E TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

NoSQL: HBase and Neo4j
A.A. 2022/23

Matteo Nardelli

Laurea Magistrale in Ingegneria Informatica - |l anno

The reference Big Data stack

High-level Interfaces

Data Processing

Resource Management

Matteo Nardelli - SABD 2022/23

uoneabajuj / poddng

Column-family data model

« Strongly aggregate-oriented
— Lots of aggregates
— Each aggregate has a key

« Similar to a key/value store, but the value can have
multiple attributes (columns)

« Data model: a two-level map structure:
— A set of <row-key, aggregate> pairs
— Each aggregate is a group of pairs <column-key, value>
— Column: a set of data values of a particular type

« Structure of the aggregate visible

* Columns can be organized in families
— Data usually accessed together

Matteo Nardelli - SABD 2022/23

A P A CH E,
HBase HBARSE £=&

 Apache HBase:

— open-source implementation providing Bigtable-like capabilities
on top of Hadoop and HDFS

— CP system (in the CAP space)
« Data Model

— HBase is based on Google's Bigtable model

— Atable store rows, sorted in alphanumerical order
— Arow consists of a set of columns

— Columns are grouped in column families

— Atable defines a priori its column families (but not the columns
within the families)

cutting info:state 1273516197868
parser role:Hadoop 1273616297466 g91m
(info and role are column families) 4

Matteo Nardelli - SABD 2022/23

HBase: Auto-sharding

Region:

Matteo Nardelli - SABD 2022/23

the basic unit of scalability and load balancing

similar to the tablet in Bigtable
a contiguous range of rows stored together
each region is served by exactly one region server
they are dynamically split by the system when they

become too large

Region Servers - Physical Layout

Rows Region Server 1 Region Server 2 Region Server 3
AT
) —» Keys:[T-2)
: —» Keys: [I-M)
z| .
=| B
Sl . Keys: [F-I
5 1 ys: [F-l)
| 0 |H» Keysi[AQ
Q | Keys: M)
Keys: [C-F)

HBase: Architecture

Three major components:
* the client library

 one master server

— The master is responsible for assigning regions to region
servers and uses Apache ZooKeeper to facilitate that task

* many region servers
— manage the persistence of data

— region servers can be added or removed while the system is up
and running to accommodate changing workloads

HMaster
Hmaster Master
NameNode active servers

Slave
servers

Matteo Nardelli - SABD 2022/23

HBase: Architecture

HRegionServer

HBase

HDFS

Matteo

HRegionServer
HRegion
Store

HRegion
Store

Store

StoreFile

EEEEENN EEEJENE EEEJEEE - DFS Client =

SN emstore |
StoreFile

DFS Client

Nardelli - SABD 2022/23

www.edureka.in/hadoop

Regions

Tables are horizontally
partitioned into key
ranges (regions) ankanne

Regions are assigned
to Region Servers

Client

Region stariKey startKey
Server Region Region
Key colB | coiC <ol | colC
ERssEEERSEEREN XXX w “ LR R RN N “ “ LR
Bl - = Bl w
1GB 1GB8 1GB
endKey endKey

Read Cache,
LRU evicted

Region Server
BlockCache

Region Region Write Cache, sorted
map of KeyValues in
memory.

Mamaobara Mamabara
-I Memstore -I Memstore

HFile
HFile

HFile
HFile

Write ahead log on HDFS Data Node
disk- Used for recovery

Hfile=sorted KeyValues on disk

Matteo Nardelli - SABD 2022/23

HBase HMaster

Monitors region
servers

oo b

Assigns regions to
region servers

Client

create, delete table

Region

Xxx

Server Region

Region
Region Server Region Region
Key | com | corc | Emﬂ mm
xxx val val xxx
Bl e w e -

Matteo Nardelli - SABD 2022/23

ZooKeeper: the Coordinator

ZooKeeper is a distributed
coordination service

./

Inactive
HMaster

I

Data Node Data Node
Region Region
Server Region Region Server Region Region
[Key | com | coc S Key | com | corc | | Key | com | coc |
val val val val val val

val wval
val wval val wval val wal val vl

10
Matteo Nardelli - SABD 2022/23

Meta Cache Client

Put or Get Row I 1

<

Meta Table Lookup

\7Meta table location

.META location
is stored in
Zookeeper

4 ZooKeeper

Matteo Nardelli - SABD 2022/23

Region
Server

Data Node |

Region

Server
Data Node

META table is used to find th
Region for a given Table key

et Region server for|
1 row key from meta

META table

Row key Value

table key,region region server

Server

Region Region Region Region
Key | com | coc coe

val val val val val
H..H8.. &.

