TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

Data Acquisition and Ingestion

Corso di Sistemi e Architetture per Big Data
A.A. 2021/22
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Frameworks

Data Processing

Data Storage

Resource Management

Valeria Cardellini - SABD 2021/22 1

Data acquisition and ingestion

» How to collect data from external (and
multiple) data sources and ingest it into a
system where it can be stored and later
analyzed?

— Using distributed file systems, NoSQL data stores,
batch processing frameworks

 How to connect external data sources to
stream or in-memory processing systems for
immediate use?

* How to perform some preprocessing (e.g.,
data transformation or conversion)?

Valeria Cardellini - SABD 2021/22

Driving factors

« Source type and location
— Batch data sources: files, logs, RDBMS, ...

— Real-time data sources: 0T sensors, social media feeds,
stock market feeds, ...

— Source location

* Velocity
— How fast data is generated?
— How frequently data varies?
— Real-time or streaming data require low latency and low
overhead
* Ingestion mechanism
— Depends on data consumer
— Pull vs. push based approach

Valeria Cardellini - SABD 2021/22

Requirements for data acquisition and ingestion

* Ingestion
— Batch data, streaming data
— Easy writing to storage (e.g., HDFS)
« Decoupling
— Data sources should not directly be coupled to processing
framework

» High availability and fault tolerance
— Data ingestion available 24x7

— For streaming data: buffering (persistence) in case
processing framework is not available

» Scalability and high throughput

— Number of sources and consumers will increase, amount of
data will increase

Valeria Cardellini - SABD 2021/22 4

Requirements for data acquisition and ingestion

» Data provenance
» Security
— Data authentication and encryption

» Data conversion
— From multiple sources: transform data into common format
— Also to speed up processing

« Data integration
— From multiple flows to single flow

» Data compression
» Data preprocessing (e.g., filtering)

« Backpressure and routing

— Buffer data in case of temporary spikes in workload and
provide a mechanism to replay it later

Valeria Cardellini - SABD 2021/22 5

A unifying view

. Batch Layer o
Q b >
> . o ©
gl |3 E|3 s o
5 FRIERIE 2
g g || 3|z S ah
(77} K7 £ 7 Speed Layer 3
[«*} = (=] Q
(5] o [1°] >
- o (2] <
= 17,3 —
] < @ <
w 8 = < Lambda Layer
1] (]
a
| Data Storage Layer
Valeria Cardellini - SABD 2021/22 6

Data acquisition layer

» Allows collecting, aggregating and moving data

» From various sources (server logs, social media,
streaming sensor data, ...)

» To a data store (distributed file system, NoSQL data
store, messaging system)

« We analyze
— Apache Flume
— Apache Sqoop

) o= 1 S 1 e W et 8
i i i i
H p i i [T o N T
— Apache NiFi [¥ 1
1 1 (T i 1
i i i i i -
@ - Iy i [N Bl
g@\ Bl E B e s gl @
S i
* N N R — Y
] 1 I ! I [-
@ | i i i B
Z ! I !i| I [
] & | i [N S |
£ s |1 1 il !
L] i i
3 8 |i i i
> i i | S e e e &
% i i i
I~ i i
e \"_//'. Data Storage Layer
S
o P i T i Apach:
(%2] 5“"“"L,JL,J Hadoop

Valeria Cardellini - SABD 2021/22 7

)

d

Apache Flume

» Distributed, reliable, and available service for
efficiently collecting, aggregating, and moving large
amounts of stream data (e.g., log data)

» Robust and fault tolerant with tunable reliability
mechanisms and failover and recovery mechanisms

— Tunable reliability levels
» Best effort: “Fast and loose”
* Guaranteed delivery: “Deliver no matter what”

» Suitable for streaming analytics

'eb
Serve

Agent

Valeria Cardellini - SABD 2021/22

Flume: architecture

Channel:

Itis a Flume Agent
component that is
responsible for
intermediate storing of
Flume events until they
are successfully

Itis a Flume Agent
component that is
responsible for reading
data from Source
System and storing it in

Sink:

Itis a Flume Agent
component that is
responsible for reliably
transferring event from

Flume Agent

Channel consumed by Flume Channel to Destination
Sink Component System.

