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Machine Learning

• The Machine Learning (ML) hype
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Machine Learning

• Enabled by huge leap in parallelization and 
innovation in ML infrastructure and tools
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Tensor Processing Unit (TPU): AI 
accelerator application-specific 
integrated circuit (ASIC), 
also as Cloud service (Google 
Cloud TPU)

Every major deep learning framework 
(e.g., TensorFlow, PyTorch) is already
GPU-accelerated

Is there a case for distributed ML? 

• Some ML systems: 
– Drive significant revenue 

– Benefit from humongous amount of data 

– Outscale even powerful machines (GPUs, TPUs)

• Which systems? Example: ad click prediction
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Li et al, Scaling Distributed Machine Learning with the Parameter Server, OSDI'14 



What do ML algorithms look like?

• Common feature when computing ML 
algorithms?
– ML algorithms are iterative in nature 

• Three key challenges: 
– Lots of data
– Lots of parameters
– Lots of iterations
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Scale of industry ML problems

• Scale of ML industry problems
– 100 billion examples
– 10 billion features
– 1T - 1P training data
– 100 - 1000 machines

• It’s a problem of scale and scale changes
everything!
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Scaling out distributed ML

• 10-100s nodes enough for data/model 
• Scale out for throughput
• Goal: more iterations/sec
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– Best case: 100x speedup from 
1000 machines

– Worst case: 50% slowdown from 
1000 machines

• Can you think of reasons
for performance 
degradation?

Challenge of communication overhead

• Communication overhead scales badly with 
number of machines 
– E.g., for Netflix-like recommender systems
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Requirements of distributed ML

• Scale to industry problems

• Efficient communication

• Fault tolerance

• Easy to use 
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Parallelization methods for distributed ML

1. Data parallelism
2. Model parallelism
3. Pipeline parallelism
• Plus hybrid forms of parallelism
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Method 1: Data parallelism
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• Workers (machines or devices, e.g., 
GPUs) load an identical copy of model 
(M)

• Training data is split (D(1), D(2), …) into
non-overlapping chunks and fed into
model replicas of workers for training

• Each worker performs training on its
chunk of training data, which leads to 
updates of model parameters
– Model parameters between workers need

to be synchronized: how?

Method 2: Model parallelism

• Model is split (M(1), M(2), …) and each worker loads a 
different part of model for training 

• Workers load an identical copy of data (D)
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Method 2: Model parallelism

• Use case: DL
– Worker(s) that hold input layer of DL model are fed with 

training data

– In the forward pass, they compute their output signal which is
propagated to workers that hold the next layer of DL model

– In the backpropagation pass, gradients are computed starting
at workers that hold the output layer of the DL model, 
propagating to workers that hold the input layers of the DL 
model
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Method 3: Pipeline parallelism
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• Combines model parallelism with data parallelism
• Use case: DL

– Model is split and each worker loads a different part of model 
for training; training data is split into microbatches

– Every worker computes output signals for a set of 
microbatches, propagating them to subsequent workers

– In the backpropagation pass, workers compute gradients for 
their model partition for multiple microbatches, immediately
propagating them to preceding workers 



Parallelization methods: Pros and cons

• Data parallelism
✓Can be used with every ML algorithm with an 

independent and identical distribution (i.i.d.) 
assumption over data samples (i.e., most ML 
algorithms)

✓Does not require domain knowledge of model
✗Parameter synchronization may become 

bottleneck 
✗Does not help when model size is too large to fit 

on a single machine 
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Parallelization methods: Pros and cons

• Model parallelism
✗Challenge: how to split the model into partitions

that are assigned to parallel workers 
• Cannot automatically be applied to every ML, because

model parameters generally cannot be split up

✓Reduced memory footprint 
✗Heavy communication needed between workers 
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Optimizations for data parallelism

• Challenges of parameter synchronization in 
data-parallel ML systems

1. How to synchronize parameters
– Centralized architecture or decentralized

manner? 

