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Data Stream Processing (DSP) has emerged over the years as the reference paradigm for the analysis of

continuous and fast information flows, which have often to be processed with low-latency requirements to

extract insights and knowledge from raw data. Dealing with unbounded data flows, DSP applications are

typically long-running and, thus, likely experience varying workloads and working conditions over time. To

keep a consistent service level in face of such variability, a lot of effort has been spent studying strategies for

run-time adaptation of DSP systems and applications. In this survey, we review the most relevant approaches

from the literature, presenting a taxonomy to characterize the state of the art along several key dimensions.

Our analysis allows us to identify current research trends as well as open challenges that will motivate further

investigations in this field.
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1 INTRODUCTION
Our world is increasingly pervaded by “smart” devices, capable of capturing, tracking and assisting

almost every aspect of our life. This ubiquitous presence of devices at the edge of the network, from

Internet-of-Things (IoT) sensors to wearable devices and smartphones, has fostered a unending

growth in the amount of daily produced data, motivating the adoption of expressions like “Big

Data” to characterize the resulting data sets in terms of extreme volume, velocity and variety.

Nonetheless, raw data are often of limited value compared to the knowledge and insights that

analytics algorithms can extract from them, powering new or improved data-driven applications.

It is often the case that the potential value of data rapidly decreases after their collection and,

thus, timely processing is necessary. For example, log analysis software can automatically detect

security attacks or faults in large-scale computing systems and prevent harm; to do so, these

systems must analyze data as soon as possible, or any reaction could be late. Data Stream Processing
(DSP) can be regarded as the reference paradigm for timely analysis of high-volume data flows,

revolving around the idea of processing data as soon as they are available to reduce latency and,

hence, without (or before) storing them. DSP applications process data streams, ordered sequences

of data units (often referred to as tuples, events, or records) associated with one or more attributes
(or, fields), which carry domain-specific information. For processing, data streams flow through a

network of so-called operators, which apply specific transformations or functions (e.g., filtering,
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aggregation) and accordingly produce a new output stream [4]. While the operations performed

by single operators can be relatively simple, by chaining and inter-connecting multiple operators

into a graph, DSP applications can solve possibly complex queries against the input stream. For

instance, general-purpose DSP systems such as Apache Storm and Flink support the definition of

queries with arbitrary logic; other systems focus on specific processing paradigms, such as Complex
Event Processing (CEP), which aims at detecting high-level situations of interest (e.g., a fault in a

manufacturing system) through the analysis of primitive event streams (e.g., sensor measurements).

Real-time stream processing is usually subject to several requirements, as explained by Stone-

braker et al. [164], which impact the design and implementation of DSP systems. Just to name a few,

data safety and availability must be guaranteed at all times, in spite of possible failures; processing

must be automatically and transparently distributed across multiple processors and machines for the

sake of scalability; and, clearly, systems must deliver low-latency responses in face of high-volume

data streams, introducing minimal overhead. To fully exploit parallel and distributed infrastructures

and meet their requirements, DSP applications undergo various optimizations that impact, e.g., the

scheduling of operators to the available nodes [101], the choice of the parallelism level for each

operator [145], the structure of the application graph itself [73].

However, these optimizations, performed at development- or deployment-time, cannot guarantee

a consistent service level for the whole lifetime of DSP applications, which, dealing with unbounded

data sets, are kept in execution indefinitely and likely face varying working conditions over time.

The long-running nature of DSP applications makes it essential for them to respond and adapt to
variations in the working environment (e.g., by means of application elasticity [61, 145] or operator

migration [111, 167]), in order to continue optimizing one or more objectives throughout their

life cycle. Indeed, run-time adaptation of DSP applications and systems has received a significant

amount of attention from researchers and practitioners so far. Looking at the scientific publications

dealing with these issues (see, Figure 1), we can note that the interest for the topic has significantly

increased during the last decade, in conjunction with the widespread development and adoption of

Big Data-oriented tools, and has consolidated as an active field of research.

