
(Big) Data Storage Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

V. Cardellini - SABD 2021/22 1

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

Where storage sits in the Big Data stack

V. Cardellini - SABD 2021/22 2

• The data lake architecture

Typical server architecture and storage hierarchy

V. Cardellini - SABD 2021/22 3

Storage performance metrics

V. Cardellini - SABD 2021/22 4

Where to store data?

• See “Latency numbers every programmer should know”
http://bit.ly/2pZXIU9

5V. Cardellini - SABD 2021/22

Max attainable throughput

• Varies significantly by device
– 100 GB/s for RAM
– 2 GB/s for NVMe SSD
– 130 MB/s for hard disk

• Assumes large reads (≫1 block)

V. Cardellini - SABD 2021/22 6

Hardware trends over time

• Capacity/$ grows exponentially at a fast rate
(e.g. double every 2 years)

• Throughput grows at a slower rate (~5% per
year), but new interconnects help

• Latency does not improve much over time

V. Cardellini - SABD 2021/22 7

Data storage: the classic approach

• File
– Group of data, whose structure is defined by the file system

• File system
– Controls how data are structured, named, organized, stored

and retrieved from disk

– Usually: single (logical) disk (e.g., HDD/SDD, RAID)

• Relational database (DB)
– Organized/structured collection of data (e.g., entities, tables)

• Database management system (DBMS)
– Provides a way to organize and access data stored in files

– Enables: data definition, update, retrieval, administration

V. Cardellini - SABD 2021/22 8

What about Big Data?

Storage capacity and data transfer rate have increased
massively over the years

Let's consider the latency (time needed to transfer data*)

V. Cardellini - SABD 2021/22 9

HDD
Capacity: ~1TB
Throughput: 250MB/s

SSD
Capacity: ~1TB
Throughput: 850MB/s

Data Size HDD SSD
10 GB 40s 12s

100 GB 6m 49s 2m
1 TB 1h 9m 54s 20m 33s

10 TB ? ?
* we consider no overhead

We need to
scale out!

General principles for scalable data storage

• Scalability and high performance
– Need to face the continuous growth of data to store
– Use multiple nodes as storage

• Ability to run on commodity hardware
– But hardware failures are the norm rather than the exception

• Reliability and fault tolerance
– Transparent data replication

• Availability
– Data should be available to serve requests when needed
– CAP theorem: trade-off with consistency

V. Cardellini - SABD 2021/22 10

Scalable and resilient data storage solutions
Various forms of storage for Big Data:
• Distributed file systems

– Manage (large) files on multiple nodes
– E.g., Google File System, HDFS, GlusterFS

• NoSQL data stores
– Simple and flexible non-relational data models
– Horizontal scalability and fault tolerance
– Key-value, column family, document, and graph stores
– E.g., Redis, BigTable, Cassandra, MongoDB, HBase, DynamoDB
– Also time series databases built on top of NoSQL (e.g.,: InfluxDB,

KairosDB)

• NewSQL databases
– Add horizontal scalability and fault tolerance to relational model
– E.g., VoltDB, Google Spanner, CockroachDB

V. Cardellini - SABD 2021/22 11

Data storage in the Cloud
• Main goals:

– Massive scaling “on demand” (elasticity)
– Fault tolerance
– Durability (versioned copies)
– Simplified application development and deployment
– Support for cloud-native apps (serverless)

• Public Cloud services for data storage
– Object stores: Amazon S3, Google Cloud Storage, Microsoft

Azure Storage, …
– Relational databases (DBaaS): Amazon RDS, Amazon Aurora,

Google Cloud SQL, Microsoft Azure SQL Database, …
– NoSQL data stores: Amazon DynamoDB, Amazon

DocumentDB, Google Cloud Bigtable, Google Datastore,
Microsoft Azure Cosmos DB, MongoDB Atlas, …

– NewSQL databases: Google Cloud Spanner
– Serverless databases: Google Firestore, CockroachDB, …

V. Cardellini - SABD 2021/22 12

Scalable and resilient data storage solutions

V. Cardellini - SABD 2021/22 13

Whole picture of different solutions we will examine

Distributed File Systems (DFS)

• Represent the primary support for data management
• Manage data storage across a network of machines

– Usually locally distributed, in some case geo-distributed

• Provide an interface whereby to store information in
the form of files and later access them for read and
write operations

• Several solutions with different design choices
– GFS, HDFS (GFS open-source clone): designed for batch

applications with large files
– Alluxio: in-memory (high-throughput) storage system
– GlusterFS: scalable network-attached storage file system
– Lustre: designed as high-performance DFS
– Ceph: data object store

V. Cardellini - SABD 2021/22 14

Case study: Google File System (GFS)

Assumptions and Motivations
• System built from inexpensive commodity hardware

that often fails
– 60,000 nodes, each with 1 failure per year: 7 failures per hour!

