
Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Distributed and
Federated Machine Leaning

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Machine Learning

• The Machine Learning (ML) hype

Valeria Cardellini - SABD 2021/22 1

Machine Learning

• Enabled by huge leap in parallelization and
innovation in ML infrastructure and tools

Valeria Cardellini - SABD 2021/22 2

Tensor Processing Unit (TPU): AI
accelerator application-specific
integrated circuit (ASIC),
also as Cloud service (Google
Cloud TPU)

Every major deep learning framework
(e.g., TensorFlow, PyTorch) is already
GPU-accelerated

Is there a case for distributed ML?

• Some ML systems:
– Drive significant revenue

– Benefit from humongous amount of data

– Outscale even powerful machines (GPUs, TPUs)

• Which systems? Example: ad click prediction

Valeria Cardellini - SABD 2021/22 3

Li et al, Scaling Distributed Machine Learning with the Parameter Server, OSDI'14

What do ML algorithms look like?

• Common feature when computing ML
algorithms?
– ML algorithms are iterative in nature

• Three key challenges:
– Lots of data
– Lots of parameters
– Lots of iterations

Valeria Cardellini - SABD 2021/22 4

Scale of industry ML problems

• Scale of ML industry problems
– 100 billion examples
– 10 billion features
– 1T - 1P training data
– 100 - 1000 machines

• It’s a problem of scale and scale changes
everything!

Valeria Cardellini - SABD 2021/22 5

Scaling out distributed ML

• 10-100s nodes enough for data/model
• Scale out for throughput
• Goal: more iterations/sec

Valeria Cardellini - SABD 2021/22 6

– Best case: 100x speedup from
1000 machines

– Worst case: 50% slowdown from
1000 machines

• Can you think of reasons
for performance
degradation?

Challenge of communication overhead

• Communication overhead scales badly with
number of machines
– E.g., for Netflix-like recommender systems

Valeria Cardellini - SABD 2021/22 7

Requirements of distributed ML

• Scale to industry problems

• Efficient communication

• Fault tolerance

• Easy to use

Valeria Cardellini - SABD 2021/22 8

Parallelization methods for distributed ML

1. Data parallelism
2. Model parallelism
3. Pipeline parallelism
• Plus hybrid forms of parallelism

Valeria Cardellini - SABD 2021/22 9

Method 1: Data parallelism

Valeria Cardellini - SABD 2021/22 10

• Workers (machines or devices, e.g.,
GPUs) load an identical copy of model
(M)

• Training data is split (D(1), D(2), …) into
non-overlapping chunks and fed into
model replicas of workers for training

• Each worker performs training on its
chunk of training data, which leads to
updates of model parameters
– Model parameters between workers need

to be synchronized: how?

Method 2: Model parallelism

• Model is split (M(1), M(2), …) and each worker loads a
different part of model for training

• Workers load an identical copy of data (D)

Valeria Cardellini - SABD 2021/22 11

Method 2: Model parallelism

• Use case: DL
– Worker(s) that hold input layer of DL model are fed with

training data

– In the forward pass, they compute their output signal which is
propagated to workers that hold the next layer of DL model

– In the backpropagation pass, gradients are computed starting
at workers that hold the output layer of the DL model,
propagating to workers that hold the input layers of the DL
model

Valeria Cardellini - SABD 2021/22 12

Method 3: Pipeline parallelism

Valeria Cardellini - SABD 2021/22 13

• Combines model parallelism with data parallelism
• Use case: DL

– Model is split and each worker loads a different part of model
for training; training data is split into microbatches

– Every worker computes output signals for a set of
microbatches, propagating them to subsequent workers

– In the backpropagation pass, workers compute gradients for
their model partition for multiple microbatches, immediately
propagating them to preceding workers

Parallelization methods: Pros and cons

• Data parallelism
✓Can be used with every ML algorithm with an

independent and identical distribution (i.i.d.)
assumption over data samples (i.e., most ML
algorithms)

✓Does not require domain knowledge of model
✗Parameter synchronization may become

bottleneck
✗Does not help when model size is too large to fit

on a single machine

Valeria Cardellini - SABD 2021/22 14

Parallelization methods: Pros and cons

• Model parallelism
✗Challenge: how to split the model into partitions

that are assigned to parallel workers
• Cannot automatically be applied to every ML, because

model parameters generally cannot be split up

✓Reduced memory footprint
✗Heavy communication needed between workers

Valeria Cardellini - SABD 2021/22 15

Optimizations for data parallelism

• Challenges of parameter synchronization in
data-parallel ML systems

1. How to synchronize parameters
– Centralized architecture or decentralized

manner?

2. When to synchronize parameters
– Should the workers be forced to synchronize

after each batch, or do we allow them more
freedom to work with potentially stale
parameters?