The solutions presented in the literature so far have considered a broad spectrum of mechanisms,

architectures and methodologies to introduce adaptation capabilities in stream processing systems.

The complexity of the resulting solution space has made it difficult to identify definitive and

complete strategies to address the aforementioned challenges, especially as the existing works

often target different computing platforms and rely on different assumptions. For this reason, in

this work we review, analyze and classify more than 140 scientific papers dealing with run-time

adaptation of DSP systems, in the aim of developing a more mature understanding of both the

challenges and the acquired experience in this field.

This survey makes the following key contributions. First, after introducing the key principles

underpinning DSP systems, we describe the main challenges and the available mechanisms for

their run-time adaptation (Section 2). As our key contribution, we then present a taxonomy of the

state of the art based on the well-known “5W1H” (or “Six W’s”) investigation approach [83], which

allows us to classify the most relevant publications from the literature and analyze the current

state of research (Sections 3-4). Based on our analysis of the state of the art, we outline a few

directions for future research on the topic that aim at filling existing gaps in the literature and

taking advantage of the opportunities provided by emerging computing landscapes (e.g., serverless,

Edge computing) (Section 5). In the supplementary material, we also present a complementary

literature review that focuses on the implementation of the adaptation solutions on top of existing

DSP frameworks and their evaluation methodologies (Appendix B).
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Fig. 1. Number of scientific publications dealing with run-time adaptation of DSP applications. Note: more
papers published in 2021 are yet to appear at the time of writing.

1.1 Related and Complementary Surveys
We briefly review related surveys that complement ours and can be relevant for readers interested

in exploring other issues in the context of DSP, or diving deeper into particular aspects.

Important concepts underpinning the stream processing paradigm are presented by Babcock

et al. [10] from the perspective of database management systems evolving into data stream man-
agement systems. Cugola and Margara [39] provide an overview of the different technologies for

timely analysis of information flows, from active databases to CEP engines and general-purpose

DSP systems, introducing a modeling framework for their analysis. More recently, the Dataflow
model has been presented by Akidau et al. [4], providing a unified model for computation over

unbounded data sets (i.e., data streams) that aims to separate the logical notion of data processing

from the underlying implementation.

The evolution of DSP systems and the associated research efforts are presented by Fragkoulis

et al. [54]. They highlight that, although the foundations of stream processing have remained

largely unchanged over the years, early systems, mostly designed as extensions of relational query

engines, have evolved into sophisticated and scalable engines, whose applicability exceeds the

boundaries of data analytics. Dayarathna and Perera [42] review DSP systems in the broader field of

event processing, discussing the architectural choices behind the most popular platforms and recent

advancements in applications (e.g., online learning, graph analytics). We will provide essential

background information in the next section, but we refer the reader to these works for detailed

analysis of the DSP paradigm in general and the associated algorithmic and architectural issues.

A systematic literature review of the works dealing with run-time adaptation of DSP systems is

presented by Qin et al. [139]. They particularly focus on the mechanisms available for adaptation,

while we also study the architectural and methodological approaches for adaptation control. As

regards DSP performance management and adaptation, special emphasis has been devoted so

far to the issues related to deployment management and, in particular, application placement

and elasticity. Approaches for the initial application placement in distributed environments have

been discussed by Lakshmanan et al. [101] and, more recently, by Tantalaki et al. [167] where

adaptive strategies are reviewed as well. Salaht et al. [151] review research works that deal with

service placement in the Fog/Edge computing scenario, including in their analysis some solutions

for distributed DSP application placement. Operator parallelization and scaling are extensively

reviewed by Röger and Mayer [145], discussing issues associated with both implementation and

control of application elasticity. A compact analysis of elasticity issues in DSP systems, including

historical background, is provided by Gulisano et al. [61]. Assunção et al. [9] also review solutions

for elastic DSP, with particular emphasis on systems deployed in highly distributed computing

environments. The broader spectrum of strategies for resource provisioning and management,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 2. Example of a DSP topology.

including operator scaling and placement, is considered by Liu and Buyya [111], where a taxonomy

of the existing solutions is presented.

