
NoSQL: HBase and Neo4j 
A.A. 2022/23 

 
Matteo Nardelli

Laurea Magistrale in Ingegneria Informatica - II anno

Macroarea di Ingegneria 
Dipartimento di Ingegneria Civile e Ingegneria Informatica 

Matteo Nardelli - SABD 2022/23

The reference Big Data stack

2

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Matteo Nardelli - SABD 2022/23

Column-family data model
• Strongly aggregate-oriented

– Lots of aggregates

– Each aggregate has a key

• Similar to a key/value store, but the value can have
multiple attributes (columns)

• Data model: a two-level map structure:

– A set of <row-key, aggregate> pairs

– Each aggregate is a group of pairs <column-key, value>

– Column: a set of data values of a particular type

• Structure of the aggregate visible

• Columns can be organized in families

– Data usually accessed together

3

Matteo Nardelli - SABD 2022/23

HBase
• Apache HBase:

– open-source implementation providing Bigtable-like capabilities
on top of Hadoop and HDFS

– CP system (in the CAP space)

• Data Model

– HBase is based on Google's Bigtable model

– A table store rows, sorted in alphanumerical order

– A row consists of a set of columns

– Columns are grouped in column families

– A table defines a priori its column families (but not the columns

within the families)

4

Row key Column key Timestamp Cell value
cutting info:state 1273516197868 IT
parser role:Hadoop 1273616297466 g91m

(info and role are column families)

Matteo Nardelli - SABD 2022/23

HBase: Auto-sharding
Region:

• the basic unit of scalability and load balancing

• similar to the tablet in Bigtable

• a contiguous range of rows stored together

• each region is served by exactly one region server

• they are dynamically split by the system when they

become too large

5

Matteo Nardelli - SABD 2022/23

HBase: Architecture
Three major components:

• the client library

• one master server

– The master is responsible for assigning regions to region
servers and uses Apache ZooKeeper to facilitate that task

• many region servers

– manage the persistence of data

– region servers can be added or removed while the system is up

and running to accommodate changing workloads

6

Matteo Nardelli - SABD 2022/23

HBase: Architecture

7

Matteo Nardelli - SABD 2022/23
8

Regions

Matteo Nardelli - SABD 2022/23

HBase HMaster

9

Matteo Nardelli - SABD 2022/23

ZooKeeper: the Coordinator

10

Matteo Nardelli - SABD 2022/23
11

Meta Table Lookup

Matteo Nardelli - SABD 2022/23
12

HBase Write Steps

Matteo Nardelli - SABD 2022/23
13

HBase HFiles

Matteo Nardelli - SABD 2022/23

HBase: Versioning
• Cells may exist in multiple versions, and different

columns have been written at different times.

By default, the API provides a coherent view of all columns
wherein it automatically picks the most current value of
each cell.

14

Matteo Nardelli - SABD 2022/23

HBase: Strengths
• The column-oriented architecture allows for huge, wide,

sparse tables as storing NULLs is free.

• Highly scalable due to the flexible schema and row-level

atomicity

• Since a row is served by exactly one server, HBase is

strongly consistent, and using its multi-versioning can
help you to avoid edit conflicts

• The storage format is ideal for reading adjacent key/
value pairs

• Table scans run in linear time and row key lookups or
mutations are performed in logarithmic order

• Bigtable has been in use for a variety of different use
cases from batch-oriented processing to real-time data-
serving

15

Matteo Nardelli - SABD 2022/23

Hands-on HBase 
(Docker image)

Matteo Nardelli - SABD 2022/23

HBase with Dockers

17

• We use a lightweight container with a standalone HBase

• We can now create an instance of HBase; since we are
interesting to use it from our local machine, we need to
forward several HBase ports and update the hosts file;