• System stores large files
• Large streaming/contiguous reads, small random

reads
• Many large, sequential writes that append data

– Concurrent clients can append to same file

• High sustained bandwidth is more important than low
latency

V. Cardellini - SABD 2021/22 15

Ghemawat et al., The Google File System, Proc. ACM SOSP ‘03

Case study: Google File System
• Distributed file system implemented in user space
• Manages (very) large files: usually multi-GB
• Divide et impera: file is split into fixed-size chunks
• Chunk:

– Fixed size (either 64MB or 128MB)
– Transparent to users
– Stored as plain file on chunk servers

• Write-once, read-many-times pattern
– Efficient append operation: appends data at the end of file

atomically at least once even in the presence of concurrent
operations (minimal synchronization overhead)

• Fault tolerance and high availability through chunk
replication, no data caching

V. Cardellini - SABD 2021/22 16

GFS operation environment

V. Cardellini - SABD 2021/22 17

GFS: Architecture

• Master
– Single, centralized entity (to simplify the design)
– Manages file metadata (stored in memory)

• Metadata: access control information, mapping from files to
chunks, locations of chunks

– Does not store data (i.e., chunks)
– Manages operations on chunks: creation, replication, load

balancing, deletion
V. Cardellini - SABD 2021/22 18

GFS: Architecture

• Chunk servers (100s – 1000s)
– Stores chunks as file
– Spread across cluster racks

• Clients
– Issue control (metadata) requests to GFS master
– Issue data requests to GFS chunkservers
– Cache metadata, do not cache data (simplifies the design)

V. Cardellini - SABD 2021/22 19

GFS: Metadata
• The master stores three major types of metadata:

– File and chunk namespace (directory hierarchy)
– Mapping from files to chunks
– Current locations of chunks

• Metadata are stored in memory (64B per chunk)
– Pro: fast; easy and efficient to scan the entire state
– Con: the number of chunks is limited by the amount of

memory of the master:
"The cost of adding extra memory to the master is a small price to
pay for the simplicity, reliability, performance, and flexibility gained"

• The master also keeps an operations log where
metadata changes are recorded
– Persisted on master’s local disk and replicated for fault

tolerance (but location information of chunks is not logged)
– Checkpoint for fast recovery

V. Cardellini - SABD 2021/22 20

GFS: Chunk size

• Chunk size is either 64 MB or 128 MB
– Much larger than typical block sizes

• Why? Large chunk size reduces:
– Number of interactions between client and master
– Size of metadata stored on master
– Network overhead (persistent TCP connection to the chunk

server over an extended period of time)

• Potential disadvantage
– Chunks for small files may become hot spots

• Each chunk replica is stored as a plain Linux file and
is extended as needed

V. Cardellini - SABD 2021/22 21

GFS: Fault-tolerance and replication

• Master replicates (and maintains the replication of) each
chunk on several chunk servers
– At least 3 replicas on different chunk servers

– Replication based on primary-backup schema

– Replication degree > 3 for highly requested chunks

• Multi-level placement of replicas
– Different machines, same rack + availability and reliability

– Different machines, different racks + aggregated bandwidth

• Data integrity
– Chunk divided in 64KB blocks; 32B checksum for each block
– Checksum kept in memory
– Checksum is checked every time app reads data

V. Cardellini - SABD 2021/22 22

GFS: Master operations

• Stores metadata
• Manages and locks namespace

– Namespace represented as a lookup table
– Read lock on internal nodes and read/write lock on leaf: read

lock allows concurrent mutations in the same directory and
prevents deletion, renaming or snapshot

• Communicates periodically with each chunk server
using RPC
– Sends instructions and collects chunk server state

(heartbeat messages)

• Creates, re-replicates and rebalances chunks
– Balances chunk servers’ disk space utilization and load
– Distributes replicas among racks to increase fault-tolerance
– Re-replicates a chunk as soon as the number of its available

replicas falls below the replication degree
V. Cardellini - SABD 2021/22 23

GFS: Master operations

• Garbage collection
– File deletion logged by master
– Deleted file is renamed to a hidden name with deletion

timestamp, so that real deletion is postponed and the file can
be easily recovered in a limited timespan