These surveys complement ours, providing in-depth analysis of the strategies for deployment

and resource management. In particular, the surveys in [9, 145] partially overlap with ours as

regards operator auto-scaling, which we discuss along with the other mechanisms. However, we

take the more general perspective of run-time adaptation, which is not limited to deployment

reconfiguration and encompasses a variety of mechanisms. For the same reason, our analysis does

not comprise optimization techniques applied before application execution (e.g., initial operator

parallelization or placement), which are instead discussed in some of the cited works.

Other surveys focus on specific aspects of application development and optimization. Hirzel

et al. [73] present a catalog of optimization techniques applied to application graphs (e.g., operator

fusion or re-ordering), discussing the impact and applicability of each one. Herodotou et al. [71] re-

view and classify strategies for automatic parameter tuning (e.g., memory settings, I/O and network

behavior) for data-intensive frameworks, including DSP systems. To et al. [171] analyze the issues

associated with state management in both batch and stream processing systems. Zhang et al. [197]

instead focus on hardware-conscious DSP, reviewing solutions that leverage specialized hardware

(e.g., FPGAs) for optimized execution, by means of ad hoc architectures and implementations.

2 BACKGROUND
In this section, we review the main concepts behind DSP systems and applications, especially

as regards their distributed execution. For this purpose, we will look at DSP applications at two

different levels of abstraction. We will first present the abstract application model and then show

how an execution model is derived from it. The abstract model, defined at development-time, is

a high-level view of the application and its semantics; the execution model extends it to include

lower-level information that is necessary to execute the application.

2.1 Abstract Application Model
The fundamental entities comprised in the abstract model are operators and streams. At this level,

DSP applications are usually specified as a directed graph𝐺𝑑𝑠𝑝 = (𝑉 , 𝐸), where𝑉 is a set of vertices

comprising data sources, operators and sinks, i.e., 𝑉 = 𝑉𝑠𝑟𝑐 ∪𝑉𝑜𝑝 ∪𝑉𝑠𝑖𝑛𝑘 ; and 𝐸 a set of edges (i.e.,

streams flowing between vertices). Vertices with no incoming edges represent data sources, from
which input streams originate. Similarly, vertices with no outgoing edges are named sinks, and
represent consumers of the produced results (e.g., dashboards). Note that, at this level of abstraction,

a source vertex may correspond to a multitude of physical sources (e.g., sensors) that collectively

emit a single logical data stream.

Each operator 𝑣 ∈ 𝑉𝑜𝑝 is associated with a processing function 𝑓𝑣 that is applied to each incoming

data unit. Functions may be as simple as filtering or parsing, or more complex, including joins of

multiple streams or inference. Application programmers specify the function executed by each

operator and the overall topology. To ease this task, DSP frameworks usually provide built-in

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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processing primitives (e.g., filters, maps) and higher-level libraries for common use cases (e.g.,

graph analytics). An important property of operators regards whether their processing logic solely

depends on the current input or on internal state [171] as well (e.g., partial results, events observed
in the past). As such, we can classify operators as either stateless or stateful.
The resulting graph (see, e.g., Figure 2) is often referred to as application topology. While

topologies usually consist of directed acyclic graphs (DAG), cyclic computation is increasingly

supported by DSP frameworks (e.g., Flink). Allowing operator output to be (partially) fed back to

the same operator is essential to ease the implementation of iterative computations (e.g., graph or

machine learning algorithms). Furthermore, the graph model is frequently generalized to allow

operators forward the same data stream to multiple downstream operators (e.g., to implement

different queries on the same data). In this case, the data stream is modeled as a hyperedge.

2.1.1 Windows. A special class of stateful operators is represented by windowed operators [58],

which slice up the incoming stream into chunks (i.e., windows) to be processed as a whole. For

example, given a stream of e-commerce transactions, we may aim to compute the most frequently

purchased items over the last hour; in this case, an operator would count the occurrences of each

item within 1-hour long windows of the transactions stream. Windowing is a necessary mechanism

for some aggregation functions. Indeed, since the input stream is assumed to be “infinite”, queries

such as “find the event with maximum value for attribute 𝐴” are only applicable to finite chunks.

