (e.g., forEach)
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Storm: architecture
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• Master-worker architecture



Storm components: Nimbus and Zookeeper

• Nimbus

– Master node
– Clients submit topologies to it
– Responsible for distributing and coordinating the 

topology execution

• Zookeeper

– Nimbus uses a combination of local disk(s) and 
Zookeeper to store state about the topology
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worker process

executor executor
THREAD THREAD

JAVA PROCESS

task

task

task

task

task

Storm components: worker

• Task: operator instance

– Actual work for bolt or spout is done by task

• Executor: smallest schedulable entity

– Execute one or more tasks related to same operator

• Worker process: Java process running one or 

more executors

• Worker node: computing 

resource, a container for 

one or more worker processes
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Storm components: supervisor

• Each worker node runs a supervisor

The supervisor:

– receives assignments from Nimbus (through 
ZooKeeper) and spawns workers based on the 
assignment

– sends to Nimbus (through ZooKeeper) a periodic 
heartbeat

– advertises the topologies that they are currently 
running, and any vacancies that are available to 
run more topologies
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Storm: running topology

• Application developer can configure the parallelism of 
a topology
– Number of worker processes

– Number of executors (threads)

– Number of tasks
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• Parallelism of running 
topology can be 
changed manually
using rebalance
command

See 
https://storm.apache.org/releases/2.4.0/
Understanding-the-parallelism-of-a-
Storm-topology.html



Storm: reliable message processing

• What happens if a bolt fails to process a tuple?
• Storm provides a mechanism by which the originating 

spout can replay the failed tuple
– Needs to maintain the link between the spout tuple and its 

child tuples so to detect when the tree of tuples is fully 

processed: anchoring

– And needs to ack or fail the spout tuple appropriately

• If ack is not received within a specified timeout time period, the 
tuple processing is considered as failed

• Storm offers at-least-once semantics
– Use Trident (high-level abstraction on top of Storm) for 

exactly-once semantics
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Storm: application monitoring
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17See https://storm.apache.org/releases/2.4.0/STORM-UI-REST-API.html

• # of messages executed * average 
execute latency / time window

– Latency

• For spouts: completeLatency (total 
latency for processing the message)

– Ignore value if acking is disabled

• For bolts: executeLatency (avg time the 
bolt spends in the execute method) and 
processLatency (avg time from starting 
execute to ack)

• Storm has a built-in monitoring and metrics system
– Built-in and user-defined metrics

• Built-in metrics include:
– Capacity

⎼ JVM memory usage and garbage collection

• Metrics can be queried via Storm’s UI REST API or reported to 

a registered consumer (e.g., Graphite)



Layers on top of Storm

• Trident

– Alternative interface to Storm, provides exactly-
once processing

• SQL

– To run SQL queries over streaming data
https://storm.apache.org/releases/2.4.0/storm-sql.html
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Twitter Heron

• Real-time, distributed, fault-tolerant stream 

processing engine from Twitter

• Developed as direct successor of Storm

– Released as open source in 2016 
https://heron.incubator.apache.org/

– Stream data processing engine used at Twitter

• Goal of overcoming Storm’s performance, 

reliability, and other shortcomings

• Compatibility with Storm

– API compatible with Storm: no code change is 
required for migration
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Heron: in common with Storm 

• Same terminology of Storm

– Topology, spout, bolt

• Same stream groupings

– Shuffle, fields, all, global

• Example: WordCount topology
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Heron: design goals

• Isolation

– Process-based topologies rather than thread-based
– Each process runs in isolation (easy debugging, 

profiling, and troubleshooting)
– Goal: overcoming Storm’s performance, reliability, 

and other shortcomings 

• Resource constraints

– Safe to run in shared infrastructure: topologies use 
only initially allocated resources and never exceed 
bounds

• Compatibility

– Fully API and data model compatible with Storm
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Heron: design goals

• Backpressure

– Built-in rate control mechanism to ensure that 
topologies can self-adjust in case components lag

