TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

A

Introduction to Data Stream Processing

Corso di Sistemi e Architetture per Big Data
A.A. 2021/22
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Frameworks

uoneibaju| / poddng

Data Storage

Resource Management

V. Cardellini - SABD 2021/22 1

Why data stream processing?

» Applications such as:

— Sentiment analysis on tweet streams @ Twitter

— User profiling @Yahoo!

— Tracking of query trend evolution @Google

— Fraud detection in financial transactions

— Real-time advertising

— Healthcare analytics involving loT medical sensors
* Require:

— Continuous processing of unbounded data streams

generated by multiple and distributed sources
— In (near) real-time fashion

V. Cardellini - SABD 2021/22 2

Why data stream processing?

* Inthe early years data stream processing
(DSP) was considered a solution for very
specific problems (e.g., financial tickers)

 Now we have more general settings
— E.g., Internet of Things

V. Cardellini - SABD 2021/22

Why data stream processing?

* Decrease overall latency to obtain results

— No data persistence on stable storage
Recall “Latency numbers every programmer should know”!

— No periodic batch analysis

« Simplify Big data infrastructure

V. Cardellini - SABD 2021/22

Data stream: example

« “Adata stream is a real-time, continuous,
ordered (implicitly by arrival time or explicitly
by timestamp) sequence of items. It is
impossible to control the order in which items
arrive, nor is it feasible to locally store a
stream in its entirety. Queries over streams
run continuously over a period of time and
incrementally return new results as new data
arrive.”

Source: Golab and Ozs, Issues in data stream management,
ACM SIGMOD Rec. 32, 2, 2003. http://bit.ly/2rp3sJn

V. Cardellini - SABD 2021/22

Data stream: example

 Data stream related to maritime traffic

@x3b62baab6210a8e69d3e7f9df53d000c83d00Fd0, 2,
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA,

Ox0fe9acdb3675a8a2942fafbd4af61lbc37e44cPec, 146,
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO, 88

Oxb35dc6acdc2912241296c44384fa2bof7044d257, 20,
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA, 66

Tuple fields:

SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING, TIMESTAMP,
departurePortName,Reported_Draught

V. Cardellini - SABD 2021/22

Traditional DSP challenges

« Stream data rates can be high, data arrive in
large volumes and data arrival patterns can
be highly variable

— High resource requirements for processing
(clusters, data centers, distributed Clouds)

* Processing stream data has real-time
aspects

— Stream processing applications have QoS
requirements, e.g., end-to-end latency

— Must be able to react to events as they occur

V. Cardellini - SABD 2021/22

New challenge for large-scale DSP

« Goals: increase scalability and reduce latency

 How? Rely on distributed and near-edge
computation (Fog/edge computing)

/.'". 7 o} m;
)

\I" 18,9, AN

\¢

V. Cardellini - SABD 2021/22

DSP application model

« A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

» Represented by a directed graph

— Graph vertices: operators {:}L:} £ sure
— Graph edges: streams {:L, Q_'/v S
— Graph is often referred to o - -

as topology {}_’{:} _’:}

» Graph is typically acyclic: directed acyclic graph (DAG)

— Most systems only support DAGs, few support also cyclic
computations (e.g., Flink)

» Application topology does not usually change during
processing

V. Cardellini — SABD 2021/22

DSP application model: example

» Example of DAG for a DSP application

Rediis computeRoutelD ’ RabbitMQ
o—0— 0—@
datasource parser ﬁIterByCoorc@k mByWindow partialRank globalRank

metronome @ source operator @ sink

V. Cardellini - SABD 2021/22 10

DSP programming model

« Dataflow programming

— Programming paradigm that models a program
as a directed graph of data flowing between
operations

— Pioneered by Jack Dennis and his students at
MIT in the 1960s

« Examples

— Apache NiFi: automates the flow of data between
systems

— Apache Flink: stream and batch processing

— Apache Beam: unifies batch and streaming data
processing on top of several execution engines

— TensorFlow: ML library based on dataflow
programming

V. Cardellini - SABD 2021/22 1

DSP programming model

 Flow composition: how to create the
topology associated with the directed graph
for a DSP application

* Flow manipulation: use of processing
elements (i.e., operators) to perform
transformations on data

V. Cardellini - SABD 2021/22

Data flow manipulation

12

 How the streaming data is manipulated by
the operators in the flow graph?
» QOperator properties:
— Operator type
— Operator state
— Windowing

V. Cardellini - SABD 2021/22

13

DSP operator

» Self-contained processing element that
— Transforms one or more input streams into another
stream

— Can execute a generic user-defined code
» Algebraic operation (filter, aggregate, join, ..)

