TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

(Big) Data Storage Systems
Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Frameworks

Data Processing

uonjeibajuj / poddng

Resource Management

V. Cardellini - SABD 2021/22 1



Where storage sits in the Big Data stack

 The data lake architecture

APACHE

MapReduce ‘AZ STORM" 1 Processing
£ ‘ SP ark’ . TensorFlow engines
EAJGIRAPH presto .
File formats
%% SA protobuf Q
yParquet e son g | Glolrna
- Large-scale
GFS ] F%a,_,g@ﬂlﬂ file systems or
Amazon S3 blob stores
V. Cardellini - SABD 2021/22 2

Typical server architecture and storage hierarchy

CPU CPU

/10
RRAN Controller

Network 3 Storage

¥/ cpu

Card 3 Devices
(KBs-MBs)
DRAM (GBs)
Disk (TBs)

V. Cardellini - SABD 2021/22 3



Storage performance metrics

latency (s)

V. Cardellini - SABD 2021/22

Where to store data?

« See “Latency numbers every programmer should know”
http:/bit.ly/2pZXI1U9

| ] ins

| ] L1 cache reference: 1ns
[ 1] Branch mispredict: 3ns
LLL L] L2 cache reference: 4ns

ME Mutex lock/unlock: 17ns

100ns =m

V. Cardellini - SABD 2021/22

| ] Main memory reference: Send 2,000 bytes over
100ns commodity network: 22ns
EEEEEEEEEE 1,000ns = 1lps m SSD random read:

16,000ns = 16us

B Compress 1KB wth Zippy:

2,000ns = 2us Read 1,000,000 bytes

2,000ns = 2us
10,000ns = 10us = ®

Round trip in same
datacenter: 500,000ns =
500us

1,000,000ns = 1ms = m

sequentially from memory:

Read 1,000,000 bytes
sequentially from SSD:
31,000ns = 31ps

Disk seek: 2,000,000ns =
2ms

Read 1,000,000 bytes
sequentially from disk:
625,000ns = 625us

Packet roundtrip CA to
Netherlands:
150,000,000ns = 150ms



Max attainable throughput

 Varies significantly by device
— 100 GB/s for RAM
— 2 GB/s for NVMe SSD
— 130 MB/s for hard disk

« Assumes large reads (>>1 block)

V. Cardellini - SABD 2021/22

Hardware trends over time

« Capacity/$ grows exponentially at a fast rate
(e.g. double every 2 years)

« Throughput grows at a slower rate (~5% per
year), but new interconnects help

« Latency does not improve much over time

V. Cardellini - SABD 2021/22



Data storage: the classic approach

File

— Group of data, whose structure is defined by the file system

File system

— Controls how data are structured, named, organized, stored
and retrieved from disk

— Usually: single (logical) disk (e.g., HDD/SDD, RAID)

Relational database (DB)

— Organized/structured collection of data (e.g., entities, tables)

Database management system (DBMS)
— Provides a way to organize and access data stored in files

— Enables: data definition, update, retrieval, administration

V. Cardellini - SABD 2021/22

What about Big Data?

Storage capacity and data transfer rate have increased
massively over the years

HDD
Capacity: ~1TB
Throughput: 250MB/s

SSD
. Capacity: ~1TB
Throughput: 850MB/s

Let's consider the latency (time needed to transfer data*)

| DataSize | HDD | SSD

10 GB 40s 12s

100 GB 6m 49s - We r|1eed tt'o
1TB 1hOm54s  20m 33s Scale out:
10 TB ? 2

* we consider no overhead
V. Cardellini - SABD 2021/22



General principles for scalable data storage

Scalability and high performance
— Need to face the continuous growth of data to store
— Use multiple nodes as storage

Ability to run on commodity hardware
— But hardware failures are the norm rather than the exception

Reliability and fault tolerance
— Transparent data replication

Availability
— Data should be available to serve requests when needed
— CAP theorem: trade-off with consistency

V. Cardellini - SABD 2021/22

Scalable and resilient data storage solutions

Various forms of storage for Big Data:

* Distributed file systems

— Manage (large) files on multiple nodes
— E.g., Google File System, HDFS, GlusterFS