- G

i i
ag
id
i
ag
id
i i
BlE
id

11

HBase Write Steps

Put

Each incoming record written
to WAL for durability:
* log on disk
* updates appended sequentially

Region Server

Region

Put
D - »| WAL Memstore Memstore I
=——T"C Ack

% rIDFS Data Node

Updates are available to
queries after put returns

Next updates are written
to the Memstore

Matteo Nardelli - SABD 2022/23

Flushed quickly

Sorted list of
Key — Value

HBase HFiles

Sequential write

HDFS Data Node

Moving
disk drive's
headto a
specific
location is
slow.

Matteo Nardelli - SABD 2022/23

Region Server

D- 1 j gl et
1 Mam Qtara

MemStore

WAL

m 2| AR RN

HDFS Primary DataNode

HBase: Versioning

« Cells may exist in multiple versions, and different
columns have been written at different times.

By default, the API provides a coherent view of all columns
wherein it automatically picks the most current value of
each cell.

“data:” “meta:mimetype” “meta:size”
| I | I I)
__I _________________ l__l_____________l__l ______________ 1 -
I] I I I I
: “"name”,“lars”, Lo Lo 373" :
" . “"name’lars’, |3 | Lo 3,
ow ’| en . ” t ' - « i . g (| 1
: { "name”, “lars”, 6] 1 application:json Vo '
: address”:...}" tg : : : : :
-—-lle - ee-e-e-e-e—e-—e— - - - - - - - e e = - -e------- e R S -l -
/ [1o o I
Time
14

Matteo Nardelli - SABD 2022/23

HBase: Strengths

The column-oriented architecture allows for huge, wide,
sparse tables as storing NULLs is free.

Highly scalable due to the flexible schema and row-level
atomicity

Since a row is served by exactly one server, HBase is
strongly consistent, and using its multi-versioning can
help you to avoid edit conflicts

The storage format is ideal for reading adjacent key/
value pairs

Table scans run in linear time and row key lookups or
mutations are performed in logarithmic order

Bigtable has been in use for a variety of different use
cases from batch-oriented processing to real-time data-
serving

Matteo Nardelli - SABD 2022/23

15

Hands-on HBase
(Docker image)

Matteo Nardelli - SABD 2022/23

HBase with Dockers

* We use a lightweight container with a standalone HBase
$ docker pull harisekhon/hbase:1.4

* We can now create an instance of HBase; since we are
interesting to use it from our local machine, we need to
forward several HBase ports and update the hosts file;

$ docker run -ti --name=hbase-docker -h hbase-docker -p
2181:2181 -p 8080:8080 -p 8085:8085 -p 9090:9090 -p
9095:9095 -p 16000:16000 -p 16010:16010 -p 16201:16201 -p
16301:16301 harisekhon/hbase:1.4

append the following line to /etc/hosts
127.0.0.1 hbase-docker

Matteo Nardelli - SABD 2022/23

17

HBase Client

* We interact with HBase through its Java APls
« Using Maven, include the hbase-client dependency:

<dependency>
<groupId>org.apache.hbase</groupld>
<artifactId>hbase-client</artifactId>
<version>2.1.3</version>
</dependency>

Matteo Nardelli - SABD 2022/23

18

HBase Client

public Connection getConnection() throws ... {

Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum"”, ZOOKEEPER HOST);
conf.set("hbase.zookeeper.property.clientPort”,
ZOOKEEPER_PORT);
conf.set("hbase.master"”, HBASE MASTER);

/* Check configuration */
HBaseAdmin.checkHBaseAvailable(conf);

Connection connection =

connectionFactory.createConnection(conf);
return connection;

This is only an excerpt, check the HBaseClient.java file
Matteo Nardelli - SABD 2022/23

HBase Client;: Create Table

public void createTable(String table,
String... columnFamilies) {

Admin admin = ...

HTableDescriptor tableDescriptor = ... table ...

for (String columnFamily : columnFamilies) {
tableDescriptor.addFamily(columnFamily);
}

admin.createTable(tableDescriptor);

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

20

HBase Client: Drop Table

public void dropTable(String table) {

Admin admin = ...
TableName tableName = ... table ...

// To delete a table or change its settings,
// you need to first disable the table
admin.disableTable(tableName);

admin.deleteTable(tableName);

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

21

HBase Client: Put Data

public void put(String table, String rowKey,
String columnFamily,
String column, String value) {

Table hTable =
getConnection().getTable(... table ...);

Put p = new Put(b(rowKey));
p.addColumn(b(columnFamily), b(column), b(value));

// Saving the put Instance to the HTable
hTable.put(p);

hTable.close();

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

22

HBase Client;: Get Data

public String get(String table, String rowKey,
String columnFamily,
String column) {

Table hTable =
getConnection().getTable(... table ...);

Get g = new Get(b(rowKey));
g.addColumn(b(columnFamily), b(column));