Source System:
These systems store
data which is Itis a system where
generated by data will finally be
different applications stored.
or user interactions. P

read from Source
System by Flume
Agent Source
Component

Raw Data:
This is the data as is

l

Event:

Flume Agent Source
Component wraps
Raw Data into and
Event and stores it
into Channel which is
consumed by Flume
Sink Channel

Valeria Cardellini - SABD 2021/22

\ 4
S v
Source System Channel . | Destination System
©.9. web server, JMS, Source ©.9. Local File System, Sink P| e.g. HOFS, Cassandra,
EBS, RDBMS, Steams |Raw Data Event , Memory Event Raw Data RDBMS etc.
’ A A

Flume: architecture

« Agent: JVM running Flume
— One per machine
— Can run many sources, sinks and channels

* Event
— Basic unit of data that is moved using Flume (e.g., Avro event)
— Normally ~4KB

« Source
— Produces data in the form of events

» Channel
— Connects source to sink (like a queue)
— Implements the reliability semantics

* Sink
— Removes an event from a channel and forwards it to either to
a destination (e.g., HDFS) or to another agent

Valeria Cardellini - SABD 2021/22 10

Flume: data flows

* Flume allows a user to build multi-hop flows where
events travel through multiple agents before reaching
the final destination

« Supports multiplexing the event flow to one or more
destinations

» Multiple built-in sources and sinks (e.g., Avro, Kafka)

Valeria Cardellini - SABD 2021/22 1

Flume: reliability

Events are staged in a channel on each agent

— Channel can be either durable (FILE, will persist data to
disk) or non durable (MEMORY, will lose data if machine
fails)

Events are then delivered to next agent or final
destination (e.g., HDFS) in the flow

Events are removed from a channel only after they
are stored in the channel of next agent or in the final
destination

Transactional approach to guarantee the reliable
delivery of events

— Sources and sinks encapsulate in a transaction the
storage/retrieval of events

Valeria Cardellini - SABD 2021/22

Apache Sqgoop

12

A commonly used tool for SQL data transfer to
Hadoop
— SQL to Hadoop = SQOOP

To import bulk data from structured data stores such
as RDBMS into HDFS, HBase or Hive

Also to export data from HDFS to RDBMS
Supports a variety of file formats (e.g., Avro)

! Sqoop Tool :
: 1
| G |
P e I | e
e A : Import i S
1
b N— Hadoop File
(M RD'BgA SI : : Systgm
ysql, Oracle, P '
Postgresql, DB2) : A ! (H%f;i,sl;;ve.
: Export !
ST 1 : Lol
‘)

[P —————

Valeria Cardellini - SABU zuz1/2z

13

Apache NiFi 1] &

» Powerful and reliable system to automate the flow of data
between systems, mainly used for data routing and
transformation

» Highly configurable

— Flow specific QoS: loss tolerant vs guaranteed delivery, low
latency vs high throughput

— Dynamic prioritization of queues
— Flow can be modified at runtime: useful for preprocessing
— Back pressure

» Data provenance and security (SSL, data encryption, ...)