* NoSAQL data stores
— Simple and flexible non-relational data models
— Horizontal scalability and fault tolerance
— Key-value, column family, document, and graph stores
— E.g., Redis, BigTable, Cassandra, MongoDB, HBase, DynamoDB

— Also time series databases built on top of NoSQL (e.g.,: InfluxDB,
KairosDB)

* NewSAQL databases
— Add horizontal scalability and fault tolerance to relational model
— E.g., VoltDB, Google Spanner, CockroachDB

V. Cardellini - SABD 2021/22



Data storage in the Cloud

« Main goals:
— Massive scaling “on demand” (elasticity)
— Fault tolerance
— Durability (versioned copies)
— Simplified application development and deployment
— Support for cloud-native apps (serverless)

» Public Cloud services for data storage

— Object stores: Amazon S3, Google Cloud Storage, Microsoft
Azure Storage, ...

— Relational databases (DBaaS): Amazon RDS, Amazon Aurora,
Google Cloud SQL, Microsoft Azure SQL Database, ...

— NoSQL data stores: Amazon DynamoDB, Amazon
DocumentDB, Google Cloud Bigtable, Google Datastore,
Microsoft Azure Cosmos DB, MongoDB Atlas, ...

— NewSQL databases: Google Cloud Spanner

— Serverless databases: Google Firestore, CockroachDB, ...
V. Cardellini - SABD 2021/22 12

Scalable and resilient data storage solutions

Whole picture of different solutions we will examine

Time Series
database

distributed data storage systems

data nodes
ol OO OO o> o> o> o> o> o> T O

V. Cardellini - SABD 2021/22 13



Distributed File Systems (DFS)

» Represent the primary support for data management

« Manage data storage across a network of machines

— Usually locally distributed, in some case geo-distributed

» Provide an interface whereby to store information in
the form of files and later access them for read and
write operations

» Several solutions with different design choices

— GFS, HDFS (GFS open-source clone): designed for batch
applications with large files

— Alluxio: in-memory (high-throughput) storage system

— GlusterFS: scalable network-attached storage file system
— Lustre: designed as high-performance DFS

— Ceph: data object store

V. Cardellini - SABD 2021/22

Case study: Google File System (GFS)

14

Assumptions and Motivations

» System built from inexpensive commodity hardware
that often fails

— 60,000 nodes, each with 1 failure per year: 7 failures per hour!
» System stores large files

» Large streaming/contiguous reads, small random
reads

« Many large, sequential writes that append data
— Concurrent clients can append to same file

» High sustained bandwidth is more important than low
latency

Ghemawat et al., The Google File System, Proc. ACM SOSP ‘03

V. Cardellini - SABD 2021/22

15



Case study: Google File System

» Distributed file system implemented in user space
« Manages (very) large files: usually multi-GB
» Divide et impera: file is split into fixed-size chunks

* Chunk:
— Fixed size (either 64MB or 128MB)
— Transparent to users
— Stored as plain file on chunk servers

» Write-once, read-many-times pattern

— Efficient append operation: appends data at the end of file
atomically at least once even in the presence of concurrent
operations (minimal synchronization overhead)

Fault tolerance and high availability through chunk
replication, no data caching

V. Cardellini - SABD 2021/22 16

GFS operation environment

V. Cardellini - SABD 2021/22 17



GFS: Architecture

Application

(file name, chunk index)

GFS client

(chunk handle,
chunk locations)

GFS master

File namespace ,

Il
¢
’
s
s
¢
/
0
/
-

-~ /foo/bar
chunk 2ef0

(chunk handle. byte range)

Instructions to chunkserver

Chunkserver state

Legend:
mmm)  Data messages
—_— Control messages

chunk data

 Master

( IS chunkserver

GFS chunkserver

Linux file system

Linux file system

Toie

‘B9 -

— Single, centralized entity (to simplify the design)

— Manages file metadata (stored in memory)

» Metadata: access control information, mapping from files to
chunks, locations of chunks

— Does not store data (i.e., chunks)

— Manages operations on chunks: creation, replication, load

balancing, deletion
V. Cardellini - SABD 2021/22

GFS: Architecture

18

Application GFS master -~ /foo/bar

chunk 2ef0

(file name, chunk index)

GFS client

File namespace f
?