Windows can be defined in terms of time, tuple count or sessions. Time-based windows group data
from the same time period (e.g., “the last hour”) and their start and end are defined by timestamps.

Such timestamps may be either explicit, that is set by data sources as tuple attributes, or implicit,
that is set by the DSP system as tuples are received. Explicit timestamps are usually preferred for

data associated with the occurrence of real-world events, but also pose a few challenges, especially

in presence of distributed sources. First, the stream ordering with respect to the explicit timestamps

may differ from the actual order in which data enter the system. Furthermore, some events might

be late or even lost and it is not obvious how to determine whether a certain window is complete

or straggler tuples should be awaited.

A simple approach to deal with stragglers hinges on timeouts, whose expiration causes any

missing tuple to be deemed as lost. Unfortunately, setting a proper timeout is tricky, as large values

negatively impact processing latency, while small values may force many delayed tuples to be

discarded. Given the relevance of the issue, researchers have investigated more flexible strategies

to cope with out-of-order data and stragglers. In particular, several DSP engines (e.g., Flink, Google

Cloud Dataflow) rely on watermarks [15, 54] (or landmarks), which track the lowest timestamp

that may yet appear in a stream. Relying on watermarks, any operator can immediately determine

that a certain window is complete and proceed with the computation, as soon as the watermark

passes the end of the window. Different watermark implementations have been considered [15],

including by means of punctuations [174], which consist in special tuples injected into the data

stream carrying progress information about one or more attributes (e.g., timestamp).

Alternative window definitions rely on counts or sessions. Count-based windows simply group

a fixed number of consecutive data items (e.g., “the last 100 events”). Session-based windows are

dynamically started and completed depending on some “activity” measures (e.g., windows are

considered complete after no more events have been received for a certain time interval).

The number of events or time intervals define the size of the window. The sliding interval (or,
stride) instead defines the possible overlapping of windows. In particular, we distinguish tumbling
(or fixed) windows and sliding windows. Tumbling windows define a partitioning of the input

stream, as they never overlap (i.e., size and sliding interval coincide). Conversely, sliding windows

can overlap with each other and single tuples may be included in multiple consecutive windows.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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2.2 Execution Model
When it comes to running the application, the abstract model must be converted into an execution

model, containing additional information on how each operator shall be executed. The execution

model usually consists in a new graph𝐺𝑑𝑠𝑝 , where vertices of the abstract model𝐺𝑑𝑠𝑝 are replaced

by lower-level entities that the system can deploy for execution (e.g., sources and sinks may be

connectors to external systems, whereas operators may correspond to processing threads). As for the

abstract model, edges in the graph represent data streams flowing between vertices, corresponding

at run-time to, e.g., network connections or inter-process communication channels.

As many other software systems, DSP applications aim to exploit the parallelism provided

by modern parallel and distributed infrastructures. In particular, operator execution leverages

three forms of parallelism, namely task parallelism, pipeline parallelism, and data parallelism.

Task parallelism is a natural consequence of the graph-based application model, where multiple

queries on the same data streams can be performed in parallel by operators along different paths.

Applications also enjoy pipeline parallelism, as operators along the same path process the stream

concurrently (i.e., while an operator processes tuple 𝑖 , its predecessor may be processing tuple 𝑖 + 1).

Data parallelism instead consists in executing multiple parallel instances of the same operator, each

processing a portion of the incoming stream (usually on different processors), so that the operator

can sustain higher data rates. For this purpose, in the execution model each operator 𝑣 ∈ 𝑉𝑜𝑝 is

replaced by 𝑛 ≥ 1 parallel instances (or replicas) 𝑣1, . . . , 𝑣𝑛 .