$ docker pull harisekhon/hbase:1.4

$ docker run -ti --name=hbase-docker -h hbase-docker -p
2181:2181 -p 8080:8080 -p 8085:8085 -p 9090:9090 -p
9095:9095 -p 16000:16000 -p 16010:16010 -p 16201:16201 -p
16301:16301 harisekhon/hbase:1.4

append the following line to /etc/hosts  
127.0.0.1	 hbase-docker

Matteo Nardelli - SABD 2022/23

HBase Client

18

• We interact with HBase through its Java APIs

• Using Maven, include the hbase-client dependency:
<dependency> 
	 <groupId>org.apache.hbase</groupId> 
	 <artifactId>hbase-client</artifactId> 
	 <version>2.1.3</version> 
</dependency>

Matteo Nardelli - SABD 2022/23

HBase Client

19

public Connection getConnection() throws ... {

	 Configuration conf = HBaseConfiguration.create();

	 conf.set("hbase.zookeeper.quorum", ZOOKEEPER_HOST);

	 conf.set("hbase.zookeeper.property.clientPort",

	 	 	 	 	 	 	 ZOOKEEPER_PORT);

	 conf.set("hbase.master", HBASE_MASTER);

	 /* Check configuration */

	 HBaseAdmin.checkHBaseAvailable(conf);

	 Connection connection =

	 	 	 connectionFactory.createConnection(conf);

	 return connection;

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

HBase Client: Create Table

20

public void createTable(String table,

	 	 	 	 String... columnFamilies) {

	 	 Admin admin = ...

	 	 HTableDescriptor tableDescriptor = ... table ...

	 	 for (String columnFamily : columnFamilies) {

	 	 	 tableDescriptor.addFamily(columnFamily);

	 	 }

	 	 admin.createTable(tableDescriptor);

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

HBase Client: Drop Table

21

public void dropTable(String table) {

	 	 Admin admin = ...

	 	 TableName tableName = ... table ...

 	// To delete a table or change its settings,

	 	// you need to first disable the table

 	admin.disableTable(tableName);

	 	

	 	 admin.deleteTable(tableName);

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

HBase Client: Put Data

22

public void put(String table, String rowKey,

	 	 	 String columnFamily,

	 	 	 String column, String value) {

	 Table hTable =

	 	 	 getConnection().getTable(... table ...);

	 Put p = new Put(b(rowKey));

	 p.addColumn(b(columnFamily), b(column), b(value));

	 // Saving the put Instance to the HTable

	 hTable.put(p);

	 hTable.close();

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

HBase Client: Get Data

23

public String get(String table, String rowKey,

	 	 	 String columnFamily,

	 	 	 String column) {

	 Table hTable =

	 	 	 getConnection().getTable(... table ...);

	 Get g = new Get(b(rowKey));

	 g.addColumn(b(columnFamily), b(column));

	 Result result = hTable.get(g);

	

	 return Bytes.toString(result.getValue());

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

HBase Client: Delete Data

24

public void delete(String table, String rowKey) {

	 Table hTable =

	 	 	 getConnection().getTable(... table ...);

	 Delete delete = new Delete(b(rowKey));

	

	 // deleting the data

	 hTable.delete(delete);

	 // closing the HTable object

	 hTable.close();

}

This is only an excerpt, check the HBaseClient.java file

Matteo Nardelli - SABD 2022/23

Graph data model

25

• Uses graph structures

– Nodes are the entities and have a set of attributes

– Edges are the relationships between the entities

• E.g.: an author writes a book

– Edges can be directed or undirected

– Nodes and edges also have individual properties consisting of

key-value pairs

Matteo Nardelli - SABD 2022/23

Graph data model

26

• Powerful data model

– Differently from other types of NoSQL stores, it concerns itself

with relationships

– Focus on visual representation of information (more human-

friendly than other NoSQL stores)

– Other types of NoSQL stores are poor for interconnected data

• Cons:

– Sharding: data partitioning is difficult

– Horizontal scalability

• When related nodes are stored on different servers,
traversing multiple servers is not performance-efficient

– Requires rewiring your brain

Matteo Nardelli - SABD 2022/23

Suitable use cases for graph databases
• Good for applications where you need to model entities

and relationships between them

– Social networking applications

– Pattern recognition

– Dependency analysis

– Recommendation systems

– Solving path finding problems raised in navigation systems

– …

• Good for applications in which the focus is on querying for
relationships between entities and analyzing relationships