(chunk handle,

chunk locations)

(chunk handle. byte range)

l‘"

Instructions to chunkserver

Chunkserver state

Legend:
mmm)  Data messages
—_— Control messages

chunk data

( I'S chunkserver

GF'S chunkserver

Linux file system

Linux file system

Toie

‘B9 -

* Chunk servers (100s — 1000s)

— Stores chunks as file
— Spread across cluster racks

* Clients

— Issue control (metadata) requests to GFS master
— Issue data requests to GFS chunkservers
— Cache metadata, do not cache data (simplifies the design)

V. Cardellini - SABD 2021/22

19



GFS: Metadata

* The master stores three major types of metadata:
— File and chunk namespace (directory hierarchy)
— Mapping from files to chunks
— Current locations of chunks

» Metadata are stored in memory (64B per chunk)
— Pro: fast; easy and efficient to scan the entire state

— Con: the number of chunks is limited by the amount of
memory of the master:
"The cost of adding extra memory to the master is a small price to
pay for the simplicity, reliability, performance, and flexibility gained"
» The master also keeps an operations log where
metadata changes are recorded

— Persisted on master’s local disk and replicated for fault
tolerance (but location information of chunks is not logged)

— Checkpoint for fast recovery

V. Cardellini - SABD 2021/22

GFS: Chunk size

20

Chunk size is either 64 MB or 128 MB

— Much larger than typical block sizes

Why? Large chunk size reduces:
— Number of interactions between client and master
— Size of metadata stored on master

— Network overhead (persistent TCP connection to the chunk
server over an extended period of time)

Potential disadvantage

— Chunks for small files may become hot spots

Each chunk replica is stored as a plain Linux file and
is extended as needed

V. Cardellini - SABD 2021/22

21



GFS: Fault-tolerance and replication

» Master replicates (and maintains the replication of) each
chunk on several chunk servers

— At least 3 replicas on different chunk servers
— Replication based on primary-backup schema
— Replication degree > 3 for highly requested chunks
» Multi-level placement of replicas
— Different machines, same rack + availability and reliability
— Different machines, different racks + aggregated bandwidth
« Data integrity
— Chunk divided in 64KB blocks; 32B checksum for each block

— Checksum kept in memory
— Checksum is checked every time app reads data

V. Cardellini - SABD 2021/22 22

GFS: Master operations

Stores metadata

Manages and locks namespace
— Namespace represented as a lookup table

— Read lock on internal nodes and read/write lock on leaf: read
lock allows concurrent mutations in the same directory and
prevents deletion, renaming or snapshot

Communicates periodically with each chunk server

using RPC

— Sends instructions and collects chunk server state
(heartbeat messages)

Creates, re-replicates and rebalances chunks

— Balances chunk servers’ disk space utilization and load

— Distributes replicas among racks to increase fault-tolerance

— Re-replicates a chunk as soon as the number of its available

replicas falls below the replication degree
V. Cardellini - SABD 2021/22 23



GFS: Master operations

» Garbage collection
— File deletion logged by master
— Deleted file is renamed to a hidden name with deletion
timestamp, so that real deletion is postponed and the file can
be easily recovered in a limited timespan
» Stale replica detection

— Chunk replicas may become stale if a chunk server fails or
misses updates to the chunk

— For each chunk, the master keeps a chunk version number
— Chunk version number updated for each chunk mutation

— Master removes stale replicas during its regular garbage
collection

V. Cardellini - SABD 2021/22

GFS: System interactions

24

» Files are hierarchically organized in directories
— No data structure that represents a directory

» Afile is identified by its pathname

— GFS does not support aliases

» GFS supports traditional file system operations
operations (but no Posix API)

- create, delete, open, close, read, write

» Also supports two special operations:

- snapshot: makes a copy of a file or a directory tree almost
instantaneously (based on copy-on-write techniques)

- record append: atomically appends data to a file;
supports concurrent operations: multiple clients can append
to the same file concurrently without overwriting one
another’s data

V. Cardellini - SABD 2021/22

25



GFS: Read

Application

(file name, chunk index) | GFS master

GFS client

File namespace

(

_» /foo/bar

chunk 2ef0

Data messages

(chunk handle, 2 ‘,"
chunk locations) ;
/ Legend:
—

3

chunk handle. byte range)