– Heron dynamically adjusts the rate at which data 
flows through the topology using backpressure

• Performance

– Higher throughput and lower latency than Storm 
– Enhanced configurability to fine-tune potential 

latency/throughput trade-offs
• Semantic guarantees

– Support for both at-most-once and at-least-once 
processing semantics

• Efficiency

– Minimum possible resource usage
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Heron: topology

• Similarly to Storm, a Heron topology is a DAG 

used to process streams of data and consists 

of spouts and bolts

– Spouts inject data from external sources like pub-
sub messaging systems (Apache Kafka, Apache 
Pulsar, etc.)

– Bolts apply user-defined processing logic to data 
supplied by spouts, can be stateless or stateful
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Heron APIs
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• Main APIs 

– Heron Topology API
– Heron Streamlet API

• Topology API: lower-level API based on 

Storm topology API

– Specify spout and bolt logic directly
– Same window types as in Storm: tumbling and 

sliding
– As in Storm windows can be based on count or 

time (4 total types of windows)
– Available in Java and Python

• As in Storm, shift from procedural to 

functional style

• Let’s examine Heron Streamlet API
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Heron Streamlet API



Heron Streamlet API

• Processing graphs consist of streamlets
– One or more supplier streamlets inject data into DAG to be 

processed by downstream operators

• Operations (similar to Spark)
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Heron API: shift to functional style

• Operations (continued)
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Heron: topology lifecycle

• Topology lifecycle managed through Heron’s

CLI tool

• Stages

– Submit topology to cluster
– Activate topology
– Restart active topology if, e.g., after updating its

configuration
– Deactivate topology
– Kill topology to completely remove it from cluster
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Heron topology: logical and physical plans

• Topology’s logical plan:  
maps out basic operations 
associated with a topology

• Topology’s physical plan: 
determines the “physical” 
execution logic of a topology, 
i.e. how topology processes 
are divided between Heron 
containers

• Both are automatically created 
by Heron
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Heron architecture per topology

• Master-work architecture

• One Topology Master (TM)

– Manages a topology throughout its entire lifecycle

• Multiple Containers

– Each Container contains: 
• multiple Heron Instances

• a Stream Manager

• a Metrics Manager

– Heron Instance: process that handles a single task 
of a spout or bolt

– Containers communicate with TM to ensure that 
the topology forms a fully connected graph
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Heron architecture per topology
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Heron architecture per topology

• Stream Manager (SM): routing engine for data 
streams 
– Each Heron container connects to its local SM, while all of 

the SMs in a given topology connect to one another to form 

a network

– Responsible for propagating backpressure
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Unbounded vs. bounded streams
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• Bounded streams
– Have a defined start and end

– Can be processed by ingesting 

all data before performing any 

computations

– Ordered ingestion is not 

required because bounded 

data can always be sorted

• Data can be processed as bounded or 

unbounded streams

• Unbounded streams
– Have a start but no defined end

– Provide data as it is generated

– Must be continuously processed

– Not possible to wait for all input 

data to arrive

– Processing unbounded data 

often requires that events are 

ingested in a specific order



Batch processing vs. stream processing

• Batch processing as special case of stream 

processing
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Batch processing vs. stream processing

• Batched/stateless: scheduled in batches

– Short-lived tasks (Hadoop, Spark)
– Distributed streaming over batches (Spark 

Streaming)

• Dataflow/stateful: continuously processed, 

typically scheduled once (Storm, Heron, 

Flink)

– Long-lived task execution
– State is kept inside tasks
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Apache Flink

• Distributed processing system for stateful computation 
over bounded and bounded data streams
– One common runtime for data streaming and batch processing

• Integrated with many other projects in Big data open-
source ecosystem

• Originated from Stratosphere project by TU Berlin, 
Humboldt Univ. and Hasso Plattner Institute

