TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

A

Systems for Resource Management

Corso di Sistemi e Architetture per Big Data
A.A. 2021/22
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Interfaces

Data Processing

Data Storage

uonjeibajuj / poddng

Valeria Cardellini - SABD 2021/22 1

Qutline

« Cluster management system
— Mesos

« Resource management policy
— DRF

Valeria Cardellini - SABD 2021/22

Motivations

* Need to run multiple Big Data frameworks on
same infrastructure

« Running each framework on its dedicated
cluster:
— Expensive
— Hard to share data

 |ldea: share cluster resources among multiple
Big Data frameworks

Valeria Cardellini - SABD 2021/22

How to share: static partitioning

* How to share (virtual) cluster resources among
multiple and non homogeneous Big Data
frameworks executed in virtual
machines/containers?

» Baseline solution: Static partitioning

 Efficient? No way

Valeria Cardellini - SABD 2021/22 4

What we need

» “The datacenter is the computer” (D. Patterson)
— Share resources to maximize their utilization
— Share data among frameworks
— Provide a unified API to the outside
— Hide the internal complexity of the infrastructure

from applications

« Solution: a cluster-scale resource manager that

employs dynamic partitioning

Valeria Cardellini - SABD 2021/22 5

Apache Mesos

AVAVA
AVAVAVA
VAVAVAV

VAVAY

» Cluster manager that provides a common
resource sharing layer over which diverse
frameworks can run

“Program against your datacenter like it's a single pool
of resources” https://mesos.apache.org

— Abstracts the entire datacenter into a single pool of
computing resources, simplifying running
distributed systems at scale

— Distributed system to build and run fault-tolerant
and elastic distributed systems on top of |t

Dynamic partitioning D g = g

@ I

Valeria Cardellini - SABD 2021/22 EIE I TArEEICE 6

Apache Mesos

Initially designed and developed at Berkeley Univ.

Top open-source project by Apache

Used by Twitter, Uber, Apple (Siri) among the others

Cluster as dynamically shared pool of resources

Static partitioning Dynamic partitioning
Boa e | i
{ 17%
h——-u-, o% b ———

200% RR B

m::’ e RER
: E

o -‘- AR

hl;;ﬁq 7% Shared cluster

e e i o 0

Valeria Cardellini - SABD 2021/22

Mesos goals

High utilization of resources

Support for diverse frameworks (current and
future)

Scalability to 10,000's of nodes

Reliability in face of failures

Valeria Cardellini - SABD 2021/22

Mesos in the data center

« Where does Mesos fit as an abstraction layer
in the datacenter?

deploy and manage
applications/services
build and run

using resources

provision and manage
machines

Valeria Cardellini - SABD 2021/22

Computation model

« A framework (e.g., Spark, Flink) manages
and runs one or more jobs

» A job consists of one or more tasks

« Atask (e.g., map, filter) consists of one or
more processes running on same machine

' Executor Executor
(e.g., task tracker) (e.g., task tracker)
L = ~.

... - Framework
P Scheduler
i Executor = Executor (e.g., job tracker)
i (e.g., task tracker) (e.g., task tracker)’,/" '
- s F

Valeria Cardellini - SABD 2021/22

What Mesos does

10

« Enables fine-grained resource sharing (at the
level of tasks within a job) of resources (CPU,
RAM, ...) across frameworks

* Provides common functionalities:
- Failure detection
- Task distribution
- Task starting
- Task monitoring
- Task killing
- Task cleanup

Valeria Cardellini - SABD 2021/22

1

Fine-grained sharing

 Allocation at the level of tasks within a job
» Improves utilization, latency, and data locality

Framework 1
nfak EEE

Coarse-grain sharing Fine-grain sharing

Valeria Cardellini - SABD 2021/22

Frameworks on Mesos

12

* Frameworks must be aware of running on
Mesos
— DevOps tooling: Vamp

* Deployment and workflow tool for container orchestration

— Long running services: Aurora (service scheduler), ...
— Big Data processing: Hadoop, Flink, Spark, Storm, ...