2. When to synchronize parameters
– Should the workers be forced to synchronize

after each batch, or do we allow them more 
freedom to work with potentially stale
parameters?

• How to minimize communication overhead 
for parameter synchronization

Valeria Cardellini - SABD 2021/22 16

Communication topology

1. How to synchronize parameters
– Centralized architecture or decentralized

manner? 

• Centralized: parameter server
• Decentralized: ring all-reduce
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Parameter server architecture

• Workers periodically report their computed
parameters or parameter updates to a (set of) 
parameter server(s) (PSs) 

• The most prominent architecture of data 
parallel ML systems 
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Ring all-reduce architecture

• All-reduce: compute some reduction (e.g., sum) of 
data on multiple machines and materialize the result
on all those machines

• Communication cost of fully connected network is
O(n2) with n workers: bottleneck

• Common alternative: employ a ring topology
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Architecture: Pros and cons

• Decentralized architecture pros
– No need of implementing and tuning a parameter server, 

which also eases the deployment

– Fault tolerance can be achieved more easily, because there 
is no single point of failure (parameter server) 

• When a node in the decentralized architecture fails, other 
nodes can easily take over its workload and training proceeds 
without interruptions

• Heavy-weight checkpointing of parameter server state is not 
necessary

• Decentralized architecture cons
– Communication increases quadratically with number of 

workers

– Changing the topology or partitioning the gradients induce 
new complexities and trade-offs
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When to synchronize

2. When to synchronize parameters
– Should the workers be forced to synchronize 

after each batch, or do we allow them more 
freedom to work with potentially stale 
parameters?

• Synchronous
• Bounded asynchronous
• Asynchronous
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When to synchronize

• Synchronous
– After each iteration (processing of a batch), 

workers synchronize their parameter updates 
– Requires barriers (recall BSP)
✓Reasoning about model convergence is easier
✗Straggler problem, where the slowest worker 

slows down all others 
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When to synchronize

• Bounded asynchronous
✓Workers may train on stale parameters, but 

staleness is bounded
✓Allows for mathematical analysis and proof of 

model convergence properties
✓Bound allows workers for more freedom in making 

training progress independently from each other, 
which mitigates the straggler problem to some 
extent and increases throughput
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When to synchronize

• Asynchronous
– Workers update their model completely 

independently from each other
✓Completely avoids straggler problem
✗No guarantees on a staleness bound, i.e., a 

worker may train on an arbitrarily stale model
✗Hard to mathematically reason about model 

convergence
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What is federated ML?

• Scenario: training settings are distributed, 
collaborative, and multiple parties/clients

• Goal: train collaboratively a ML model on multiple 
client devices located at the network edge, where 
data is generated locally and remains decentralized
– No centralized training data: each client stores its own data 

and cannot read data of other clients

– Data is not independently or identically distributed
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What is federated ML?

• A broad definition: Federated learning (FL) is a 
ML setting where multiple entities (clients) 
collaborate in solving a ML problem, under the 
coordination of a central server or service 
provider. Each client’s raw data is stored locally
and not exchanged or transferred; instead, 
focused updates intended for immediate 
aggregation are used to achieve the learning 
objective

Valeria Cardellini - SABD 2021/22 26

Federated learning system

• A central orchestration server organizes the 
training, but never sees raw data
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Example application of FL
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• Next-word prediction on mobile phones, while
preserving privacy of data and reducing strain on 
network

Example application of FL 

• Goal: train a predictor in a distributed fashion, rather
than sending the raw data to a central server

• How it works
– Remote devices communicate with a central server 

periodically to learn a global model

– At each communication round, a subset of selected phones 
performs local training on their nonidentically distributed user 
data, and sends these local updates to the server

– After incorporating updates, the server sends back the new 
global model to another subset of devices

– Iterative training process continues across the network until
convergence is reached or some stopping criterion is met
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FL main challenges

• Communication overhead
• System heterogeneity
• Statistical heterogeneity
• Privacy concerns
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