• Current stable version: 1.15

V. Cardellini - SABD 2021/22 36

Flink: Stateful computation

• Flink’s operations can be stateful
– E.g., counting events per minute to display on dashboard, 

computing features for fraud detection model

• State is optimized for local access
– Maintained in memory or in access-efficient on-disk data 

structures 

– Goals: high throughput and low latency
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• State is partitioned: the set of parallel 
instances of a stateful operator is a 
sharded key-value store



Flink: fault tolerance

• Flink guarantees exactly-once state consistency in 
case of failures by periodically and asynchronously
checkpointing local state to durable storage (state 
snapshot)
– State of operators can be restored from checkpoint to an 

earlier point in time and records are reset to the point of the 

state snapshot

Flink docs: https://nightlies.apache.org/flink/flink-docs-stable/
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DSP and time

• Different notions of time in a DSP application:
– Processing time: time at which an event is observed in the 

system (system time of the machine executing the operator)

– Event time: time at which an event actually occurred on its

producing device

• Usually described by a timestamp in the event

– Ingestion time: time when an event enters the dataflow at the 

source operator(s)
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Flink: time

• Flink supports all the 3 notions of time
– Internally, ingestion time is treated similarly to event time

• Event time makes it easy to compute over streams 
where events arrive out-of-order, and where events 
may arrive delayed

• How to measure the progress of event time?
– Flink uses watermarks
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https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/concepts/time/

Flink: backpressure

• Continuous streaming with backpressure

– Flink’s streaming runtime provides flow control: 
slow downstream operators backpressure faster 
upstream operators

– Flink’s UI allows to monitor backpressure behavior 
of running jobs

• Back pressure warning (e.g., High) for an upstream 

operator
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Flink: windows

• Highly flexible streaming windows

– Also user-defined windows

• Supported types of windows:

– Tumbling: no overlap
– Sliding: overlap 
– Session
– Global
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Flink: windows

• Session windows
– To group elements by sessions 

of activity

– Differently from tumbling and 

sliding windows, do not overlap

and do not have a fixed start 

and end time

– A session window closes when

a gap of inactivity occurs

• Global windows
– To assign all elements with the 

same key to the same single 

global window

– Only useful if you also specify

a custom trigger
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Flink: APIs
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• Different levels of abstraction to develop
streaming/batch applications

• On top: libraries with high-level APIs for different use 
cases

• APIs in Java, Scala and Python

Flink: APIs

• Data streaming applications: DataStream API

– Supports transformations on data streams (e.g., 
filtering, updating state, defining windows, 
aggregating), with user-defined state and flexible 
windows

– Provides fine-grained control over state and time

• Table API & SQL

– Two relational APIs for unified stream and batch 
processing

• Python API

– Python API for Apache Flink: PyFlink DataStream
API and PyFlink Table API

• See lab lesson
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Flink: programming model

• Applications are composed of streaming dataflows
that are transformed by user-defined operators
– Streams: unbounded, partitioned, immutable sequence of 

events

• Streaming dataflows form directed graphs (usually
DAGs) that start with one or more sources, and end 
in one or more sinks
– DAGs basic building blocks: streams and transformation

operators
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Flink: programming model

• Stream operators

– Stream transformations that take one or more 
streams as input, and produce one or more output 
streams as a result
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Flink: programming model

• Parallel dataflows: operator parallelism

– Same solution as in Storm and Heron
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Flink: programming model

• Stateful operators: require to remember information 
across multiple events
– E.g., counting events per minute to display on a dashboard, 

or computing features for a fraud detection model

– State is maintained in a sort of embedded key/value store

– Access to key/value state is only possible on keyed streams
after keyBy(), which re-partitions by hashing the key
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Flink: control events

• Control events: special events injected in the 

data stream by operators

• Two types of control events in Flink

⎼ Watermarks 
⎼ Checkpoint barriers
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Flink: watermarks