Instructions to chunkserver

Chunkserver state

GFS chunkserver

GFS chunkserver

chunk data

4

Linux file system

Linux file system

‘90 -

* Read operation
- Data flow is decoupled from control flow

‘00 -

Control messages

(1) Client sends master: read(file name, chunk index)
(2) Master’s reply: chunk ID, chunk version number, locations of replicas
(3) Client sends read op to “closest” chunk server with replica: read(chunk
ID, byte range)
(4) Chunk server replies with data
V. Cardellini - SABD 2021/22 26
GFS: Mutations
. . 4 step |
» Mutations are write or append Client | Magter
— Mutations are performed at all the I
chunk's replicas in the same order Secontacy
eplica / 5]
Based on a /ease mechanism: 1
— Goal: minimize management ’ Erinasy — 1.
overhead at master il fegenti
— Master grants chunk lease to 1 . ——= Control
primary replica e | — D

Primary picks a serial order for all
the mutations to the chunk

All replicas follow this order when
applying mutations

Primary replies to client, see (7)
Leases renewed using periodic

heartbeat messages between
master and chunkservers

V. Cardellini - SABD 2021/22

Data flow is decoupled from

control flow

Client sends data to any of
the chunk servers identified
by master, which in turn
pushes data to the other
chunk servers in a chained
fashion so to fully utilize
network bandwidth

27



GFS: Atomic appends

» The client specifies only the data (with no offset)

» GFS appends data to the file at least once atomically
(i.e., as one continuous sequence of bytes)
— At offset chosen by GFS
— Works with multiple concurrent writers
— At least once: applications must cope with possible
duplicates

» Append operations heavily used by Google's
distributed apps

— E.g., files often serve as multiple-producers/single-consumer
gueue or contain results merged from many clients
(MapReduce scenario)

V. Cardellini - SABD 2021/22

GFS: Consistency model

28

« Changes to namespace (e.g., file creation) are
atomic
— Managed exclusively by the master with locking guarantees
« Changes to data are ordered as chosen by primary
replica, but failures can cause inconsistency

* GFS has a “relaxed” model: eventual consistency
— Simple and efficient to implement

V. Cardellini - SABD 2021/22

29



GFS performance

. e i Network limit

Network limit 60 _ Network limit
_ 100 2 = 101
@ = )
2 g >
Z 2 40 o
2 2 g
g 8
7 301 Aggregate read rate 2 2 51
2 = 20- . z

Aggregate write rate < Aggregate append rate
0 T T T
N R NN R S N R S N
Number of clients N Number of clients N Number of clients N
(a) Reads (b) Writes (c) Record appends

« Read performance is satisfactory (80-100 MB/s)

» But reduced write performance (30 MB/s) and relatively
slow (5 MB/s) in appending data to existing files

V. Cardellini - SABD 2021/22 30

GFS problems

Application| . p 1S master - i
Pt (file name, chunk index) | GIS master - /Too/bar
@ ; s . - Dofl
GFS client File namespace chunk 2ef0
(chunk handle, 5
chunk locations) 5
/ Legend:
2 mmm)  Data messages
Instructions to chunkserver —  Control messages
Chunkserver state
(chunk handle. byte range)
GFS chunkserver GFS chunkserver
chunk data . . : el B
Linux file system Linux file system

5o~ Bo-

What is the limitation of this architecture?

. Single point of failure (SPOF)
Single master ‘ Scalability bottleneck

V. Cardellini - SABD 2021/22 31



GFS problems: Single master

« Solutions adopted in GFS to overcome issues
related to single master
— Overcome SPOF: by having multiple “shadow”

masters that provide read-only access when the
primary master is down

— Overcome scalability bottleneck: by reducing
interaction between master and client
* Master stores only metadata (not data)
 Client can cache metadata
* Large chunk size

* Chunk lease: delegates the authority of coordinating the
mutations to the primary replica

« Qverall, simple solutions

V. Cardellini - SABD 2021/22

GFS summary

32

» GFS success
— Used by Google to support search service and other apps
— Availability and recoverability on commodity hardware
— High throughput by decoupling control and data
— Supports massive data sets and concurrent appends