• Stale replica detection
– Chunk replicas may become stale if a chunk server fails or

misses updates to the chunk
– For each chunk, the master keeps a chunk version number
– Chunk version number updated for each chunk mutation
– Master removes stale replicas during its regular garbage

collection

V. Cardellini - SABD 2021/22 24

GFS: System interactions
• Files are hierarchically organized in directories

– No data structure that represents a directory

• A file is identified by its pathname
– GFS does not support aliases

• GFS supports traditional file system operations
operations (but no Posix API)
– create, delete, open, close, read, write

• Also supports two special operations:
– snapshot: makes a copy of a file or a directory tree almost

instantaneously (based on copy-on-write techniques)
– record append: atomically appends data to a file;

supports concurrent operations: multiple clients can append
to the same file concurrently without overwriting one
another’s data

V. Cardellini - SABD 2021/22 25

GFS: Read

V. Cardellini - SABD 2021/22 26

• Read operation
- Data flow is decoupled from control flow
(1) Client sends master: read(file name, chunk index)
(2) Master’s reply: chunk ID, chunk version number, locations of replicas
(3) Client sends read op to “closest” chunk server with replica: read(chunk

ID, byte range)
(4) Chunk server replies with data

1

2

3

4

GFS: Mutations

• Mutations are write or append
– Mutations are performed at all the

chunk's replicas in the same order

• Based on a lease mechanism:
– Goal: minimize management

overhead at master
– Master grants chunk lease to

primary replica
– Primary picks a serial order for all

the mutations to the chunk
– All replicas follow this order when

applying mutations
– Primary replies to client, see (7)
– Leases renewed using periodic

heartbeat messages between
master and chunkservers

V. Cardellini - SABD 2021/22 27

• Data flow is decoupled from
control flow

• Client sends data to any of
the chunk servers identified
by master, which in turn
pushes data to the other
chunk servers in a chained
fashion so to fully utilize
network bandwidth

GFS: Atomic appends

• The client specifies only the data (with no offset)
• GFS appends data to the file at least once atomically

(i.e., as one continuous sequence of bytes)
– At offset chosen by GFS
– Works with multiple concurrent writers
– At least once: applications must cope with possible

duplicates

• Append operations heavily used by Google's
distributed apps
– E.g., files often serve as multiple-producers/single-consumer

queue or contain results merged from many clients
(MapReduce scenario)

V. Cardellini - SABD 2021/22 28

GFS: Consistency model

• Changes to namespace (e.g., file creation) are
atomic
– Managed exclusively by the master with locking guarantees

• Changes to data are ordered as chosen by primary
replica, but failures can cause inconsistency

• GFS has a “relaxed” model: eventual consistency
– Simple and efficient to implement

V. Cardellini - SABD 2021/22 29

GFS performance

30

• Read performance is satisfactory (80-100 MB/s)
• But reduced write performance (30 MB/s) and relatively

slow (5 MB/s) in appending data to existing files

V. Cardellini - SABD 2021/22

GFS problems

V. Cardellini - SABD 2021/22 31

What is the limitation of this architecture?

Single master Single point of failure (SPOF)
Scalability bottleneck

GFS problems: Single master

• Solutions adopted in GFS to overcome issues
related to single master
– Overcome SPOF: by having multiple “shadow”

masters that provide read-only access when the
primary master is down

– Overcome scalability bottleneck: by reducing
interaction between master and client

• Master stores only metadata (not data)
• Client can cache metadata
• Large chunk size
• Chunk lease: delegates the authority of coordinating the

mutations to the primary replica

• Overall, simple solutions
V. Cardellini - SABD 2021/22 32

GFS summary
• GFS success

– Used by Google to support search service and other apps
– Availability and recoverability on commodity hardware
– High throughput by decoupling control and data
– Supports massive data sets and concurrent appends

• GFS problems (besides single master)
– All metadata stored in master memory

• “Limited” scalability: approximately 50M files, 10PB
– Semantics not transparent to apps
– Automatic failover added (but still takes 10 sec.)
– Delays due to recovering from a failed replica chunk server

delay the client
– Performance not good for all apps

• Designed for high throughput but not appropriate for latency-
sensitive apps like Gmail, because GFS was designed (in 2001)
for batch apps with large files

33V. Cardellini - SABD 2021/22

Colossus: successor of GFS
• Next-generation Google DFS (since 2010)
• Designed for a wide variety of Google services