• Watermarks (W) mark the progress of event time
within a data stream

• Generated at, or directly after, source functions
• Flow as part of data stream and carry a timestamp t
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– W(t) declares that event time 

has reached time t in that 

stream, meaning that there 

should be no more elements 

with timestamp t’ <= t
– Crucial for out-of-order

streams, where events are 

not ordered by their 

timestamps



Flink: watermarks

• By default, late elements are dropped when the 
watermark is past the end of the window

• However, Flink allows to specify a maximum allowed 
lateness for window operator
– By how much time elements can be late before they are 

dropped (0 by default) 

– Late elements that arrive after the watermark has passed the 

end of the window but before it passes the end of the 

window plus the allowed lateness, are still added to the 

window
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Flink: watermarks
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• Flink does not provide ordering guarantees after any 
form of stream partitioning or broadcasting
– In such case, dealing with out-of-order tuples is left to the 

operator implementation



Flink: checkpoint barriers

• To provide fault tolerance special barrier markers
(called checkpoint barriers) are periodically injected
at streams sources and then pushed downstream up 
to sinks
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Fault tolerance

• To provide consistent results, DSP systems need to 
be resilient to failures 

• How? By periodically capturing a snapshot of the 
execution graph which can be used later to restart in 
case of failures (checkpointing)
Snapshot: global state of the execution graph, capturing all 
necessary information to restart computation from that specific 
execution state

• Common approach is to rely on periodic global state 
snapshots, but has drawbacks:
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– Stalls overall computation

– Eagerly persists all tuples in 

transit along with states, 

which results in larger 

snapshots than required



Flink: fault tolerance

V. Cardellini - SABD 2021/22 56

• Flink offers a lightweight snapshotting mechanism
– Allows to maintain high throughput and provides strong 

consistency guarantees at the same time
• Such mechanism:

– Draws consistent snapshots of stream flows and operators’ 

state

– Even in presence of failures, the application state will reflect

every record from the data stream exactly once

– State stored at configurable place

– Disabled by default

• Inspired by Chandy-Lamport algorithm for distributed 
snapshot and tailored to Flink’s execution model 

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/concepts/stateful-

stream-processing/

https://arxiv.org/abs/1506.08603

Chandy-Lamport algorithm

• The observer process (process initiating the snapshot): 

– Saves its own local state
– Sends a snapshot request message bearing a snapshot token to all 

other processes

• If a process receives the token for the first time: 

– Sends the observer process its own saved state
– Attaches the snapshot token to all subsequent messages (to help 

propagate the snapshot token)

• When a process that has already received the token receives a 

message not bearing the token, it will forward that message to 

the observer process

– This message was sent before the snapshot “cut off” (as it does not 
bear a snapshot token) and needs to be included in the snapshot

• The observer builds up a complete snapshot: a saved state for 

each process and all messages “in the ether” are saved

V. Cardellini - SABD 2021/22 57



Flink: fault tolerance

• Uses checkpoint barriers

– When an operator has received a barrier
for snapshot n from all of its input streams, 
it emits a barrier for snapshot n into all of 
its outgoing streams. Once a sink operator 
has received barrier n from all of its input 
streams, it acknowledges that snapshot n
to the checkpoint coordinator. After all
sinks have acknowledged a snapshot, it is
considered completed
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https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/learn-flink/fault_tolerance/

Flink: performance and memory management

• High throughput and low latency

• Memory management
– Flink implements its own memory management inside JVM
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Flink: architecture
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• The usual master-worker architecture

Flink: architecture
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• JobManager (master): is responsible to 
responsibilities related to coordinate the distributed 
execution of Flink applications
– Schedules tasks, coordinates checkpoints, coordinates 

recovery on failures, etc.