» GFS problems (besides single master)
— All metadata stored in master memory
+ “Limited” scalability: approximately 50M files, 10PB
— Semantics not transparent to apps
— Automatic failover added (but still takes 10 sec.)
— Delays due to recovering from a failed replica chunk server
delay the client
— Performance not good for all apps

» Designed for high throughput but not appropriate for latency-
sensitive apps like Gmail, because GFS was designed (in 2001)

for batch apps with large files
V. Cardellini - SABD 2021/22

33



Colossus: successor of GFS

» Next-generation Google DFS (since 2010)

» Designed for a wide variety of Google services
(YouTube, Maps, Photos, search ads, ...)

« Can handle EB of storage, tens of thousands of servers

 Distributed masters, GFS chunk servers replaced by D
« Scalable metadata layer, built on top of Bigtable
» Error-correcting codes (e.g., Reed-Solomon)

« Can mix high-speed flash memory and disks for storage

 Client-driven encoding and replication

» Google Cloud services built on top of Colossus
— Cloud Storage (object store) and Cloud Firestore (NoSQL data

store)

Colossus under the hood: a peek into Google’s scalable storage system, 2021.

https://www.youtube.com/watch?v=g4WC 6SzBz4

V. Cardellini - SABD 2021/22

Colossus: key components

34

GCS serving
process

Colossus
client library

Colossus control plane

\

|

|
Colossus
curators

[

Colossus
custodians

I

V. Cardellini - SABD 2021/22

Scalable Colossus
metadata database

Data ops |

J0000

I |

@ @ @ “D” managed disk storage

35



HDFS

 Hadoop Distributed File System (HDFS)
— Open-source user-level distributed file system
— Written in Java
— GFS clone

» Master/worker architecture
» Data is replicated across the cluster
» Designed to span large clusters of commodity servers

— De-facto standard for batch-processing frameworks:

e.g., Hadoop MapReduce, Spark

Shafer et al., The Hadoop Distributed Filesystem: Balancing Portability and
Performance, Proc. ISPASS 2010

V. Cardellini - SABD 2021/22

HDFS: Design principles

36

» Large data sets: typical file is GBs or TBs in size

« Simple coherency model: files follow write-once,
read-many-times access pattern

— E.g., MapReduce apps or web crawler app

« Commodity, low-cost hardware

— HDFS is designed to carry on working without a noticeable
interruption to users even when failures occur

« Portability across heterogeneous hardware and
software platforms

V. Cardellini - SABD 2021/22

37



HDFS: Cons

HDFS does not work well with:

» Low-latency data access: optimized for delivering a
high throughput of data

» Lots of small files: the number of files is limited by the
amount of memory on the master, which holds the
DFS system metadata in memory

» Multiple writers, arbitrary file modifications

V. Cardellini - SABD 2021/22

HDFS: File management

38

 File is split into one or more blocks which are stored
in a set of storing nodes (named DataNodes)

file Afile...
v
% ...is made of
EEEEEEEEEREEERERYEREREN LS
\ -
Y\Y ¥ ¥ VYV VVYVYVVYVYVYAYYYY Y

Eip e

DataNode DataNode DataNode DataNode

The NameNode manages

Fsimage EdnL
=9 =Y the file system namespace

NameNode

In-memory FS metadata

V. Cardellini - SABD 2021/22

39



HDFS: Architecture

» Two types of nodes in a HDFS cluster:
— One NameNode (in GFS: master)
— Multiple DataNodes (in GFS: chunk servers)

Namenode /home/foo/data, 3, ...

Metadata (Name, replicas, ...):

Metadata ops o

Read Datanodes Datanodes

* | |
B & | = Replication 8 8 % =
n O y_ Blocks

g \/ A ol
hd Y

Rack 1 Wiite Rack 2

V. Cardellini - SABD 2021/22

HDFS: Architecture

40

The NameNode:

— Manages the file system namespace

— Manages the metadata for all the files and directories

* Including the identity of DataNodes on which all the blocks for a
given file are located

The DataNodes:

— Store and retrieve the blocks (a.k.a. chunks) when they are
told to (by clients or by the NameNode)

— Manage the storage attached to the nodes

Without the NameNode, HDFS cannot be used

— Itis important to make the NameNode resilient to failures

Large size blocks (default 64 MB): why so large?