» Ease of use: web-based Ul to create and manage the
dataflow

— Allows to define sources from where to collect data, processors
for data conversion, destinations to store data
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html

Valeria Cardellini - SABD 2021/22 14

NiFi: core concepts

« Based on flow-based programming e

* Main NiFi concepts: h
— FlowFile: each piece of user data moving in the system
— FlowFile Processor: performs data routing, -

transformation, or mediation between systems

— Connection: actual linkage between processors; acts as
queue

— Flow Controller: maintains the knowledge of how
processes connect and manages threads and allocations

— Process Group: specific set of processes and their
connections

GenerateFlowFile LogA}trubute
0 (0 bytes) Name success In 0 (0 bytes)

In S—
Queued 0 (0 bytes)) Read/Write 0 bytes / 0 bytes

Read/Write 0 bytes /0 bytes
Out 0 (0 bytes) Out 0 (0 bytes)

Tasks/Time 0/00:00:00.000 Tasks/Time 0/00:00:00.000

Valeria Cardellini - SABD 2021/22 15

NiFi: architecture

* NiFi executes within a JVM

8 W™ @ Web Server

£ Flow Controller

Processor 1 Extension N

1
S FlowFile S Content £ Provenance
Repository Repository Repository

« Multiple NiFi servers can be clustered for scalability

ZooKeeper Server

4@ Cluster Coordinator
fowre [coment W & Provensnce I # Primary Node
Repositor

Reposito Repositor

@) ZooKeeper Client

Valeria Cardellini - SABD 2021/22 16

NiFi: use case

» Use NiFi to fetch tweets by means of NiFi’s processor
‘GetTwitter’

— It uses Twitter Streaming API for retrieving tweets

* Move data stream to Apache Kafka using NiFi's
processor ‘PublishKafka’

u C o e
) katka

Flink
u u NI-F}' Sooik AngSB RS

Twitter APls Streaming

Valeria Cardellini - SABD 2021/22 17

Data serialization formats for Big Data

 Serialization: process of converting structured

data into a compact (binary) form
« Some data serialization formats you may
already know
— JSON
— Protocol buffers

« Other serialization formats
— Apache Avro (row-oriented)
— Apache Parquet (column-oriented)
— Apache Thrift https://thrift.apache.org/

Valeria Cardellini - SABD 2021/22

Apache Avro AM

» Key features

Compact, fast, binary data format

Supports a number of data structures for serialization
Neutral to programming language

Simple integration with dynamic languages

Relies on schema: data+schema is fully self-describing
» JSON-based schema segregated from data
Can be used in RPC

Both Hadoop and Spark can access Avro as data source

https://spark.apache.org/docs/latest/sql-data-sources-avro.himl

« Comparing performance of serialization formats
— Avro should not be used from small objects (high serialization and

deserialization times)
Interesting for large objects

Valeria Cardellini - SABD 2021/22

18

19

Messaging layer: use cases

« Mainly used in the data processing pipelines
for data ingestion or aggregation

« Envisioned mainly to be used at the
beginning or end of a data processing
pipeline

« Example

— Incoming data from various sensors: ingest data
into a streaming system for real-time analytics or a
distributed file system for batch analytics

Valeria Cardellini - SABD 2021/22

Messaging layer: architectural choices

20

 Message queue

— ActiveMQ ame
_ RabbitMQ ==
— ZeroMQ

— Amazon SQS

* Publish/subscribe
— Kafka
— NATS http://www.nats.io \
— Apache Pulsar hitps:/pulsar.apache.org/ [:]
— Redis

Valeria Cardellini - SABD 2021/22

21

Apache Kafka §€

* Analyzed in SDCC course

* In a nutshell https://kafka.apache.org/

— Open-source, distributed
streaming platform

pub/sub and event

— Designed as a replicated, distributed, persistent

commit log

— Clients produce or consu
to/from a cluster of broke

me events directly
rs, which read/write

events durably to the underlying local file system

and also automatically re

plicate the events

synchronously or asynchronously within the
cluster for fault tolerance and high availability

« Let’s recall the main points

Valeria Cardellini - SABD 2021/22

Kafka: arch

itecture

22

» Kafka maintains feeds of
messages in categories

I-_I | Producer |

21 Publish data

Kafka cluster

called topics

* Producers publish
messages to a Kafka topic,

Leader Follower Follower

Broker 1 Broker 2 Broker 3

Partition Partition Partition
replicas replicas replicas

)

while consumers subscribe
to topics and process
published messages

1
. | Consumer 1 I ------ | Consumer N H- -------------
\

e o P

» Kafka cluster: distributed and replicated commit log of
data over servers known as brokers
— Brokers rely on Apache Zookeeper for coordination