– Computing relationships and querying related entities is simpler and

faster than in RDBMS

27

Matteo Nardelli - SABD 2022/23

Neo4j: data model

• A graph records data in nodes and relationships

• Nodes are often used to represent entities

– A node can have properties, relationships, and can also be
labeled with one or more labels

– Note that a node can have relationships to itself

• Relationships organize nodes by connecting them

– A relationship connects two nodes; a start node and an end
node

– A relationship can have properties

28

Matteo Nardelli - SABD 2022/23

Neo4j: data model

• Properties (both nodes and relationships) can be of
different type:

– Numeric values

– String values

– Boolean values

– Lists of any other type of value

• Labels assign roles or types to nodes

– A label is a named graph construct that is used to group

nodes into sets

– All nodes labeled with the same label belong to the same set

– Labels can be added and removed at runtime

– A node can have multiple labels

29

Matteo Nardelli - SABD 2022/23

Neo4j: Cypher

• A traversal navigates through a graph to find paths;

– starts from starting nodes to related nodes, finding answers

to questions

• Cypher provides a declarative way to query the graph

powered by traversals and other techniques

• A path is one or more nodes with connecting

relationships, typically retrieved as a query or
traversal result

• Cypher: is a textual declarative query language

– It uses a form of ASCII art to represent graph-related patterns

30

Matteo Nardelli - SABD 2022/23

Hands-on Neo4j 
(Docker image)

Matteo Nardelli - SABD 2022/23

Neo4j with Dockers

32

• We use the official neo4j container

• Create a container with Neo4j and forward its ports

• We will interact with Neo4j using its webUI

$ docker pull neo4j:5.6.0

$ docker run  
	 --publish=7474:7474 
	 --publish=7687:7687 
	 --volume=$HOME/neo4j/data:/data  
	 neo4j:5.6.0

http://localhost:7474

Matteo Nardelli - SABD 2022/23

Cypher syntax

• Cypher uses a pair of parentheses (usually containing
a text string) to represent a node

– () represents a node

– varname (optional) assigns a name to the node that can be

used elsewhere within a single statement.

– the Label (prefixed with a colon ":") declares the node's type

(or label).

– the node's properties are represented as a list of key/value

pairs, enclosed within a pair of braces

33

(varname:Label { p_name: p_value, ... })

Matteo Nardelli - SABD 2022/23

Cypher syntax

• Cypher uses a pair of dashes (--) to represent an
undirected relationship. Directed relationships have an
arrowhead at one end (<--, -->).

– It is possible to create only directed relationship, although they

can be queried as undirected

Bracketed expressions ([...]) are used to add details:

– a variable (e.g., role) can be defined, to be used elsewhere in

the statement.

– the relationship’s type (e.g., :ACTED_IN) is analogous to the

node's label.

– the properties (e.g., roles) are entirely equivalent to node

properties.

34

-[role:ACTED_IN {roles: ["Neo"]}]->

Matteo Nardelli - SABD 2022/23

Cypher syntax

Variables:

To increase modularity and reduce repetition, Cypher
allows patterns to be assigned to variables

35

acted_in = (:Person)-[:ACTED_IN]->(:Movie)

https://neo4j.com/developer/cypher-query-language/

Matteo Nardelli - SABD 2022/23

Cypher syntax: Create

Create a node with label Person and property name with
value "you":

Create a more complex structure: add a new node and a
new relationship with the existing one

36

CREATE (you:Person {name:"You"})

RETURN you

MATCH (you:Person {name:"You"})

CREATE (you)-[like:LIKE]->(neo:Database
{name:"Neo4j"})

RETURN you, like, neo

Matteo Nardelli - SABD 2022/23

Cypher syntax: Find, Update and Remove

Find a node (basic syntax)

Update an existing node (similarly, to update a
relationship)

Remove a property (or a Label) from a node (or
relationship)

37

MATCH (you {name:"You"})-[:FRIEND]->(yourFriends)