User-defined and possibly complex operation (POS-tagging,
machine learning algorithm, ...)

— Can execute in parallel with other operators

V. Cardellini - SABD 2021/22 14

Types of operators

« Edge adaptation: converting data from
external sources into tuples that can be
consumed by downstream operators

« Aggregation: collecting and summarizing a
subset of tuples from one or more streams

« Splitting: partitioning a stream into multiple
streams
* Merging: combining multiple input streams

V. Cardellini - SABD 2021/22 15

Types of operators

* Logical and mathematical operations:
applying different logical processing,
relational processing, and mathematical
functions to tuple attributes

« Sequence manipulation: reordering,
delaying, or altering the temporal properties
of a stream

« Custom data manipulations: applying data
mining, machine learning, ...

V. Cardellini - SABD 2021/22

DSP operator: state

16

« Operator can be stateless or stateful

« Stateless: solely depends on current input,
knows nothing about state and thus processes
tuples independently of each other,
independently of prior history, or even from
tuple arrival order
- E.g., filter, map
- Easily parallelizable
- No synchronization in a multi-threaded context

- Restart upon failures without the need of any
recovery procedure

V. Cardellini - SABD 2021/22

17

DSP operator: state

« Stateful: keeps some sort of state and thus
involves maintaining information across
different tuples to detect complex patterns

— E.g., some aggregation or summary of processed
elements, or state-machine for detecting patterns for
fraudulent financial transaction

— State might be shared between operators

V. Cardellini - SABD 2021/22 18

Windowing

 Window: buffer associated with an operator input
port to retain incoming tuples over which we can apply
computations so to process them as a whole
— E.g., the most frequently purchased items over the last hour

« Window is characterized by:
— Size: amount of data that should be buffered before
triggering operator execution

« Statically defined: time-based (e.g., 30 seconds) or count-
based (e.g., the last 100 tuples)

Dynamically defined: session-based

— Sliding interval: how the window moves forward
Time-based or count-based

V. Cardellini - SABD 2021/22 19

Windowing patterns

« Different windowing patterns by combining window size
and sliding interval:
- Sliding window: static window size and sliding interval with

value different from window size, single tuples may be included
in multiple consecutive windows

- Tumbling window: sliding interval equal to window size, no
overlapping of windows

Sliding window (size:2; slide:1) Tumbling window (size:2; slide:2)

to ‘vl v, ‘IV3 vy | Vs | Ve to | v, VZ‘V3 V| Vs | Ve
b vifve|vs ‘IV4 Vs |l Ve b vy | va | vs | Ve |[vs | Ve
—
t |v,|v, |‘V3 va llvs || ve t |vy v,y |vs|vslvs|ve
| S
V. Cardellini - SABD 2021/22 20

Windowing patterns

A
1 window 1 ; window 2 ; window 3 ;| window 4 , window 5
1 1 1 1 1 1
user 1 o0 L 00,0 00 @ o |
: i | : : i
1 1 1 1 1 1
. . user 2 ' 9 000 '90 ' O ' 90@®
Tumbling windows : : : : | !
1 1 1 1 1 1
user3 | 1 @ 0200 | . 00 ® i
l i : l l i
1 1 1 1 1 1
1 1] 1] 1
1 1] 1 1 1
! ! \ ! ! ! !
| time
window size
4 winldow 1 \ wind?w 3 \ .
1
user 1 X J o0 ® @)
° ooo o (o000
T . user 2
Sliding windows
user 3 @) [X NN)
1 T
: : windr:)w4 :
< T > 1 1 1
1 1 1 1
/ l time

window size window slide

V. Cardellini - SABD 2021/22 21

Windowing patterns

« Window can be also dynamically defined: session
window
- Dynamic size of window length, depending on inputs

- Starts with an input and expands itself if the following input
has been received within the gap duration

- Closes when there’s no input received within the gap duration
after receiving the latest input

- Enables to group events until there are no new events for
specified time duration (inactivity)

A

window 1 window 2 window 3 window 4

ser! | 9@ 1@ 000 0000 O
window 1 window 2 window 3 window 4
user 2 O 000—00) 000

SeSSIOn WI ndOWS window 1 window 2 window 3
user 3 @ 000 00 O
session gap
time
V. Cardellini — SABD 2021/22 22

How to define a DSP application

 Topology description
- Explicitly defines operators (built-in or user-defined) and links
through a DAG

- Used in Flink, Storm, Spark Sstreaming, ...