— Batch scheduling: Chronos, ...
— Data storage: Alluxio, Cassandra, ElasticSearch, ...

— Machine learning: TFMesos

* Framework to help running distributed Tensorflow ML tasks
on Apache Mesos with GPU support

Full list at mesos.apache.org/documentation/latest/frameworks/

Valeria Cardellini - SABD 2021/22

13

Mesos: architecture

* Master-worker
architecture

. Wor_kers publish Hadoop MPI ZooKeeper
available scheduler scheduler quorum
resources to -
master 5

4" Aemmss B e b7

« Master sends Mesos ‘ Standby !
resource offers to master ___Mmaster | | __master !
frameworks

. A 4

* Master e_Iectlon Mesos Agent Mesos Agent Mesos Agent
and service Fistibop o Hadoop] MPI
%ISC}O(VGW via executor executor executor||executor

coneeper |_task | _task [] || || [task] || [tes]
, NSDI'11
Valeria Cardellini - SABD 2021/22 14
Mesos and framework components
 Mesos components
- Master
- Workers or agents
 Framework components Clicter
- Scheduler: registers with
maSter tO be Offered /,I Mesos Slave 1 | | Mesos Slave 2 |

resources ,/ | Framework 1 | — LIE'
- Executors: launched on ‘ s

’ llllll
agents to run the N Mesos Slave 3
framework’s tasks | | [Escuer - LIT:'
; node
7 o’ Executor 2 3
--------- 1 :
Framework 1 1€ = = =>F e Master 14 F —
STy ;: Mesos Master : E—— | 00 ...
Framework 2 ’I‘ . R R R =
S apasssass - =
_________ 1 ;
Framework N :}1/ !_ _l\/leio_s l\/le_as_te_r g task —
T G e N
1 Mesos Master <. O n

Valeria Cardellini - SABD 2021/22

15

Scheduling in Mesos

» Scheduling mechanism based on resource
offers

- Mesos offers available resources to frameworks

« [Each resource offer contains a list of <agent 1D,
resourcel: amountl, resource2: amount2, ...>

- Each framework chooses which resources to use and
which tasks to launch

 Two-level scheduler architecture

- Mesos delegates the actual scheduling of tasks to
frameworks

— Why? To improve scalability

« Master does not have to know the scheduling intricacies of
every type of supported application

Valeria Cardellini - SABD 2021/22

Mesos: resource offers

Framework 1 Framework 2
Job1 [Job2 Job1 | Job2
FW Scheduler FW Scheduler
ESRETRE e €)) @ e
e -
Allocation Mesos
module master
yan X
(et wp//@:m; =)
el — Agent 2
, ___Executor i Executor
| | Task it Task | ¢ | Task || Task |

 Resource allocation is based on Dominant Resource
Fairness (DRF) algorithm

Valeria Cardellini - SABD 2021/22

Mesos: resource offers in details

« Workers continuously send status updates about
resources to master

[s e—

i gvailable resources

= 1

T

| Framework T
] i : Mesos Slave
|
] | Framework
{ OFFER: Executor
- id { value:"20151009-...-25-0716"} .
| framework_id { value:"20151009-. .. -25-0003"}

i slave_id { value:"20151009-...-25-S0"}

| hostname: "172.17.0.7"
i resources { name:"cpus” type:SCALAR scalar{value:1.6} role:"*" } node

i resources { name:"mem" type:SCALAR scalar{value:1847.0} role:"*" }

i resources { name:"disk" type:SCALAR scalar{value:57421.0} role:"*" }
i resources { name:"ports" type:RANGES ranges{range{begin:31000 end:

i 32000}} role:"*" }

iurl { scheme:"http" address{hostname:"172.17.0.2" ip:"172.17.0.2"

i port:5051} path: "/slave(1)"}

Valeria Cardellini - SABD 2021/22

Mesos: resource offers in details (2)