RETURN you, yourFriends

MATCH (b {name: "Bruce Springsteen"})

REMOVE b.nickname RETURN b

MATCH (n {property:value})

SET n :NewLabel

RETURN n

Matteo Nardelli - SABD 2022/23

Cypher syntax: Delete

Delete a node:

Note that a node cannot be deleted if it participates in a
relationship. To remove also relationships, we need to
detach the node, delete it and its relationships:

38

MATCH (a:ToDel)

DELETE a

MATCH (b {name: "Bruce Springsteen"})

DETACH DELETE b;

Matteo Nardelli - SABD 2022/23

Cypher syntax: Read Clauses

These clauses read data from the data store:

• MATCH Specify the patterns to search for in the database

• OPTIONAL MATCH Specify the patterns to search for in the
database while using nulls for missing parts of the pattern

• WHERE Adds constraints to the patterns in a MATCH or
OPTIONAL MATCH clause or filter the results of a WITH
clause

• START Find starting points through legacy indexes

39

Read more: http://neo4j.com/docs/developer-manual/current/cypher/clauses/

Matteo Nardelli - SABD 2022/23

Cypher syntax: Write Clauses

These clauses write data to the data store:

• CREATE Create nodes and relationships

• MERGE Ensures that a pattern exists in the graph. Either

the pattern already exists, or it needs to be created.

• ON CREATE (used with MERGE) it specifies the actions to

take if the pattern needs to be created.

• SET Update labels on nodes and properties on nodes and

relationships.

• DELETE Delete graph elements (nodes, relationships or

paths).

• REMOVE Remove properties and labels from nodes and

relationships.

40

Matteo Nardelli - SABD 2022/23

Cypher syntax: General Clauses

These comprise general clauses that work in conjunction
with other clauses:

• RETURN Defines what to include in the query result set.

• ORDER BY A sub-clause following RETURN or WITH, specifying

that the output should be sorted in particular way.

• LIMIT Constrains the number of rows in the output.

• SKIP Defines from which row to start including the rows in the

output

• WITH Allows query parts to be chained together, piping the

results from one to be used as starting points or criteria in the
next.

• UNION Combines the result of multiple queries.

41

Matteo Nardelli - SABD 2022/23

Cypher syntax: Operators

Within clauses, we often rely on operators to combine
and compare nodes/relationships or access to their
properties

General operators:

	 DISTINCT, . for property access,

	 [] for dynamic property access

Mathematical operators:

	 +, -, *, /, %, ^

Comparison operators:

	 =, <>, <, >, <=, >=, IS NULL, IS NOT NULL

42

Matteo Nardelli - SABD 2022/23

Cypher syntax: Operators

String-specific comparison operators:

	 STARTS WITH, ENDS WITH, CONTAINS

Boolean operators

	 AND, OR, XOR, NOT

String operators

	 + for concatenation, =~ for regex matching

List operators

	 + for concatenation,

	 IN to check existence of an element in a list,

	 [] for accessing element(s)

43

Matteo Nardelli - SABD 2022/23

Cypher syntax: Relationship pattern length

Relationship pattern length:

It is possible to specify a length (2 in the example) in the
relationship description of a pattern.

It can be a variable length:  
	 *3..5 (between 3 and 5),  
	 *3.. 	 (greater than 3),  
	 *..5 	 (less than 5),  
	 *	 (any length)

44

(a)-[*2]->(b)

Read more: http://neo4j.com/docs/developer-manual/current/cypher/functions/

Matteo Nardelli - SABD 2022/23

Cypher syntax: Relationship pattern

Relationship pattern:

• nodes and relationship expressions are the building

blocks for more complex patterns;

• patterns can be written continuously or separated with

commas

Examples:

• friend-of-a-friend:

• shortest path:

45

path = shortestPath((user)-[:KNOWS*..5]-(other))

http://neo4j.com/docs/developer-manual/current/cypher/clauses/match/

(user)-[:KNOWS]-(friend)-[:KNOWS]-(foaf)