Operator parallelization is the most popular modification applied when deriving the execution

model [145], but several other techniques are available for such static application optimization (see,

e.g., [73]). For instance, to reduce communication overhead, sequences of two or more operators

defined in the abstract model may be replaced by a single fused processing element in the execution

model, with equivalent semantics (e.g., adjacent operators 𝑢 and 𝑣 may be replaced by 𝑥 , such that,

given an input tuple 𝑡 , 𝑓𝑥 (𝑡) = 𝑓𝑣 (𝑓𝑢 (𝑡))).

2.3 Application Deployment and Execution
Once the execution model is available, DSP systems need to deploy the operator instances in the

available computing nodes and start their execution. Operator instances are usually launched as

concurrent threads or processes, enjoying the aforementioned pipeline parallelism. For this reason,

this class of systems is also referred to as pipelined DSP systems, with the most notable alternative

being represented bymicro-batched stream processing [192] (used, e.g., in Spark Streaming). Systems

adopting this paradigm exploit MapReduce-inspired batch processing techniques, which target

large but finite data collections. In order to cope with unbounded data flows, these systems split

the input streams into small chunks (i.e., micro-batches) and apply batch processing techniques to

one micro-batch at a time. The main drawback of this approach consists in the extra latency caused

by data buffering, as tuples can only be processed when a micro-batch is complete. Traditional DSP

frameworks belong to the group of pipelined systems, which is also the main focus of this work.

To start application execution, a scheduler component takes care of mapping the execution graph

onto the computing infrastructure, associating each operator instance with a node. This process is

known as operator placement and has significant impact on application Quality-of-Service (QoS), as

the available nodes may differ in capacity, reliability, and usage cost. Furthermore, the choice of

nodes where instances must be executed, implies a decision on the network links through which

streams will flow. For instance, if a pair of adjacent operators is deployed in the same node (i.e.,

they are co-located), they will likely communicate through efficient inter-process communication

mechanisms. Conversely, if operator instances are deployed in different nodes (or even in different

data centers), data will need to traverse the network, incurring delay and possible loss.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Having to process unbounded data sets, notions of “completion” are not easily applicable to

DSP applications, which usually execute for unbounded amounts of time. On the one hand, at

some point applications must likely deal with failures in the underlying software and hardware

stacks, which can lead to degraded performance or erroneous query results. For this reason, the

presence of integrated fault tolerance mechanisms is a fundamental requirement for modern DSP

systems (e.g., state checkpointing [24, 52], active replication [12, 70]). On the other hand, given

their long-running nature, DSP applications must cope with varying conditions at run-time that

make static optimizations unable to guarantee the desired service level in the long term.

First of all, application workloads are often variable and difficult to predict. With few exceptions,

data streams originate upon the occurrence of events that can follow complex, non-deterministic

dynamics. For instance, applications for social network analysis may be subject to sudden load peaks

when new “trending topics” appear. Additional sources of performance variability come from the

computing infrastructures, especially as DSP applications are increasingly moved out of traditional

Cloud data centers and deployed in Fog/Edge platforms. These environments, offering computing

resources located at the edge of the network and closer to data sources, are attractive to reduce

latency, but also force applications to face new issues such as increased resource heterogeneity,

reduced processing capacity, unstable connectivity, non-negligible network latency between nodes.

In particular, network conditions hardily stay unchanged over time, possibly requiring operators to

be migrated to different nodes to avoid performance degradation.

All these aspects must be necessarily taken into consideration at run-time to optimally use the

available resources. To handle such variability and keep a consistent service level, DSP applications

should be able to self-adapt at run-time. In other words, applications need mechanisms to modify,

e.g., their own deployment configuration, the accuracy of the processing algorithms they execute,

the rules used to route data among operators in response to external changes. As we will discuss in

the next section, several adaptation mechanisms exist for DSP applications which act on different

properties or components of the system at run-time.

Adaptation mechanisms must be clearly complemented with suitable control policies, to decide

when and how adaptation actions should be triggered at run-time, according to user-specified QoS

requirements. Optimally planning adaptation is a difficult task, mostly because of the uncertainty

that characterizes workloads and the lack of accurate application performance models. Furthermore,

adaptation often comes at a price, in terms of overhead, as many application aspects can only be

modified at run-time through suitable reconfiguration protocols, in order to preserve the integrity of

data streams and operator internal state. As the overhead of such protocols may be significant (e.g.,

application must be paused), carefully planning adaptation is of paramount importance.