Result result = hTable.get(g);

return Bytes.toString(result.getValue());

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

23

HBase Client: Delete Data

public void delete(String table, String rowKey) {

Table hTable =
getConnection().getTable(... table ...);

Delete delete = new Delete(b(rowKey));

// deleting the data
hTable.delete(delete);

// closing the HTable object
hTable.close();

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

24

Graph data model

« Uses graph structures
— Nodes are the entities and have a set of attributes
— Edges are the relationships between the entities
« E.g.: an author writes a book
— Edges can be directed or undirected

— Nodes and edges also have individual properties consisting of
key-value pairs

Gs,
N

Hashtag TAGS —| - RETWEETS

. y @ B - . /
$ <<\/V’>o
S %o

FOLLOWS

FOLLOWS
Matteo Nardelli - SABD 2022/23

Graph data model

» Powerful data model
— Differently from other types of NoSQL stores, it concerns itself
with relationships

— Focus on visual representation of information (more human-
friendly than other NoSQL stores)

— Other types of NoSQL stores are poor for interconnected data

 Cons:
— Sharding: data partitioning is difficult
— Horizontal scalability

 When related nodes are stored on different servers,
traversing multiple servers is not performance-efficient

— Requires rewiring your brain

Matteo Nardelli - SABD 2022/23

26

Suitable use cases for graph databases

« Good for applications where you need to model entities
and relationships between them
— Social networking applications
— Pattern recognition
— Dependency analysis
— Recommendation systems
— Solving path finding problems raised in navigation systems

» Good for applications in which the focus is on querying for
relationships between entities and analyzing relationships

— Computing relationships and querying related entities is simpler and
faster than in RDBMS

Matteo Nardelli - SABD 2022/23

27

Neo4). data model

* A graph records data in nodes and relationships

* Nodes are often used to represent entities

— A node can have properties, relationships, and can also be
labeled with one or more labels

— Note that a node can have relationships to itself
« Relationships organize nodes by connecting them

— Arelationship connects two nodes; a start node and an end
node

— Arelationship can have properties

Cypher using relationship ‘likes’

O——0®

Cypher

(a) -[:LIKES]-> (b)

Matteo Nardelli - SABD 2022/23

28

Neo4). data model

* Properties (both nodes and relationships) can be of
different type:
— Numeric values
— String values
— Boolean values
— Lists of any other type of value

« Labels assign roles or types to nodes

— Alabel is a named graph construct that is used to group
nodes into sets

— All nodes labeled with the same label belong to the same set
— Labels can be added and removed at runtime
— A node can have multiple labels

29
Matteo Nardelli - SABD 2022/23

Neo4|. Cypher

« Atraversal navigates through a graph to find paths;

— starts from starting nodes to related nodes, finding answers
to questions

« Cypher provides a declarative way to query the graph
powered by traversals and other techniques

« A path is one or more nodes with connecting
relationships, typically retrieved as a query or
traversal result

« Cypher: is a textual declarative query language
— It uses a form of ASCII art to represent graph-related patterns

Cypher

(a) -[:LIKES]-> (b)

30
Matteo Nardelli - SABD 2022/23

Hands-on Neo4;
(Docker image)

Matteo Nardelli - SABD 2022/23

Neo4j with Dockers

* \We use the official neo4j container
$ docker pull neo4j:5.6.0

« Create a container with Neo4j and forward its ports

$ docker run
--publish=7474:7474
--publish=7687:7687
--volume=$HOME /neo4j/data:/data
neo4j:5.6.0

* We will interact with Neo4j using its webUI
http://localhost:7474

Matteo Nardelli - SABD 2022/23

32

Cypher syntax

« Cypher uses a pair of parentheses (usually containing
a text string) to represent a node

(varname:Label { p_name: p_value, ... })

— () represents a node

- varname (optional) assigns a name to the node that can be
used elsewhere within a single statement.

— the Label (prefixed with a colon ".") declares the node's type
(or label).

— the node's properties are represented as a list of key/value
pairs, enclosed within a pair of braces

Matteo Nardelli - SABD 2022/23

33

Cypher syntax

« Cypher uses a pair of dashes (--) to represent an
undirected relationship. Directed relationships have an
arrowhead at one end (<--, -->).

— It is possible to create only directed relationship, although they
can be queried as undirected

-[role:ACTED IN {roles: ["Neo"]}]->

Bracketed expressions ([...]) are used to add details:
— a variable (e.g., role) can be defined, to be used elsewhere in
the statement.

— the relationship’s type (e.g., : ACTED_IN) is analogous to the
node's label.

— the properties (e.g., roles) are entirely equivalent to node
properties.

