
Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Data Stream Processing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

1V. Cardellini - SABD 2021/22 1

Why data stream processing?

• Applications such as:

- Sentiment analysis on tweet streams @Twitter
- User profiling @Yahoo!
- Tracking of query trend evolution @Google
- Fraud detection in financial transactions
- Real-time advertising
- Healthcare analytics involving IoT medical sensors

• Require:

- Continuous processing of unbounded data streams
generated by multiple and distributed sources

- In (near) real-time fashion

V. Cardellini - SABD 2021/22 2

Why data stream processing?

• In the early years data stream processing

(DSP) was considered a solution for very

specific problems (e.g., financial tickers)

• Now we have more general settings

- E.g., Internet of Things

V. Cardellini - SABD 2021/22 3

Why data stream processing?

• Decrease overall latency to obtain results

- No data persistence on stable storage
Recall “Latency numbers every programmer should know”!

- No periodic batch analysis

• Simplify Big data infrastructure

4V. Cardellini - SABD 2021/22

Data stream: example

• “A data stream is a real-time, continuous,

ordered (implicitly by arrival time or explicitly

by timestamp) sequence of items. It is

impossible to control the order in which items

arrive, nor is it feasible to locally store a

stream in its entirety. Queries over streams

run continuously over a period of time and

incrementally return new results as new data

arrive.”

Source: Golab and Özs, Issues in data stream management,

ACM SIGMOD Rec. 32, 2, 2003. http://bit.ly/2rp3sJn

V. Cardellini - SABD 2021/22 5

Data stream: example

• Data stream related to maritime traffic

0x3b62baab6210a8e69d3e7f9df53d000c83d00fd0,2,
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA,
0x0fe9acdb3675a8a2942fafbd4af61bc37e44c0ec,146,
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO,88
0xb35dc6acdc29f2241296c44384fa2b0f7044d257,20,
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA,66
…

Tuple fields:
SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING,TIMESTAMP,
departurePortName,Reported_Draught

V. Cardellini - SABD 2021/22 6

Traditional DSP challenges

• Stream data rates can be high, data arrive in

large volumes and data arrival patterns can

be highly variable

- High resource requirements for processing
(clusters, data centers, distributed Clouds)

• Processing stream data has real-time

aspects

- Stream processing applications have QoS
requirements, e.g., end-to-end latency

- Must be able to react to events as they occur

7V. Cardellini - SABD 2021/22

New challenge for large-scale DSP

• Goals: increase scalability and reduce latency

• How? Rely on distributed and near-edge

computation (Fog/edge computing)

V. Cardellini - SABD 2021/22 8

DSP application model

• A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

• Represented by a directed graph
– Graph vertices: operators

– Graph edges: streams

– Graph is often referred to

as topology

• Graph is typically acyclic: directed acyclic graph (DAG)
– Most systems only support DAGs, few support also cyclic

computations (e.g., Flink)

• Application topology does not usually change during
processing

V. Cardellini – SABD 2021/22 9

DSP application model: example

10

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome
filterByCoordinates countByWindow globalRankdatasource parser partialRank

• Example of DAG for a DSP application

V. Cardellini - SABD 2021/22

DSP programming model
• Dataflow programming

– Programming paradigm that models a program
as a directed graph of data flowing between
operations

– Pioneered by Jack Dennis and his students at
MIT in the 1960s

• Examples

– Apache NiFi: automates the flow of data between
systems

– Apache Flink: stream and batch processing
– Apache Beam: unifies batch and streaming data

processing on top of several execution engines
– TensorFlow: ML library based on dataflow

programming

V. Cardellini - SABD 2021/22 11

DSP programming model

• Flow composition: how to create the

topology associated with the directed graph

for a DSP application

• Flow manipulation: use of processing

elements (i.e., operators) to perform

transformations on data

12V. Cardellini - SABD 2021/22

Data flow manipulation

• How the streaming data is manipulated by

the operators in the flow graph?

• Operator properties:

- Operator type
- Operator state
- Windowing

V. Cardellini - SABD 2021/22 13

DSP operator

• Self-contained processing element that

- Transforms one or more input streams into another
stream

- Can execute a generic user-defined code
• Algebraic operation (filter, aggregate, join, ..)

• User-defined and possibly complex operation (POS-tagging,

machine learning algorithm, …)

- Can execute in parallel with other operators

14V. Cardellini - SABD 2021/22

Types of operators

• Edge adaptation: converting data from

external sources into tuples that can be

consumed by downstream operators

• Aggregation: collecting and summarizing a

subset of tuples from one or more streams

• Splitting: partitioning a stream into multiple

streams

• Merging: combining multiple input streams

15V. Cardellini - SABD 2021/22

Types of operators

• Logical and mathematical operations:

applying different logical processing,

relational processing, and mathematical

functions to tuple attributes

• Sequence manipulation: reordering,

delaying, or altering the temporal properties

of a stream

• Custom data manipulations: applying data

mining, machine learning, ...