Valeria Cardellini - SABD 2021/22

23

Kafka: topics and partitions

» For each topic, Kafka cluster maintains a partitioned
log: topic is split into a fixed number of partitions

« Each partition is an ordered, numbered, immutable
sequence of records that is continually appended to

« Each partition is replicated for fault tolerance across a
configurable number of brokers

» Partitions are distributed across brokers for scalability

n
(=]
\J N =

Valeria Cardellini - SABD 2021/22

Kafka: partition replication

24

« Each partition has one leader broker and O or more
followers

» Leader handles read and write requests
» A follower replicates the leader and acts as a backup

» Each broker is a leader for some of its partitions and
a follower for others to distribute load

Producer

[Publish data

ster v
Leader Follower Follower
Broker 1 Broker 2 Broker 3
o o o Zookeeper
Partition Partition Partition
replicas replicas replicas .
|
1
1
1
|

Valeria Cardellini - SABD 2021/22

25

Kafka: partitions

» Producers publish their records to partitions of a topic
(round-robin or partitioned by keys), and consumers
consume published records of that topic

« Each record is associated with a monotonically
increasing sequence number, called offset

— Kafka provides the topic __consumer offsets for storing
the offsets

» Consumers must manage their offset

Producers

Lwrites
1

111

N =

819 o0l1

/reads

Consumer A Consumer B
(offset=9) (offset=11)

Valeria Cardellini - SABD 2021/22

Kafka: consumers

26

» In Kafka design, pull approach for consumers
http://kafka.apache.org/documentation.html#design_pull

» Consumers use offset to track which messages have
been consumed
— Replay messages using offset

» Consumers can be grouped into a Consumer Group:
set of consumers sharing a common group ID
— A Consumer Group maps to a logical subscriber

— Each group consists of multiple consumers for scalability and
fault tolerance Feads

\

parmono [| [[[[]] |,|/-|—7E
paont [[[[[[]]] I'P»---T@

w2 [TTTTTTTITT] |

Valeria Cardellini - SABD 2021/22

27

Kafka: APls

e Four core APIs https://kafka.apache.org/documentation/#api

* Producer API: allows apps to Producers
publish records (e.qg.,
clickstream, logs, 10T) to topics

« Consumer API: allows apps to \ v // APp

read records from topics Connectors | Kaka Stream
Cluster |- Processors

« Connect API: reusable // l \\

App App App

connectors (producers or
consumers) that connect Kafka
topics to existing applications
or data systems so to move
large collections of data into and out of Kafka

— Connectors for AWS S3, HDFS, RabbitMQ, MySQL, Postgres,
AWS Lambda, MongoDB, Twitter, ...

App App App

Consumers

Valeria Cardellini - SABD 2021/22 28

Kafka: APls

» Streams API: allows transforming streams of data
from input topics to output topics
— Kafka as also a real-time streaming platform
» Hands-on course: you will use Kafka Streams to
process data in pipelines consisting of multiple
stages

Valeria Cardellini - SABD 2021/22 29

Kafka: limitations

* No complete set of monitoring tools
* No support for wildcard topic selection

 Limited support for geo-replication

— Single Apache Kafka cluster can run across
multiple geo-regions but suffers from latency

— Kafka’s MirrorMaker tool allows to replicate data
(topics, consumer groups and their offset) among
different clusters located in different
geographic locations

Valeria Cardellini - SABD 2021/22 30

Hands-on Kafka

* Preliminary steps:
— Download and install Kafka http://kafka.apache.org/downloads

+ Configure Kafka properties in server.properties (e.g.,
listeners and advertised.listeners)