V. Cardellini - SABD 2021/22

41



HDFS: Architecture

Metadata (Name, replicas, ...):

Metadatg_,ops;"" Namenode /home/foo/data, 3, ...

Block ops
Read Datanodes Datanodes
1 l |
= O - = Replication nu L]
L] - ) Blocks
. \ A N )
N . Ay
Rack 1 Write Rack 2
V. Cardellini - SABD 2021/22 i

HDFS: Block replication

« NameNode periodically receives a heartbeat and a
blockreport from each DataNode

- Blockreport: list of all blocks on a DataNode

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,3}, ...

Datanodes

V. Cardellini - SABD 2021/22 43



HDFS: File read

H istri 2: get block locations
‘ fg;fgg'yﬁt;‘eggi 9,
dient .3 read

HDFS
FSData namenode
d InputStream
dient JVM :
dient node : T
4: read 5 read
o S— ) .
datanode datanode datanode

Source: “Hadoop: The definitive guide”
 NameNode is only used to get block location

V. Cardellini - SABD 2021/22

HDFS: File write

44

— . L :
HDFS * FileSystem 7: complete
dlem . e I il shh— »

~

‘ OutputStream
cient JVM

A

client node

4: write packet 5: ack packet

Pipeline of DataNode |} DataNode
datanodes

datanode datanode datanode

Source: “Hadoop: The definitive guide”

* Clients ask NameNode for a list of suitable DataNodes

» This list forms a pipeline: first DataNode stores a copy
of a block, then forwards it to the second, and so on

V. Cardellini - SABD 2021/22

45



Enhancements in HDFS 3.x

» Erasure coding can be used in place of replication

Same level of fault-tolerance with less storage overhead:
from 200% with 3x to 50%

X Increase in network and processing overhead

— Two codes available: XOR and Reed-Solomon

See https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-
apache-hadoop/

» Support for more than 2 NameNodes

— In HDFS 2.x only 1 active NameNode and 1 standby
NameNode

— HDFS high availability

See

V. Cardellini - SABD 2021/22 46

Other Distributed File Systems: GlusterFS

» Linux-based, open source distributed file @\
system https://www.gluster.org/ .

* Designed to be highly scalable

— Scaling to several PB (up to 72 brontobytes!)
» Brontobyte = 1027 or 2% bytes

V. Cardellini - SABD 2021/22 47



GlusterFS: Features

» Global namespace
— |dea: metadata is a bottleneck

— Solution: avoid centralized metadata server

* No special node(s) with special knowledge of where files are or
should be

— Solution: use consistent hashing (similarly to Chord and
Amazon’s Dynamo)
» Benefits of distributed hashing (robustness, load balancing, ...)

Clustered storage

Highly available storage

Built-in replication and geo-replication
Self-healing

Ability to re-balance data

V. Cardellini - SABD 2021/22

GlusterFS: Architecture

48

* Four main concepts:

— Bricks: storage units which consist of a server
and directory path (i.e., server:/export)
* Bricks are the nodes in Chord circle
» Files are mapped to bricks calculating a hash
— Trusted Storage Pool: trusted network of servers
that will host storage resources

— Volumes: collection of bricks with a common
redundancy requirement

— Translators: modules that are chained together to
move data from point a to point b

» Translator converts requests from users into requests for
storage

V. Cardellini - SABD 2021/22

49



Other Distributed File Systems: Alluxio

* Motivations:
— Write throughput is limited by disk and network bandwidths

— Fault-tolerance by replicating data across the network
(synchronous replication further slows down write operations)

— Performance and cost trend: RAM is fast and cheaper

* Alluxio https://www.alluxio.org A ALLUXIO
— Open-source, in-memory storage system

— High-throughput reads and writes
— Re-computation (lineage) based storage using memory

aggressively
* One copy of data in memory (fast)
» Upon failure, re-compute data using lineage (fault tolerance)

H. Li, "Alluxio: A Virtual Distributed File System",
https://lwww2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf

V. Cardellini - SABD 2021/22 50

Alluxio

» Adds a layer between the processing layer and the

storage layer
— Big data processing frameworks (e.g., Spark, Flink,
MapReduce, TensorFlow, ...)
— Persistence layer (e.g., HDFS, AWS S3, ...)

