
Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Systems for Resource Management

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2021/22 1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration



Outline

• Cluster management system
– Mesos

• Resource management policy
– DRF

Valeria Cardellini - SABD 2021/22 2

Motivations

• Need to run multiple Big Data frameworks on 
same infrastructure

• Running each framework on its dedicated 
cluster:
– Expensive
– Hard to share data

• Idea: share cluster resources among multiple 
Big Data frameworks

Valeria Cardellini - SABD 2021/22 3



How to share: static partitioning

4

• How to share (virtual) cluster resources among 
multiple and non homogeneous Big Data 
frameworks executed in virtual 
machines/containers?

• Baseline solution: Static partitioning
• Efficient? No way

Valeria Cardellini - SABD 2021/22

What we need

• “The datacenter is the computer” (D. Patterson)
– Share resources to maximize their utilization 
– Share data among frameworks
– Provide a unified API to the outside
– Hide the internal complexity of the infrastructure 

from applications
• Solution: a cluster-scale resource manager that 

employs dynamic partitioning

Valeria Cardellini - SABD 2021/22 5



Apache Mesos

6Valeria Cardellini - SABD 2021/22

Dynamic partitioning

• Cluster manager that provides a common 
resource sharing layer over which diverse 
frameworks can run
“Program against your datacenter like it’s a single pool 
of resources” https://mesos.apache.org
⎼ Abstracts the entire datacenter into a single pool of 

computing resources, simplifying running 
distributed systems at scale

⎼ Distributed system to build and run fault-tolerant 
and elastic distributed systems on top of it

Apache Mesos

Valeria Cardellini - SABD 2021/22 7

• Initially designed and developed at Berkeley Univ.
• Top open-source project by Apache
• Used by Twitter, Uber, Apple (Siri) among the others
• Cluster as dynamically shared pool of resources

Dynamic partitioningStatic partitioning



Mesos goals

• High utilization of resources

• Support for diverse frameworks (current and 
future)

• Scalability to 10,000's of nodes

• Reliability in face of failures

Valeria Cardellini - SABD 2021/22 8

Mesos in the data center

• Where does Mesos fit as an abstraction layer 
in the datacenter?

Valeria Cardellini - SABD 2021/22 9



Computation model

• A framework (e.g., Spark, Flink) manages 
and runs one or more jobs

• A job consists of one or more tasks
• A task (e.g., map, filter) consists of one or 

more processes running on same machine

Valeria Cardellini - SABD 2021/22 10

What Mesos does

Valeria Cardellini - SABD 2021/22 11

• Enables fine-grained resource sharing (at the 
level of tasks within a job) of resources (CPU, 
RAM, …) across frameworks

• Provides common functionalities: 
- Failure detection
- Task distribution
- Task starting
- Task monitoring
- Task killing
- Task cleanup



Fine-grained sharing

• Allocation at the level of tasks within a job
• Improves utilization, latency, and data locality

Valeria Cardellini - SABD 2021/22 12

Coarse-grain sharing Fine-grain sharing

Frameworks on Mesos

• Frameworks must be aware of running on 
Mesos
– DevOps tooling: Vamp 

• Deployment and workflow tool for container orchestration

– Long running services: Aurora (service scheduler), …
– Big Data processing: Hadoop, Flink, Spark, Storm, …
– Batch scheduling: Chronos, …
– Data storage: Alluxio, Cassandra, ElasticSearch, …
– Machine learning: TFMesos

• Framework to help running distributed Tensorflow ML tasks 
on Apache Mesos with GPU support

Full list at mesos.apache.org/documentation/latest/frameworks/

Valeria Cardellini - SABD 2021/22 13



Mesos: architecture

Valeria Cardellini - SABD 2021/22 14

• Master-worker 
architecture

• Workers publish 
available 
resources to 
master

• Master sends 
resource offers to 
frameworks

• Master election 
and service 
discovery via 
ZooKeeper

Mesos: a platform for fine-grained resource sharing in the data center, NSDI'11

Mesos and framework components

Valeria Cardellini - SABD 2021/22 15

• Mesos components
- Master

- Workers or agents

• Framework components
- Scheduler: registers with 

master to be offered 
resources

- Executors: launched on 
agents to run the 
framework’s tasks



Scheduling in Mesos

Valeria Cardellini - SABD 2021/22 16

• Scheduling mechanism based on resource 
offers
- Mesos offers available resources to frameworks