(YouTube, Maps, Photos, search ads, …)
• Can handle EB of storage, tens of thousands of servers
• Distributed masters, GFS chunk servers replaced by D
• Scalable metadata layer, built on top of Bigtable
• Error-correcting codes (e.g., Reed-Solomon)
• Can mix high-speed flash memory and disks for storage
• Client-driven encoding and replication
• Google Cloud services built on top of Colossus

– Cloud Storage (object store) and Cloud Firestore (NoSQL data
store)

V. Cardellini - SABD 2021/22 34

Colossus under the hood: a peek into Google’s scalable storage system, 2021.
https://www.youtube.com/watch?v=q4WC_6SzBz4

Colossus: key components

V. Cardellini - SABD 2021/22 35

HDFS

• Hadoop Distributed File System (HDFS)
– Open-source user-level distributed file system
– Written in Java
– GFS clone

• Master/worker architecture
• Data is replicated across the cluster
• Designed to span large clusters of commodity servers

– De-facto standard for batch-processing frameworks:
e.g., Hadoop MapReduce, Spark

36

Shafer et al., The Hadoop Distributed Filesystem: Balancing Portability and
Performance, Proc. ISPASS 2010

V. Cardellini - SABD 2021/22

HDFS: Design principles

• Large data sets: typical file is GBs or TBs in size
• Simple coherency model: files follow write-once,

read-many-times access pattern
– E.g., MapReduce apps or web crawler app

• Commodity, low-cost hardware
– HDFS is designed to carry on working without a noticeable

interruption to users even when failures occur

• Portability across heterogeneous hardware and
software platforms

V. Cardellini - SABD 2021/22 37

HDFS: Cons

HDFS does not work well with:
• Low-latency data access: optimized for delivering a

high throughput of data
• Lots of small files: the number of files is limited by the

amount of memory on the master, which holds the
DFS system metadata in memory

• Multiple writers, arbitrary file modifications

V. Cardellini - SABD 2021/22 38

HDFS: File management

39V. Cardellini - SABD 2021/22

• File is split into one or more blocks which are stored
in a set of storing nodes (named DataNodes)

HDFS: Architecture

• Two types of nodes in a HDFS cluster:
– One NameNode (in GFS: master)
– Multiple DataNodes (in GFS: chunk servers)

40V. Cardellini - SABD 2021/22

HDFS: Architecture

• The NameNode:
– Manages the file system namespace
– Manages the metadata for all the files and directories

• Including the identity of DataNodes on which all the blocks for a
given file are located

• The DataNodes:
– Store and retrieve the blocks (a.k.a. chunks) when they are

told to (by clients or by the NameNode)
– Manage the storage attached to the nodes

• Without the NameNode, HDFS cannot be used
– It is important to make the NameNode resilient to failures

• Large size blocks (default 64 MB): why so large?

41V. Cardellini - SABD 2021/22

HDFS: Architecture

42V. Cardellini - SABD 2021/22

HDFS: Block replication

43V. Cardellini - SABD 2021/22

• NameNode periodically receives a heartbeat and a
blockreport from each DataNode
- Blockreport: list of all blocks on a DataNode

HDFS: File read

44

Source: “Hadoop: The definitive guide”

• NameNode is only used to get block location

V. Cardellini - SABD 2021/22

HDFS: File write

45

Source: “Hadoop: The definitive guide”

• Clients ask NameNode for a list of suitable DataNodes
• This list forms a pipeline: first DataNode stores a copy

of a block, then forwards it to the second, and so on
V. Cardellini - SABD 2021/22

Enhancements in HDFS 3.x
• Erasure coding can be used in place of replication

✓ Same level of fault-tolerance with less storage overhead:
from 200% with 3x to 50%

✗ Increase in network and processing overhead
– Two codes available: XOR and Reed-Solomon

See https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-
apache-hadoop/

• Support for more than 2 NameNodes
– In HDFS 2.x only 1 active NameNode and 1 standby

NameNode
– HDFS high availability

See https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html

V. Cardellini - SABD 2021/22 46

Other Distributed File Systems: GlusterFS

• Linux-based, open source distributed file
system https://www.gluster.org/

• Designed to be highly scalable
– Scaling to several PB (up to 72 brontobytes!)