• Composed by:
– ResourceManager: responsible for resource de-/allocation 

and provisioning, manages task slots (unit of resource 

scheduling in a Flink cluster)

– Dispatcher: provides a REST interface to submit Flink

applications for execution and starts a new JobMaster for 

each submitted job; also runs Flink WebUI

– JobMaster: responsible for managing the execution of a 

single JobGraph

https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-
architecture/



Flink: architecture
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• TaskManagers (workers): JVM processes that 
execute tasks of a dataflow, and buffer and exchange 
the data streams
– Workers use task slots to control the number of tasks they 

accept (at least one)

– Each task slot represents a fixed subset of resources of the 

worker

Flink: application execution

• The JobManager receives the JobGraph (or Logical
Graph)
– Representation of data flow consisting of operators (JobVertex) 

and intermediate results (IntermediateDataSet)
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– Each operator has

properties, like parallelism

and code that it executes

• The JobManager
transforms the JobGraph
into an ExecutionGraph (or
Physical Graph)
– Parallel version of JobGraph

– The nodes are tasks and the 

edges indicate input/output-

relationships or  partitions of 

data streams



Flink: application execution

• Data parallelism
– Different operators of same program may have different 

levels of parallelism

– Parallelism of individual operator, data source, or data sink 

can be defined by calling its setParallelism() method

V. Cardellini - SABD 2021/22 64

Flink: application execution

• Flink provides a visualization tool for execution plans
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Flink: application monitoring

• Built-in monitoring and metrics system
• Allows gathering and exposing metrics to external 

systems
• Built-in metrics include

– Throughput

– Latency: delay between event creation and time at which

results based on this event become visible

– Used JVM heap/non-heap/direct memory

– Availability

– Checkpointing
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Flink: application monitoring

• Throughput
– In terms of rate of outgoing number of records (per 

operator/task), e.g., 

• numRecordsOutPerSecond: number of records operator/task 
sends per second

• Latency 
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/metrics/#end-

to-end-latency-tracking

– Flink supports end-to-end latency tracking: special markers 

(called LatencyMarker) are periodically inserted at all 

sources in order to obtain a distribution of latency between 

sources and each downstream operator

• But does not account for time spent in operator processing (or 
in window buffers)

• Assume that all machines clocks are sync
• Disabled by default (can impact performance): to enable
latencyTrackingInterval must be > 0 
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Flink: application monitoring

• Application-specific metrics can be added
– E.g., counters for number of invalid records 

• All metrics can be
– Queried via Flink’s Monitoring REST-ful API that accepts 

HTTP requests and responds with JSON data 

https://nightlies.apache.org/flink/flink-docs-release-
1.15/docs/ops/rest_api/

– Visualized in Flink dashboard (Metrics tab)

– Sent to external systems (e.g., Graphite and InfluxDB)
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See https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/ops/metrics/

Flink: deployment

• Designed to run on large-scale clusters with many 
thousands of nodes

• Can be run in a fully distributed fashion on a static
(but possibly heterogeneous) standalone cluster

• For a dynamically shared cluster, can be deployed on 
YARN, Mesos or Kubernetes

• Docker images for Apache Flink available on Docker 
Hub 
– Docker official image: https://hub.docker.com/_/flink 

– By Flink developers: https://hub.docker.com/r/apache/flink
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Towards strict delivery guarantees 

• Most frameworks provide at-least-once delivery 
guarantees (e.g., Storm, Samza) 
– For stateful non-idempotent operators such as counting, at-

least-once delivery guarantees can give incorrect results

• Flink, Storm plus Trident, and Google’s MillWheel offer 
stronger delivery guarantees (i.e., exactly-once)
– Exactly-once low latency stream processing in MillWheel works 

as follows:

• The record is checked against de-duplication data from previous 
deliveries; duplicates are discarded

• User code is run for the input record, possibly resulting in pending 
changes to timers, state, and productions

• Pending changes are committed to the backing store
• Senders are acked
• Pending downstream productions are sent
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Comparing DSP frameworks

• Let’s compare open source DSP frameworks 
according to some features
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API Windows Delivery 
semantics

Fault tol. State 
mgmt.

Flow 
control

Operator 
elasticity

Storm Low-level
High-level
SQL
No batch

Yes At least once
Exactly once
with Trident

Acking
Checkpoint. 
(similar to 
Flink)

Limited
Yes with 
Trident

Back 
pressure

No

Heron Low-level
High-level
No SQL
No batch

Yes At least once
Effectively 
once

Limited Back 
pressure

Yes (with 
Dhalion)

Flink High-level
SQL
Also batch

Yes, also 
used-def.