• Each resource offer contains a list of <agent ID, 
resource1: amount1, resource2: amount2, ...> 

- Each framework chooses which resources to use and 
which tasks to launch

• Two-level scheduler architecture
- Mesos delegates the actual scheduling of tasks to 

frameworks
- Why? To improve scalability

• Master does not have to know the scheduling intricacies of 
every type of supported application

Mesos: resource offers

• Resource allocation is based on Dominant Resource 
Fairness (DRF) algorithm

Valeria Cardellini - SABD 2021/22 17



Mesos: resource offers in details

Valeria Cardellini - SABD 2021/22 18

• Workers continuously send status updates about 
resources to master

Mesos: resource offers in details (2)

Valeria Cardellini - SABD 2021/22 19



Mesos: resource offers in details (3)

Valeria Cardellini - SABD 2021/22 20

• Framework scheduler can reject offers

Mesos: resource offers in details (4)

Valeria Cardellini - SABD 2021/22 21

• Framework scheduler selects resources and provides 
tasks

• Master sends tasks to workers



Mesos: resource offers in details (5)

Valeria Cardellini - SABD 2021/22 22

• Framework executors launch tasks

Mesos: resource offers in details (6)

Valeria Cardellini - SABD 2021/22 23



Mesos: resource offers in details (7)

Valeria Cardellini - SABD 2021/22 24

Mesos fault tolerance

• Task failure
• Worker failure
• Host or network failure
• Master failure
• Framework scheduler failure

Valeria Cardellini - SABD 2021/22 25



Cluster resource allocation 

1. How to assign cluster resources to tasks?
– Main design alternatives

• Centralized scheduler 
– Global (monolithic) scheduler
– Two-level scheduler

• Fully decentralized scheduler

– Let’s focus on centralized scheduler

2. How to allocate resources of different types?

Valeria Cardellini - SABD 2021/22 26

Global (monolithic) scheduler

• Job requirements
– Response time, 

throughput, availability
• Job execution plan

– Task DAG, inputs/outputs
• Estimates

– Task duration, input sizes, 
transfer sizes

Valeria Cardellini - SABD 2021/22 27

• Pros
– Can achieve optimal 

schedule (global knowledge)
• Cons:

– Complexity: hard to scale 
and ensure resilience

– Hard to anticipate future 
frameworks requirements

– Need to refactor existing 
frameworks



Two-level scheduler in Mesos

• Idea: push task placement to 
frameworks

• Resource offer
– Vector of available resources on a 

node
– E.g., node1: <1CPU, 1GB>, 

node2: <4CPU, 16GB>

• Master sends resource offers to 
frameworks

• Frameworks select which offers 
to accept and which tasks to run

Valeria Cardellini - SABD 2021/22 28

• Pros:
– Simple: easier to scale 

and make resilient
– Easy to port existing 

frameworks and 
support new ones

• Cons:
– Two-level decision 

made by different 
entities: can be 
suboptimal

Mesos: resource allocation
• How to determine which frameworks to make

resource offers?
• Dominant Resource Fairness (DRF)

algorithm
– Implemented in the allocation module

Valeria Cardellini - SABD 2021/22 29



DRF: background on fair sharing
• Consider a single resource: fair sharing

– n users want to share a resource, e.g., CPU
– Solution: allocate each 1/n of the shared 

resource
• Generalized by max-min fairness

– Handles if a user wants less than its fair 
share

– E.g., user 1 wants no more than 20%
• Generalized by weighted max-min 

fairness
– Gives weights to users according to 

importance
– E.g., user 1 gets weight 1, user 2 weight 2

Valeria Cardellini - SABD 2021/22 30

Max-min fairness: example

• 1 resource type: CPU
• Total resources: 20 CPU
• User 1 has x tasks and wants <1CPU> per task
• User 2 has y tasks and wants <2CPU> per task

max(x, y) (maximize allocation)
subject to

x + 2y ≤ 20 (CPU constraint)
x = 2y (fairness)

Solution:
x = 10
y = 5

Valeria Cardellini - SABD 2021/22 31



Why is fair sharing useful?