• How to minimize communication overhead
for parameter synchronization

Valeria Cardellini - SABD 2021/22 16

Communication topology

1. How to synchronize parameters
– Centralized architecture or decentralized

manner?

• Centralized: parameter server
• Decentralized: ring all-reduce

Valeria Cardellini - SABD 2021/22 17

Parameter server architecture

• Workers periodically report their computed
parameters or parameter updates to a (set of)
parameter server(s) (PSs)

• The most prominent architecture of data
parallel ML systems

Valeria Cardellini - SABD 2021/22 18

Ring all-reduce architecture

• All-reduce: compute some reduction (e.g., sum) of
data on multiple machines and materialize the result
on all those machines

• Communication cost of fully connected network is
O(n2) with n workers: bottleneck

• Common alternative: employ a ring topology
Valeria Cardellini - SABD 2021/22 19

Architecture: Pros and cons

• Decentralized architecture pros
– No need of implementing and tuning a parameter server,

which also eases the deployment

– Fault tolerance can be achieved more easily, because there
is no single point of failure (parameter server)

• When a node in the decentralized architecture fails, other
nodes can easily take over its workload and training proceeds
without interruptions

• Heavy-weight checkpointing of parameter server state is not
necessary

• Decentralized architecture cons
– Communication increases quadratically with number of

workers

– Changing the topology or partitioning the gradients induce
new complexities and trade-offs

Valeria Cardellini - SABD 2021/22 20

When to synchronize

2. When to synchronize parameters
– Should the workers be forced to synchronize

after each batch, or do we allow them more
freedom to work with potentially stale
parameters?

• Synchronous
• Bounded asynchronous
• Asynchronous

Valeria Cardellini - SABD 2021/22 21

When to synchronize

• Synchronous
– After each iteration (processing of a batch),

workers synchronize their parameter updates
– Requires barriers (recall BSP)
✓Reasoning about model convergence is easier
✗Straggler problem, where the slowest worker

slows down all others

Valeria Cardellini - SABD 2021/22 22

When to synchronize

• Bounded asynchronous
✓Workers may train on stale parameters, but

staleness is bounded
✓Allows for mathematical analysis and proof of

model convergence properties
✓Bound allows workers for more freedom in making

training progress independently from each other,
which mitigates the straggler problem to some
extent and increases throughput

Valeria Cardellini - SABD 2021/22 23

When to synchronize

• Asynchronous
– Workers update their model completely

independently from each other
✓Completely avoids straggler problem
✗No guarantees on a staleness bound, i.e., a

worker may train on an arbitrarily stale model
✗Hard to mathematically reason about model

convergence

Valeria Cardellini - SABD 2021/22 24

What is federated ML?

• Scenario: training settings are distributed,
collaborative, and multiple parties/clients

• Goal: train collaboratively a ML model on multiple
client devices located at the network edge, where
data is generated locally and remains decentralized
– No centralized training data: each client stores its own data

and cannot read data of other clients

– Data is not independently or identically distributed

Valeria Cardellini - SABD 2021/22 25

What is federated ML?

• A broad definition: Federated learning (FL) is a
ML setting where multiple entities (clients)
collaborate in solving a ML problem, under the
coordination of a central server or service
provider. Each client’s raw data is stored locally
and not exchanged or transferred; instead,
focused updates intended for immediate
aggregation are used to achieve the learning
objective

Valeria Cardellini - SABD 2021/22 26

Federated learning system

• A central orchestration server organizes the
training, but never sees raw data

Valeria Cardellini - SABD 2021/22 27

Example application of FL

Valeria Cardellini - SABD 2021/22 28

• Next-word prediction on mobile phones, while
preserving privacy of data and reducing strain on
network

Example application of FL

• Goal: train a predictor in a distributed fashion, rather
than sending the raw data to a central server

• How it works
– Remote devices communicate with a central server

periodically to learn a global model

– At each communication round, a subset of selected phones
performs local training on their nonidentically distributed user
data, and sends these local updates to the server

– After incorporating updates, the server sends back the new
global model to another subset of devices

– Iterative training process continues across the network until
convergence is reached or some stopping criterion is met

Valeria Cardellini - SABD 2021/22 29

FL main challenges

• Communication overhead
• System heterogeneity
• Statistical heterogeneity
• Privacy concerns

Valeria Cardellini - SABD 2021/22 30

References

• Mayer et al., Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques, and Tools, ACM
Computing Surveys, 2020

• Verbraeken et al., A Survey on Distributed Machine Learning,
ACM Computing Surveys, 2020

• McMahan and Ramage, Federated Learning: Collaborative
Machine Learning without Centralized Training Data, Google AI
blog, 2017

• Kairouz et al., Advances and Open Problems in Federated
Learning, 2021

Valeria Cardellini - SABD 2021/22 31