* As alternative, see Bitnami Docker image for Kafka

— Start Kafka environment
» Start ZooKeeper (default port: 2181)
$ bin/zookeeper-server-start.sh config/zookeeper.properties
« Start Kafka broker (default port: 9092)
$ bin/kafka-server-start.sh config/server.properties
« To list existing topics
$ kafka-topics --1list --zookeeper localhost:2181

» To delete a given topic
$ kafka-topics --delete --zookeeper localhost:2181 --topic name

Valeria Cardellini - SABD 2021/22 31

Hands-on Kafka

» Let's use CLI tools to create a topic, write some events
into the topic and read events from the topic

» Create a topic named test with 1 partition and 1 replica

$ bin/kafka-topics.sh --create --bootstrap-server
localhost:9092 --replication-factor 1 --partitions 1 --
topic test

« Write some events into the topic

$ bin/kafka-console-producer.sh --broker-list
localhost:9092 --topic test

> This is the first message

> This is another message

 Read the events

$ bin/kafka-console-consumer.sh --bootstrap-server
localhost:9092 --topic test --from-beginning

Valeria Cardellini - SABD 2021/22

Kafka and Python client library

32

» Multiple options, let’s consider Kafka-Python
https://pypi.org/project/katka-python/

* Preliminary steps
— Install, configure and start Kafka and Zookeeper
— Install Python client library

» See kafka-python_example.py on course site

Valeria Cardellini - SABD 2021/22

33

Kafka @ Netflix

* Netflix uses Kafka for data collection and buffering

A——)
S3 v

Self Service Ul gt
Control Plane % elastic

8 0 4

Batch System

/ Stream

/

Stream_ Processing
Fronting Processing
Kafka
v i iConsumer
I
Event . Kafka Other Stream
Producer - Consumers

See http://techblog.netflix.com/2016/04/kafka-inside-keystone-pipeline.html

» Another example from Netflix hitps://www.confluent.io/blog/how-
kafka-is-used-by-netflix/

Valeria Cardellini - SABD 2021/22

Kafka @ Uber

» Uber has one of the largest Kafka deployment in the
industry

CONSUMERS Mobile App

PRODUCERS | PubSub }* peeun
RIDER APP : ==) - Dashboards

“"N \"’ \ } H —
DRIVER APP \ \) E - - Real-time, Fast

Analytics
API / SERVICES .

ELK }

DISPATCH REAL-TIME PIPELINE

« Debugging
(gps logs) -~ o N

Mapping &
Logistic
BATCH PIPELINE Applications

- 2 Data Science
DATABASES HADOOP " T
E Ad-hoc exploration
MySQL ‘ ;
Cassandra \ | :]
| Analytics

Reporting

https://eng.uber.com/ureplicator/

Valeria Cardellini - SABD 2021/22

Kafka @ Audi

Audi Data Collector

* Audi uses Kafka for

real-time data 8
i =

processing land Lot -

— 850 sensors in each car l |

The Future of the Automotive Industry
is a Real Time Data Cluster

Front Camera Traffic Front, rear and top Anomaly Infrared Camera
Alerts view cameras Detection

™ e g P

STREAMING PLATFORM

o ! Lo 3)

Front and Rear Hazard Crash Sensors Personalizatio Ultrasonic Sensors
Radar Sensors Alerts L}

Valeria Cardellini - SABD 2021/22

https://www.youtube.com/watch?v=yGLKi3TMJv8 36

Kafka performance

» A performance evaluation study of Apache Kafka

How Fast Can We Insert? An Empirical Performance
Evaluation of Apache Kafka, ICPADS 2020

— Kafka can achieve an ingestion rate of about 421K
messages/second or 92 MB/s (single topic with 1 partition
and replication factor of 1) on commodity hardware and
using the developed data sender tool (2 senders)

— Influence on performance of the chosen ack level:
configurations with enabled acks showed better performance