• Proportional allocation
– User 1 gets weight 2, user 2 weight 1

• Priorities
– Give user 1 weight 1000, user 2 weight 1

• Reservations
– Ensure user 1 gets 10% of a resource, so give 

user 1 weight 10, sum weights 100
• Isolation policy

– Users cannot affect others beyond their fair share

Valeria Cardellini - SABD 2021/22 32

Why is fair sharing useful? (2)

• Share guarantee
– Each user can get at least 1/n of the resource
– But will get less if its demand is less

• Strategy-proof
– Users are not better off by asking for more than 

they need
– Users have no reason to lie

• Max-min fairness is the only reasonable 
mechanism with these two properties

• Many schedulers use max-min fairness
– OS, networking, datacenters (e.g., YARN)

Valeria Cardellini - SABD 2021/22 33



Max-min fairness drawback
• When is max-min fairness not enough?
• Need to schedule multiple, heterogeneous resources

(CPU, memory, disk, I/O)

• Single resource example
– 1 resource: CPU
– User 1 wants <1CPU> per task
– User 2 wants <2CPU> per task

• Multi-resource example
– 2 resources: CPUs and memory
– User 1 wants <1CPU, 4GB> per task
– User 2 wants <3CPU, 1GB> per task

• In the latter case what is a fair allocation?
Valeria Cardellini - SABD 2021/22 34

A first (wrong) solution
• Asset fairness: gives weights to resources (e.g., 1 

CPU = 1 GB) and equalizes total allocation (i.e., sum) 
to each user

• Total resources: 28 CPUs and 56GB RAM (e.g., 1 
CPU = 2 GB)
– User 1 has x tasks and wants <1CPU, 2GB> per task
– User 2 has y tasks and wants <1CPU, 4GB> per task

• Asset fairness yields:
max(x, y) (maximize allocation)
x + y ≤ 28
2x + 4y ≤ 56
4x = 6y
– User 1: x = 1, i.e., <43%CPU, 43%GB> (sum = 86%)
– User 2: y = 8 i.e., <29%CPU, 57%GB> (sum = 86%)

Valeria Cardellini - SABD 2021/22 35



A first (wrong) solution (2)

• Problem: violates share guarantee
– User 1 gets less than 50% of both CPU and RAM
– Better off in a separate cluster with half the 

resources

Valeria Cardellini - SABD 2021/22 36

What Mesos needs

• A fair sharing policy that provides:
– Share guarantee
– Strategy-proofness

• Challenge: can we generalize max-min 
fairness to multiple resources?

• Solution:
Dominant Resource Fairness (DRF)

Valeria Cardellini - SABD 2021/22 37

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, NSDI'11



DRF

• Dominant resource of a user: the resource 
that user has the biggest share of
– Example:

• Total resources: <8CPU, 5GB>
• User 1 allocation: <2CPU, 1GB>
• 2/8 = 25%CPU and 1/5 = 20%RAM
• Dominant resource of user 1 is CPU (25% > 20%)

• Dominant share of a user: the fraction of the 
dominant resource allocated to the user
– User 1 dominant share is 25%

Valeria Cardellini - SABD 2021/22 38

DRF (2)
• Apply max-min fairness to dominant shares: give 

every user an equal share of its dominant resource
• Goal: equalize the dominant share of the users

– Total resources: <9CPU, 18GB>
– User 1 wants <1CPU, 4GB>
– Dominant resource for user 1: RAM (1/9 < 4/18)
– User 2 wants <3CPU, 1GB>
– Dominant resource for user 2: CPU (3/9 > 1/18)

max(x, y)
x + 3y ≤ 9
4x + y ≤ 18
(4/18)x = (3/9)y
• User 1: x = 3 <33%CPU, 66%GB>
• User 2: y = 2 <66%CPU, 16%GB>

Valeria Cardellini - SABD 2021/22 39



Online DRF

• Whenever there are available resources and tasks to 
run:
Choose the framework with the lowest dominant 
share among all frameworks

Valeria Cardellini - SABD 2021/22 40

DRF: efficiency-fairness trade-off

Valeria Cardellini - SABD 2021/22 41

Efficiency-Fairness 
Trade-off

• DRF has under-utilized resources

• DRF schedules at the level of tasks 
(leads to sub-optimal job completion 
time)

• Fairness is fundamentally at odds 
with overall efficiency (how to trade-
off?)