» Goal: storage unification and abstraction

cer\Z @ @’ 1F O PyTorch

Presto ‘ MapReduce HIVE TensorFlow
HDFS Interface = Java File API = POSIX Interface = S3 Interface = REST API
/A ALLUXIO
DATA ORCHESTRATION FOR ANALYTICS AND Al
HDFS Driver = S3 Driver H GCS Driver o Azure Driver = NFS Driver
_ g [
w' Q@ A @O P = M ooww ©
ik 2 el Ecs HITACHI
GC Storage  Azure HDFS ceph  inp G cleversafe Net App Cloudian

V. Cardellini - SABD 2021/22 51



Alluxio: Architecture

 Alluxio (formerly Tachyon) architecture
— Master-worker architecture (like GFS, HDFS)
— 3 components: replicated masters, multiple workers, clients
» Passive standby approach to ensure master fault-tolerance

,’ ____________ \'
o
ZooKeeper | Standby . |
w, Quorum __ -~ ¥~ S i _[_Ramaisk_]

AY
QY W
. \__Manager | (_ | Ramdisk |

"y, Srandby Master:
N ([_famdisk |
V. Cardellini - SABD 2021/22 52

Alluxio: Architecture

Master Workers
— Stores metadata of storage system — Manage local resources
— Only responds to client requests — Periodically heartbeat to primary
master
— Tracks lineage information . .
g . — RAM disk for storing memory-
» Lineage: lost output is recovered mapped files
by re-executing ops that created
the output

— Computes checkpoint order

— Secondary master(s) for fault
tolerance

f Primary Master ( Secondary Master
File System File
ystem
Block
Metadata
Worker
Metadata

V. Cardellini - SABD 2021/22

53



Alluxio: Lineage and persistence

Alluxio consists of two (logical) layers:
* Lineage layer: tracts the sequence of jobs that have created a
particular data output
— Data are immutable once written: only support for append operations

— Frameworks using Alluxio frack data dependencies and recompute
them when a failure occurs

— Java-like API for managing and accessing lineage information

. task
Task rgads flle setA File set A N File setB
and writes file set B €= ——— — ——— =

dependency

* Persistence layer: persists data onto storage, used to perform
asynchronous checkpoints

— Efficient checkpointing algorithm
* Avoids checkpointing temporary files
» Checkpoints hot files first (i.e., the most read files)

* Bounds re-computation time
V. Cardellini - SABD 2021/22 54

Alluxio: Evolution

» Evolving as data orchestration platform for analytics
and Al

— One of the fastest growing open source projects

 Goals:

— Bring data closer to compute across clusters, regions,
clouds, and countries

— Make it easily accessible enabling applications to connect to
numerous storage systems through a common interface

WAN

S—
Worker |4 .
V Object Store
X UNDER STORE 1
Worker

EEEEEEEEEEE

T
o
l
w

V. Cardellini - SABD 2021/22 55



Data storage so far: Summing up

» Google File System and HDFS

— Master/worker architecture

— Decouples metadata from data

— Single master (bottleneck): limits interactions and file system
size

— Designed for batch applications: 64/128MB chunk, no data
caching

o GlusterFS

— No centralized metadata server
— Consistent hashing

» Alluxio
— In-memory storage system, leverages on DFS
— Master/worker architecture

— No replication: tracks changes (lineage), recovers data using

checkpoints and re-computations
V. Cardellini - SABD 2021/22

References

56

+ S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google File
System, Proc. ACM SOSP '03, 2003.

* D. Hildebrand and D. Hildebrand, Colossus under the hood: a
peek into Google’s scalable storage system, 2021.

* Video on Colossus: A peek behind the VM at the Google
Storage infrastructure, 2020

« Shafer et al., The Hadoop Distributed Filesystem: Balancing
Portability and Performance, Proc. ISPASS '10, 2010.

 H. Li, Alluxio: A Virtual Distributed File System, PhD Thesis,
Berkeley Univ., 2018.
 H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and |. Stoica,

Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks, Proc. ACM SoCC '14, 2014.

V. Cardellini - SABD 2021/22

57