Matteo Nardelli - SABD 2022/23

34

Cypher syntax

Variables:

To increase modularity and reduce repetition, Cypher
allows patterns to be assigned to variables

acted in = (:Person)-[:ACTED _IN]->(:Movie)

https://neodj.com/developer/cypher-query-language/

Matteo Nardelli - SABD 2022/23

35

Cypher syntax: Create

Create a node with label Person and property name with
value "you":

CREATE (you:Person {name:"You"})
RETURN you

Create a more complex structure: add a new node and a
new relationship with the existing one

MATCH (you:Person {name:"You"})

CREATE (you)-[like:LIKE]->(neo:Database
{name:"Neo4j"})

RETURN you, like, neo

Matteo Nardelli - SABD 2022/23

36

Cypher syntax: Find, Update and Remove

Find a node (basic syntax)

MATCH (you {name:"You"})-[:FRIEND]->(yourFriends)
RETURN you, yourFriends

Update an existing node (similarly, to update a
relationship)
MATCH (n {property:value})

SET n :NewlLabel
RETURN n

Remove a property (or a Label) from a node (or
relationship)

MATCH (b {name: "Bruce Springsteen"})

REMOVE b.nickname RETURN b

37
Matteo Nardelli - SABD 2022/23

Cypher syntax: Delete

Delete a node:

MATCH (a:ToDel)
DELETE a

Note that a node cannot be deleted if it participates in a
relationship. To remove also relationships, we need to
detach the node, delete it and its relationships:

MATCH (b {name: "Bruce Springsteen"})
DETACH DELETE b;

Matteo Nardelli - SABD 2022/23

38

Cypher syntax: Read Clauses

These clauses read data from the data store:
e MATCH Specify the patterns to search for in the database

e OPTIONAL MATCH Specify the patterns to search for in the
database while using nulls for missing parts of the pattern

* WHERE Adds constraints to the patterns in a MATCH or
OPTIONAL MATCH clause or filter the results of a WITH
clause

e START Find starting points through legacy indexes

Read more: http://neo4j.com/docs/developer-manual/current/cypher/clauses/

Matteo Nardelli - SABD 2022/23

39

Cypher syntax: Write Clauses

These clauses write data to the data store:

CREATE Create nodes and relationships

MERGE Ensures that a pattern exists in the graph. Either
the pattern already exists, or it needs to be created.

ON CREATE (used with MERGE) it specifies the actions to
take if the pattern needs to be created.

SET Update labels on nodes and properties on nodes and
relationships.

DELETE Delete graph elements (nodes, relationships or
paths).

REMOVE Remove properties and labels from nodes and
relationships.

Matteo Nardelli - SABD 2022/23

40

Cypher syntax: General Clauses

These comprise general clauses that work in conjunction
with other clauses:

RETURN Defines what to include in the query result set.

ORDER BY A sub-clause following RETURN or WITH, specifying
that the output should be sorted in particular way.
LIMIT Constrains the number of rows in the output.

SKIP Defines from which row to start including the rows in the
output
WITH Allows query parts to be chained together, piping the

results from one to be used as starting points or criteria in the
next.

UNION Combines the result of multiple queries.

Matteo Nardelli - SABD 2022/23

41

Cypher syntax: Operators

Within clauses, we often rely on operators to combine
and compare nodes/relationships or access to their
properties

General operators:
DISTINCT, . for property access,

[] for dynamic property access

Mathematical operators:

+,_’*’/7%’A

Comparison operators:
=, <>, <, >,<=,>=, IS NULL, IS NOT NULL

Matteo Nardelli - SABD 2022/23

42

Cypher syntax: Operators

String-specific comparison operators:
STARTS WITH, ENDS WITH, CONTAINS

Boolean operators
AND, OR, XOR, NOT

String operators
+ for concatenation, =~ for regex matching

List operators
+ for concatenation,

IN to check existence of an element in a list,
[] for accessing element(s)

Matteo Nardelli - SABD 2022/23

43

Cypher syntax: Relationship pattern length

Relationship pattern length:
(a)-[*2]->(b)

It is possible to specify a length (2 in the example) in the
relationship description of a pattern.

It can be a variable length:
*3..5 (between 3 and 5),

*3.. (greater than 3),
*..5 (less than 5),
* (any length)

Read more: http://neo4j.com/docs/developer-manual/current/cypher/functions/

Matteo Nardelli - SABD 2022/23

44

Cypher syntax: Relationship pattern

Relationship pattern:

* nodes and relationship expressions are the building
blocks for more complex patterns;

« patterns can be written continuously or separated with
commas

Examples:
 friend-of-a-friend:

(user)-[:KNOWS]-(friend)-[:KNOWS]- (foaf)
* shortest path:

path = shortestPath((user)-[:KNOWS*..5]-(other))

http://neo4j.com/docs/developer-manual/current/cypher/clauses/match/

Matteo Nardelli - SABD 2022/23

45