500K MPS

2 — acks=0; both local
acks=1; both local
// —_— acks=1; 1 local - 1 remote

Incoming Messages/Second

acks=1; both remote (different hosts)

0 100 200 300 400 500 600

Passed Time in Seconds

Valeria Cardellini - SABD 2021/22 37

Kafka: cloud services

Fully-managed services based on Kafka

Amazon MSK (Managed Streaming for Apache
Kafka) https://aws.amazon.com/msk

Confluent Cloud https://www.confluent.io/confluent-cloud
— Led by the creators of Kafka

CloudKarafka https://www.cloudkarafka.com

Valeria Cardellini - SABD 2021/22

Apache Pulsar ﬁ

38

Cloud-native, distributed messaging and streaming
platform, originally developed by Yahoo

Scalable, low-latency and durable messaging based
on pub-sub pattern, with support for multi-tenancy
and geographical replication

Multiple subscription modes for topics

Guaranteed message delivery with persistent
message storage provided by Apache BookKeeper

Enables also stream-native data processing through
a lightweight function-based computing framework,
named Pulsar Functions

Valeria Cardellini - SABD 2021/22

39

Pulsar: subscription modes

« Multiple subscription modes: exclusive, shared,
failover, and key_ shared

Exclusive
) —— Consumer A
Failover
/ Consumer B-1
(su)
Producer 1 ZRLIE
eeeeeeeee ailure K Consumer B-2
i imer B-1

scription
'roducer
\ in consumer B-’
x
Shared T
/ ;/, Consumer o1
Producer 2 (subscriptionc)
— ~\\??“ﬁr~—-\,
£3¢ Consumer c-2
¥¥§E
¥
Key_Shared
/ Consumer D-1
Subscription D 1

Valeria Cardellini - SABD 2021/22

Pulsar: architecture

40

» Layered architecture designed to provide scalability
and flexibility
— Stateless serving layer and stateful persistence layer

— Serving layer comprised of brokers that receive and deliver
messages

— Persistence layer comprised of Apache BookKeeper storage
nodes called bookies that durably store messages

+ BookKeeper is a distributed write-ahead log

Consumer

Apache BookKeeper

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Valeria Cardellini - SABD 2021/22

41

Pulsar: architecture

» Pulsar instance of Pulsar composed of one or more
Pulsar clusters

— Clusters may be geographically distributed and data can be
geo-replicated among different clusters

— Each cluster consiste of one or more brokers, an ensemble
of bookies, and a ZooKeeper quorum

— ZooKeeper is used for cluster-level configuration and
coordination

Producer ! Topic } ! Topic } T
P1 T1 ' T1 P2
Conzt;mer » (Subs;r;pnon ’ 3 i ‘ ubsgr}n won | Conzuzmer
:\ Cluster-A ,: :\ CIuster-B’:
Producer | Topic
P3 T1 |
CIuster—C,:
Valeria Cardellini - SABD 2021/22 42

Cloud services for data ingestion

* Amazon Kinesis Data =~ — |

Firehose gy | 2 ol

— Fully managed service =
for delivering streaming data
directly to S3, used as data lake

— Can transform and compress streaming data before
storing it

— Can invoke Lambda functions to transform incoming
source data and deliver it to S3

aaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa
plun

aaaaaaaaa

* Google Cloud Pub/Sub .
https://cloud.google.com/pubsub/ . e'a\ N7
— Fully-managed real-time %@M§ e

pub/sub messaging service Cad

Valeria Cardellini - SABD 2021/22 43

References

« Apache Flume documentation,
https://flume.apache.org/FlumeUserGuide.html

» Apache NiFi documentation,
https://nifi.apache.org/docs.html

» Apache Kafka documentation,
https://kafka.apache.org/documentation/

* Apache Pulsar documentation,
https://pulsar.apache.org/docs/en/standalone/

» Kreps et al., Kafka: A distributed messaging system

for log processing, NetDB 2011.

Valeria Cardellini - SABD 2021/22

44