16V. Cardellini - SABD 2021/22

DSP operator: state

• Operator can be stateless or stateful

• Stateless: solely depends on current input,

knows nothing about state and thus processes

tuples independently of each other,

independently of prior history, or even from

tuple arrival order

- E.g., filter, map
- Easily parallelizable
- No synchronization in a multi-threaded context
- Restart upon failures without the need of any

recovery procedure

V. Cardellini - SABD 2021/22 17

DSP operator: state

• Stateful: keeps some sort of state and thus

involves maintaining information across

different tuples to detect complex patterns

- E.g., some aggregation or summary of processed
elements, or state-machine for detecting patterns for
fraudulent financial transaction

- State might be shared between operators

V. Cardellini - SABD 2021/22 18

Windowing

• Window: buffer associated with an operator input
port to retain incoming tuples over which we can apply
computations so to process them as a whole
- E.g., the most frequently purchased items over the last hour

• Window is characterized by:

- Size: amount of data that should be buffered before
triggering operator execution

• Statically defined: time-based (e.g., 30 seconds) or count-

based (e.g., the last 100 tuples)

• Dynamically defined: session-based

- Sliding interval: how the window moves forward
• Time-based or count-based

19V. Cardellini - SABD 2021/22

Windowing patterns
• Different windowing patterns by combining window size

and sliding interval:
- Sliding window: static window size and sliding interval with

value different from window size, single tuples may be included

in multiple consecutive windows

- Tumbling window: sliding interval equal to window size, no

overlapping of windows

20

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

Sliding window (size:2; slide:1) Tumbling window (size:2; slide:2)

V. Cardellini - SABD 2021/22

V. Cardellini - SABD 2021/22 21

Windowing patterns

Tumbling windows

Sliding windows

V. Cardellini – SABD 2021/22 22

Windowing patterns

Session windows

• Window can be also dynamically defined: session
window
- Dynamic size of window length, depending on inputs

- Starts with an input and expands itself if the following input

has been received within the gap duration

- Closes when there’s no input received within the gap duration

after receiving the latest input

- Enables to group events until there are no new events for

specified time duration (inactivity)

How to define a DSP application

• Topology description
⎯ Explicitly defines operators (built-in or user-defined) and links

through a DAG

⎯ Used in Flink, Storm, Spark Sstreaming, …

• Formal language
– Declarative language that specifies result (SQL-like)

• e.g., Streams Processing Language (SPL) in IBM Streams

– Imperative language that specifies composition of basic

operators

• e.g., SQuAl (Stream Query Algebra) used in

Aurora/Borealis

• The first offers more flexibility, the latter more rigor and
expressiveness

V. Cardellini - SABD 2021/22 23

“Hello World”: a variant of WordCount

• Goal: emit the top-k words in terms of

occurrence when there is a rank update

Words source Words counter Sorter
(word) (word, counter) (rank)

• Where are the bottlenecks?

• How to scale the DSP application in order to

sustain the traffic load?

V. Cardellini - SABD 2021/22 24

“Hello World”: a variant of WordCount

25

• The usual answer: replication!

• Let’s use data parallelism (aka operator fission)

and redesign the application

V. Cardellini - SABD 2021/22

Example of DSP application: DEBS’14 GC

• Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes
– Smart plugs deployed in households and equipped with sensors

that measure values related to power consumption

• Input data stream:
2967740693, 1379879533, 82.042, 0, 1, 0, 12

• Query 1: make load forecasts based on current
load measurements and historical data
– Output data stream:

ts, house_id, predicted_load

• Query 2: find the outliers concerning energy
consumption
– Output data stream:

ts_start, ts_stop, household_id, percentage

https://debs.org/grand-challenges/2014/

V. Cardellini - SABD 2021/22 26

Example of DSP application: DEBS’15 GC

• Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

• Input data streams: include starting point, drop-off point,
corresponding timestamps, and information related to
the payment
07290D3599E7A0D62097A346EFCC1FB5,E7750A37CAB07D0DFF0AF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
00:02:00,120,0.44,-73.956528,40.716976,-
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50

27

https://debs.org/grand-challenges/2015/

V. Cardellini - SABD 2021/22

Example of DSP application: DEBS’15 GC

• Query 1: identify top-10 most frequent routes during the
last 30 minutes

• Query 2: identify areas that are currently most profitable
for taxi drivers

• Both queries rely on a sliding window operator
- Continuously evaluate the query results

https://debs.org/grand-challenges/2015/

V. Cardellini - SABD 2021/22 28

Example of DSP application: DEBS’16 GC

• Real-time analytics for a dynamic (evolving) social-
network graph

• Query 1: identify the posts that currently trigger the most
activity in the social network

• Query 2: identify large communities that are currently
involved in a topic

• Require continuous analysis
of dynamic graph considering
multiple streams that reflect
graph updates

https://debs.org/grand-challenges/2016/

V. Cardellini - SABD 2021/22 29

Distributed DSP system

• A distributed system that executes stream topologies
- continuously calculates results for long-standing queries

- over potentially infinite data streams

- using operators, that can be stateless or stateful

• System nodes may be heterogeneous
- Computing capacity, bandwidth, …

• Must be highly optimized and with minimal overhead so
to deliver real-time response for high-volume DSP
applications

• Must manage a number of issues
- Operator placement on computing nodes

- Node and operator failures

- …

30V. Cardellini - SABD 2021/22

Distributed DSP system

• Usually run in locally distributed clusters

within large data centers

• Assumptions:

- Scale out and not scale up
• Commodity servers

• Data-parallelism is king

- Software designed for failures

• Which software frameworks for distributed

DSP systems?

Source: Google

31V. Cardellini - SABD 2021/22

DSP frameworks: processing model

(e.g., Apache Storm) (e.g., Apache Spark Streaming)

Source: N. Marz, J. Warren, Big Data, Manning Pub., 2015.

32

• Main stream processing models:

- One-at-a-time: each tuple is individually processed
- Micro-batched: tuples are grouped before being

processed

V. Cardellini - SABD 2021/22