Mesos Slave

Framework
R
| Framework ! po=oc-m--- I Executor
1 i Mesos Master \
1
1

[- |

; def resourceOffers(self, driver, offers): E |“°de

H logging.info("Recieved resource offers: {}".format([o.id.value for o in
5 offers]))
! for offer in offers:
task = new_task(offer)
#task.command.value = "echo hello world"
task.executor.MergeFrom(self.executor) #use MyExecutor
logging.info("Launching task {task} "

"using offer {offer}.".format(task=task.task_id.value,

offer=offer.id.value))

tasks = [task]
driver.launchTasks(offer.id, tasks)

Valeria Cardellini - SABD 2021/22

Mesos: resource offers in details (3)

* Framework scheduler can reject offers

Framework

Scheduler

Framework

Scheduler

Valeria Cardellini - SABD 2021/22

Mesos Slave

Framework

Executor

| node
)

Mesos: resource offers in details (4)

20

* Framework scheduler selects resources and provides

tasks

 Master sends tasks to workers

i name: "task b9eb07d3-216b-4074-9d35-4c1113bf78aa"

task_1id {value:"b9ebo7d3-216b-4074-9d35-4c1113bf78aa"}

i slave_1id {value:"20151009-082055-16781740-5050-25-S2"}
§resources {name: "cpus" type:SCALAR scalar{value:1}}

i resources {name:"mem" type:SCALAR scalar{value:128}}

i executor {

i executor_id{value: "my_exec_ID_8945763725"} g
command {value:"python /SF/python/test/test_executor.py"}

Valeria Cardellini - SABD 2021/22

o ;l Mesos Slave [

Framework

Executor

21

Mesos: resource offers in details (5)

 Framework executors launch tasks

Mesos Slave

Framework

| Framework ! e .
i { ! Mesos Master !
1 1
: ; : task
i class MyExecutor(mesos.interface.Executor): :

Executor

def launchTask(self, driver, task): -
update = mesos_pb2.TaskStatus() zode -
update.state = mesos_pb2.TASK_RUNNING -+
driver.sendStatusUpdate(update))
This is where one would perform the requested task... ,/'

update = mesos_pb2.TaskStatus() Lonn”
update.state = mesos_pb2.TASK_FINISHED i
driver.sendStatusUpdate(update)

i if __name__ == "__main_":
driver = mesos.native.MesosExecutorDriver(MyExecutor())

Valeria Cardellini - SABD 2021/22

Mesos: resource offers in details (6)

Mesos Slave

Framework

Executor

|

enum TaskState {
: it 5 : d
: TASK_STAGING = 6; Initial state. Framework status updates should not R

TASK_STARTING = 0;
TASK_RUNNING = 1;
TASK_FINISHED = 2;
TASK_FAILED = 3;
TASK_KILLED = 4;
TASK_LOST = 5;
TASK_ERROR = 7;

Valeria Cardellini - SABD 2021/22

Mesos: resource offers in details (7)

Framework 1 status update R — a
Schedulerilsl ——— ._I_VI _es_os;l\ila_s:e:-! .

def statusUpdate(self driver, update):
print update.message, "state: ",
mesos_pb2.TaskState.Name(update.state)
#Do something...

Valeria Cardellini - SABD 2021/22

Mesos fault tolerance

»1 Mesos Slave

Framework

11 Executor

24

« Task failure

« Worker failure

* Host or network failure

« Master failure

* Framework scheduler failure

Valeria Cardellini - SABD 2021/22

25

Cluster resource allocation

1. How to assign cluster resources to tasks?

— Main design alternatives

» Centralized scheduler
— Global (monolithic) scheduler
— Two-level scheduler
* Fully decentralized scheduler