At least once
Exactly once

Checkpoint. Yes Back 
pressure

No



A recent need

• A common need for many companies

– Run both batch and stream processing

• Alternative solutions

1. Lambda architecture
2. Unified frameworks
3. Unified programming model
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Lambda architecture

• Data-processing design pattern to integrate batch and 
real-time processing

• Streaming framework used to process real-time events, 
and, in parallel, batch framework to process the entire 
dataset 

• Results from the two parallel pipelines are then merged

73Source: https://voltdb.com/products/alternatives/lambda-architecture
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Lambda architecture: example
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• Lambda architecture used at LinkedIn before Samza
development

Lambda architecture: pros and cons

• Pros:

– Flexibility in the frameworks’ choice

• Cons: 

– Implementing and maintaining two separate 
frameworks for batch and stream processing can 
be hard and error-prone

– Overhead of developing and managing multiple 
source codes 

• The logic in each fork evolves over time, and keeping 

them in sync involves duplicated and complex manual 

effort, often with different languages
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Unified frameworks

• Use a unified (Lambda-less) design for 

processing both real-time as well as batch 

data using the same data structure

• Spark and Flink follow this trend
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Unified programming model: Apache Beam

• A new layer of abstraction

• Provides advanced unified programming model

– Allows to define batch and streaming data processing 
pipelines that run on any supported execution engine 
(Flink, Spark, Samza, Google Cloud Dataflow)

– Java, Python and Go as programming languages

• Engine-specific runners translate the Apache 

Beam code to the target runtime

• Developed by Google and released as open-

source top-level project
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Using Beam: key concepts

• Create the Pipeline

– PipelineOptions object

• Read data input 

– E.g., text files

• Apply pipeline transforms

• Write output

– E.g., to a text file

• Run the Pipeline
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Example: WordCount in Python using Beam
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See https://bit.ly/3dk5RLe



Beam: pros and cons

• Pros

– A single, unified programming model
– Flexibility to switch underlying DSP system with 

relatively low effort

• Cons:

– Noticeable impact on performance of DSP 
systems

• Slowdown >= 3x with respect to same programs

developed using native system APIs

Quantitative Impact Evaluation of an Abstraction Layer for Data 
Stream Processing Systems, ICDCS ‘19 
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DSP in the Cloud

• Data streaming systems also as Cloud services
– Amazon Kinesis Data Streams

– Google Cloud Dataflow

– IBM Streaming Analytics

– Microsoft Azure Stream Analytics 

• Abstract underlying service infrastructure and support 
dynamic scaling of computing resources

• Appear to execute in a single data center (i.e., no 
geo-distribution)
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Google Cloud Dataflow 

• Fully-managed data processing service, supporting 
both stream and batch data processing
– Automated resource management

– Dynamic work rebalancing

– Horizontal auto-scaling

• Provides a unified programming model based on 
Apache Beam 
– Apache Beam SDK in Java and Python

– Enable developers to implement custom extensions and 

choose other execution engines

• Provides exactly-once processing
– MillWheel is Google’s internal version of Cloud Dataflow 
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Google Cloud Dataflow 

• Can be seamlessly integrated with GCP services for 
streaming events ingestion (Cloud Pub/Sub), data 
warehousing (BigQuery), machine learning (Cloud 
Machine Learning)
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Amazon Kinesis Data Streams

• Allows to collect and ingest streaming data at scale for 
real-time analytics
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Amazon Kinesis Data Analytics

• Serverless, fully managed Apache Flink: allows to 
process data streams in real time
– Based on Apache Flink: same operators to filter, aggregate 

and transform streaming data

– Per-hour pricing based on number of Kinesis Processing 

Units (KPUs) used to run application

• Horizontal scaling of KPUs
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