• Brontobyte = 1027 or 290 bytes

V. Cardellini - SABD 2021/22 47

GlusterFS: Features

• Global namespace
– Idea: metadata is a bottleneck
– Solution: avoid centralized metadata server

• No special node(s) with special knowledge of where files are or
should be

– Solution: use consistent hashing (similarly to Chord and
Amazon’s Dynamo)

• Benefits of distributed hashing (robustness, load balancing, …)

• Clustered storage
• Highly available storage
• Built-in replication and geo-replication
• Self-healing
• Ability to re-balance data

V. Cardellini - SABD 2021/22 48

GlusterFS: Architecture

• Four main concepts:
– Bricks: storage units which consist of a server

and directory path (i.e., server:/export)
• Bricks are the nodes in Chord circle
• Files are mapped to bricks calculating a hash

– Trusted Storage Pool: trusted network of servers
that will host storage resources

– Volumes: collection of bricks with a common
redundancy requirement

– Translators: modules that are chained together to
move data from point a to point b

• Translator converts requests from users into requests for
storage

V. Cardellini - SABD 2021/22 49

Other Distributed File Systems: Alluxio

• Motivations:
– Write throughput is limited by disk and network bandwidths
– Fault-tolerance by replicating data across the network

(synchronous replication further slows down write operations)
– Performance and cost trend: RAM is fast and cheaper

• Alluxio https://www.alluxio.org
– Open-source, in-memory storage system
– High-throughput reads and writes
– Re-computation (lineage) based storage using memory

aggressively
• One copy of data in memory (fast)
• Upon failure, re-compute data using lineage (fault tolerance)

V. Cardellini - SABD 2021/22 50

H. Li, "Alluxio: A Virtual Distributed File System",
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf

Alluxio
• Adds a layer between the processing layer and the

storage layer
– Big data processing frameworks (e.g., Spark, Flink,

MapReduce, TensorFlow, …)
– Persistence layer (e.g., HDFS, AWS S3, …)

• Goal: storage unification and abstraction

V. Cardellini - SABD 2021/22 51

Alluxio: Architecture
• Alluxio (formerly Tachyon) architecture

– Master-worker architecture (like GFS, HDFS)
– 3 components: replicated masters, multiple workers, clients

• Passive standby approach to ensure master fault-tolerance

V. Cardellini - SABD 2021/22 52

Alluxio: Architecture

V. Cardellini - SABD 2021/22 53

Workers
– Manage local resources
– Periodically heartbeat to primary

master
– RAM disk for storing memory-

mapped files

Master
– Stores metadata of storage system
– Only responds to client requests
– Tracks lineage information

• Lineage: lost output is recovered
by re-executing ops that created
the output

– Computes checkpoint order
– Secondary master(s) for fault

tolerance

Alluxio: Lineage and persistence
Alluxio consists of two (logical) layers:
• Lineage layer: tracts the sequence of jobs that have created a

particular data output
– Data are immutable once written: only support for append operations
– Frameworks using Alluxio track data dependencies and recompute

them when a failure occurs
– Java-like API for managing and accessing lineage information

• Persistence layer: persists data onto storage, used to perform
asynchronous checkpoints
– Efficient checkpointing algorithm

• Avoids checkpointing temporary files
• Checkpoints hot files first (i.e., the most read files)
• Bounds re-computation time

V. Cardellini - SABD 2021/22 54

File set A File set B
task

dependency

Task reads file set A
and writes file set B

Alluxio: Evolution

• Evolving as data orchestration platform for analytics
and AI
– One of the fastest growing open source projects

• Goals:
– Bring data closer to compute across clusters, regions,

clouds, and countries
– Make it easily accessible enabling applications to connect to

numerous storage systems through a common interface

V. Cardellini - SABD 2021/22 55

Data storage so far: Summing up
• Google File System and HDFS

– Master/worker architecture
– Decouples metadata from data
– Single master (bottleneck): limits interactions and file system

size
– Designed for batch applications: 64/128MB chunk, no data

caching

• GlusterFS
– No centralized metadata server
– Consistent hashing

• Alluxio
– In-memory storage system, leverages on DFS
– Master/worker architecture
– No replication: tracks changes (lineage), recovers data using

checkpoints and re-computations
V. Cardellini - SABD 2021/22 56

References

• S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google File
System, Proc. ACM SOSP '03, 2003.

• D. Hildebrand and D. Hildebrand, Colossus under the hood: a
peek into Google’s scalable storage system, 2021.

• Video on Colossus: A peek behind the VM at the Google
Storage infrastructure, 2020

• Shafer et al., The Hadoop Distributed Filesystem: Balancing
Portability and Performance, Proc. ISPASS '10, 2010.

• H. Li, Alluxio: A Virtual Distributed File System, PhD Thesis,
Berkeley Univ., 2018.

• H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica,
Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks, Proc. ACM SoCC '14, 2014.

V. Cardellini - SABD 2021/22 57