— Let’s focus on centralized scheduler

2. How to allocate resources of different types?

Valeria Cardellini - SABD 2021/22 26

Global (monolithic) scheduler

Organization policies ‘
Resource availability ‘

Job requirements - Sc?\t)c?jller -Task schedule
Job execution plan ‘
Estimates -
« Job requirements * Pros
— Response time’ - Can aCh|eve Opt|ma|
throughput, availability schedule (global knowledge)
« Job execution plan » Cons:
— Task DAG, inputs/outputs — Complexity: hard to scale

and ensure resilience

— Hard to anticipate future
frameworks requirements

— Need to refactor existing
frameworks

» Estimates

— Task duration, input sizes,
transfer sizes

Valeria Cardellini - SABD 2021/22 27

Two-level scheduler in Mesos

Organization :
policies ‘ e
eSS ol Task
Resource Al | schedule
‘ Framework Framework

availability schedule scheduler

» Idea: push task placement to

frameworks . Pros:
* Resource offer — Simple: easier to scale
— Vector of available resources on a and make resilient
node — Easy to port existing
~ E.g., node1: <1CPU, 1GB>, frameworks and

support new ones

« Cons:
— Two-level decision

node2: <4CPU, 16GB>
 Master sends resource offers to

frameworks made by different
* Frameworks select which offers entities: can be
suboptimal

to accept and which tasks to run
Valeria Cardellini - SABD 2021/22

Mesos: resource allocation

« How to determine which frameworks to make
resource offers?

 Dominant Resource Fairness (DRF)
algorithm
— Implemented in the allocation module

--------- 1 T S S O
: Framework 1 : r
i| Scheduler ; REESOURCE Offek | : S Masfe'r
S —— | ! [1

: . Resource Availability 1
————————— 1 I .Ilnllllllniill’
1

Framework 2 1 I R

: I Allocation Module 4 S]
1| Scheduler f« : 1 olicies]
eeeeeeeeen i T O 0090909090900 SRR R R AN SRR

1

Framework 3 I
Scheduler

Valeria Cardellini - SABD 2021/22

DRF: background on fair sharing

- Consider a single resource: fair sharing oo a2

— n users want to share a resource, e.g., CPU

— Solution: allocate each 1/n of the shared
resource 0%
« Generalized by max-min fairness

— Handles if a user wants less than its fair
share

— E.g., user 1 wants no more than 20% 0%

« Generalized by weighted max-min
fairness

— Gives weights to users according to
importance

— E.g., user 1 gets weight 1, user 2 weight 2

Valeria Cardellini - SABD 2021/22 30

50%

Max-min fairness: example

1 resource type: CPU

Total resources: 20 CPU

User 1 has x tasks and wants <71CPU> per task
User 2 has y tasks and wants <2CPU> per task

max(x, y) (maximize allocation)
subject to
x + 2y < 20 (CPU constraint)
X = 2y (fairness)

Solution:
x=10
y=>5

Valeria Cardellini - SABD 2021/22 31

Why is fair sharing useful?

Proportional allocation

— User 1 gets weight 2, user 2 weight 1
Priorities

— Give user 1 weight 1000, user 2 weight 1
Reservations

— Ensure user 1 gets 10% of a resource, so give
user 1 weight 10, sum weights 100

Isolation policy
— Users cannot affect others beyond their fair share

Valeria Cardellini - SABD 2021/22

Why is fair sharing useful? (2)

32

Share guarantee
— Each user can get at least 1/n of the resource
— But will get less if its demand is less

Strategy-proof

— Users are not better off by asking for more than
they need

— Users have no reason to lie

Max-min fairness is the only reasonable
mechanism with these two properties

Many schedulers use max-min fairness
— OS, networking, datacenters (e.g., YARN)

Valeria Cardellini - SABD 2021/22

33

Max-min fairness drawback

* When is max-min fairness not enough?