 Formal language
— Declarative language that specifies result (SQL-like)
* e.g., Streams Processing Language (SPL) in IBM Streams

— Imperative language that specifies composition of basic
operators

* e.g., SQuAI (Stream Query Algebra) used in
Aurora/Borealis

» The first offers more flexibility, the latter more rigor and
expressiveness

V. Cardellini - SABD 2021/22 23

“Hello World™: a variant of WordCount

* Goal: emit the top-k words in terms of
occurrence when there is a rank update

Words source Words counter Sorter
Q (word) /—\ word, counter)/—\ (rank)

« Where are the bottlenecks?

 How to scale the DSP application in order to
sustain the traffic load?

V. Cardellini - SABD 2021/22 24

“Hello World”; a variant of WordCount

« The usual answer: replication!

» Let's use data parallelism (aka operator fission)
and redesign the application

Words counter

Words source

(w,

Intermediate sorter

(ranks) Final sorter
><>(ﬁnalrank)]

—

V. Cardellini - SABD 2021/22 25

Example of DSP application: DEBS'14 GC

https://debs.org/grand-challenges/2014/

* Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes

— Smart plugs deployed in households and equipped with sensors
that measure values related to power consumption

* Input data stream:
2967740693, 1379879533, 82.042, 0, 1, 0, 12
* Query 1. make load forecasts based on current
---» load measurements and historical data

— |
'E i — Output data stream:
ts, house_id, predicted_load
J1 - * Query 2. f_ind the outliers concerning energy
£+~ g consumption

— Output data stream:
ts_start, ts_stop, household id, percentage

V. Cardellini - SABD 2021/22 26

Example of DSP application: DEBS'15 GC

https://debs.org/grand-challenges/2015/

* Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

* Input data streams: include starting point, drop-off point,
corresponding timestamps, and information related to
the payment

©7290D3599E7A0D62097A346EFCCIFB5, E7750A37CABO7DODFFOAF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
00:02:00,120,0.44,-73.956528,40.716976, -
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50

V. Cardellini - SABD 2021/22 27

Example of DSP application: DEBS'15 GC

https://debs.org/grand-challenges/2015/

e Query 1: identify top-10 most frequent routes during the
last 30 minutes

e Query 2. identify areas that are currently most profitable
for taxi drivers

e Both queries rely on a sliding window operator
— Continuously evaluate the query results

V. Cardellini - SABD 2021/22 28

Example of DSP application: DEBS'16 GC

https://debs.org/grand-challenges/2016/

e Real-time analytics for a dynamic (evolving) social-
network graph

e Query 1: identify the posts that currently trigger the most
activity in the social network

e Query 2: identify large communities that are currently
involved in a topic Py

* Require continuous analysis
of dynamic graph considering
multiple streams that reflect
graph updates

V. Cardellini - SABD 2021/22 . T 29

Distributed DSP system

» Adistributed system that executes stream topologies
— continuously calculates results for long-standing queries
— over potentially infinite data streams
— using operators, that can be stateless or stateful
» System nodes may be heterogeneous
— Computing capacity, bandwidth, ...

* Must be highly optimized and with minimal overhead so
to deliver real-time response for high-volume DSP
applications

« Must manage a number of issues

— Operator placement on computing nodes
— Node and operator failures

V. Cardellini - SABD 2021/22 30

Distributed DSP system

e Usually run in locally distributed clusters
within large data centers

* Assumptions:

— Scale out and not scale up ii,
« Commodity servers \
. Data-parallelism is king |

— Software designed for failures | ‘
Source: Google

 Which software frameworks for distributed
DSP systems?

V. Cardellini - SABD 2021/22 31

DSP frameworks: processing model

* Main stream processing models:
— One-at-a-time: each tuple is individually processed

— Micro-batched: tuples are grouped before being
processed

(e.q., %\pac erg?orm rthropgc Ch§park Streaming)

Lower latency

Higher throughput

At-least-once semantics

Exactly-once semantics In some cases

Simpler programming model

Source: N. Marz, J. Warren, Big Data, Manning Pub., 2015.

V. Cardellini - SABD 2021/22 32