» Need to schedule multiple, heterogeneous resources

(CPU, memory, disk, I/O)
« Single resource example 100
— 1 resource: CPU
— User 1 wants <1CPU> per task
— User 2 wants <2CPU> per task

50%-

0%

» Multi-resource example

100%t

— 2 resources: CPUs and memory N
— User 1 wants <1CPU, 4GB> per task 50%]-1-
— User 2 wants <3CPU, 1GB> per task s R "

* |n the latter case what is a fair allocation? v

Valeria Cardellini - SABD 2021/22

A first (wrong) solution

34

» Asset fairness: gives weights to resources (e.g., 1

CPU =1 GB) and equalizes total allocation (i.e., sum)

to each user

» Total resources: 28 CPUs and 56GB RAM (e.g., 1
CPU =2 GB)
— User 1 has x tasks and wants <1CPU, 2GB> per task
— User 2 has y tasks and wants <1CPU, 4GB> per task

» Asset fairness yields:
max(x, y) (maximize allocation)
X+y<28 50%
2x + 4y < 56 |
4x = 6y Ay RA.M
— User1:x=1,i.e., <43%CPU, 43%GB> (sum = 86%)
— User2:y=8i.e., <29%CPU, 57%GB> (sum = 86%)

Valeria Cardellini - SABD 2021/22

35

A first (wrong) solution (2)

* Problem: violates share guarantee
— User 1 gets less than 50% of both CPU and RAM

— Better off in a separate cluster with half the
resources

B User 1[] User2

50%

0%

Valeria Cardellini - SABD 2021/22 36

What Mesos needs

« A fair sharing policy that provides:
— Share guarantee
— Strategy-proofness

« Challenge: can we generalize max-min
fairness to multiple resources?

+ Solution:
Dominant Resource Fairness (DRF)

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, NSDI'11

Valeria Cardellini - SABD 2021/22 37

DRF

 Dominant resource of a user: the resource
that user has the biggest share of
— Example:
* Total resources: <8CPU, 5GB>
» User 1 allocation: <2CPU, 1GB>
« 2/8 = 25%CPU and 1/5 = 20%RAM
* Dominant resource of user 1 is CPU (25% > 20%)

« Dominant share of a user: the fraction of the
dominant resource allocated to the user
— User 1 dominant share is 25%

Valeria Cardellini - SABD 2021/22 38

DRF (2)

» Apply max-min fairness to dominant shares: give
every user an equal share of its dominant resource

» Goal: equalize the dominant share of the users
— Total resources: <9CPU, 18GB>
— User 1 wants <1CPU, 4GB>
— Dominant resource for user 1: RAM (1/9 < 4/18)
— User 2 wants <3CPU, 1GB>
— Dominant resource for user 2: CPU (3/9 > 1/18)

max(x, y) 100% 1

O user1
X+ 3y < 9 B user2
4x +y <18 50%

(4/118)x = (3/9)y
e User1:x=3 <33°/0CPU, 66%GB> o ¢ 6CPUs 2 GB

CPU mem

e User2:v=2 <660/0CPU, 16%GB> (9 total) (18 total)

Valeria Cardellini - SABD 2021/22 39

Online DRF

* Whenever there are available resources and tasks to

run:

Choose the framework with the lowest dominant
share among all frameworks

g User A User B CPU RAM
res. shares dom. share res. shares dom. share | total alloc. | total alloc.
User B (0, 0) 0 (3/9, 1/18) 1/3 3/9 1/18
User A (1/9, 4/18) 2/9 (3/9, 1/18) 1/3 4/9 5/18
User A (2/9, 8/18) 4/9 (3/9, 1/18) 1/3 5/9 9/18
User B (2/9, 8/18) 4/9 (6/9, 2/18) 2/3 8/9 10/18
User A (3/9, 12/18) 2/3 (6/9, 2/18) 2/3 1 14/18

Valeria Cardellini - SABD 2021/22

DRF: efficiency-fairness trade-off

40

 DRF has under-utilized resources

* DRF schedules at the level of tasks 0%

CPU mem

(leads to sub-optimal job completion (9total) (18 total)
time)

» Fairness is fundamentally at odds
with overall efficiency (how to trade-
off?)

Valeria Cardellini - SABD 2021/22

O user1

Il user2

41