2.4 Run-Time Adaptation Mechanisms
Adaptationmechanisms provide tools to alter the configuration and the behavior of DSP applications

during execution. A large number of mechanisms have been considered in the literature so far and

– as illustrated in Figure 3 – we classify them into the following categories: topology adaptation,

deployment adaptation, processing adaptation, overload management, fault tolerance adaptation,

and infrastructure adaptation.

Topology adaptation (or, query re-planning) mechanisms modify the DSP application topology,

usually keeping the resulting semantics unchanged. As surveyed in [73], several optimization

techniques can be applied to DSP topologies even at development- or deployment-time. For run-

time adaptation, two mechanisms have received particular attention, namely operator fusion and

reuse. Operator fusion replaces a pipeline of two or more operators with a single one that carries

out the same processing functions of the whole pipeline (see Figure 4). The idea is to reduce the

communication overhead due to data exchange, provided a single operator can efficiently handle the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 3. Categorization of the main adaptation mechanisms.

Fig. 4. Example of operator fusion.

(a) Operator placement

(b) Operator scaling

Fig. 5. Examples of deployment adaptation mechanisms.

whole processing logic. Operator reuse is used in presence of multiple applications or queries that

work on the same input streams and, hence, likely apply identical data transformations in the early

stages of processing (e.g., parsing or filtering raw input data). To avoid redundant computation,

DSP systems can let applications or queries reuse the same operator instances, and share the

produced output streams. To apply this technique at run-time, DSP systems must be able to verify

opportunities for reuse as soon as users submit, update or terminate their applications.

Deployment adaptationmechanisms act on the allocation of computing resources to DSP operator

instances. These mechanisms have been widely investigated, e.g., within the context of placement
strategies for DSP, that is how application graphs should be mapped onto the computing infras-

tructure, deciding which node will host each operator instance. Operator placement is necessarily

made when the application is first deployed, but operators may also be migrated at run-time (see

Figure 5a) in response to changes in the infrastructure (e.g., variations in the network, availability of

new nodes). Another relevant mechanism is operator scaling, which elastically adjusts the amount of

resources allocated to each DSP operator as needed, responding to workload variations. In particular,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Run-time Adaptation of Data Stream Processing Systems: The State of the Art 1:9

operators can be scaled either horizontally or vertically. Horizontal operator scaling, illustrated
in Figure 5b, leverages data parallelism to deploy parallel instances of the same operator, each

processing a share of the input stream. By dynamically adjusting the number of active instances as

needed, operators sustain large data volumes while avoiding resource over-provisioning. Vertical
operator scaling instead does not alter the parallelism level, and hinges on the dynamic allocation of

computing resources (e.g., CPU time, memory) to the existing instances. In general, vertical scaling

provides limited scalability compared to horizontal scaling, as the allocated resources cannot exceed

the capacity of the computing node where operators are currently deployed. Nonetheless, vertical

scaling usually benefits from negligible adaptation overhead, whereas reconfiguring the operator

parallelism level leads to significant overhead, because specific reconfiguration protocols must be

used to preserve stream and internal state integrity.

Processing adaptation mechanisms directly act on the way data are processed, comprising sev-

eral techniques such as algorithm adaptation, configuration tuning, load distribution, and stream

scheduling. Algorithm adaptation mechanisms act on the algorithm executed by operators, e.g.,

trading-off computation accuracy with processing load. For instance, an operator may dynamically

switch between exact and approximate computation depending on the workload. Similarly, config-
uration tuning techniques adjust configuration parameters at run-time, thus altering the behavior

of the system. However, while algorithm adaptation changes the processing logic of operators,

this class of mechanisms only impacts system parameters (e.g., operator buffer size) keeping the

processing algorithm unchanged. Within this group, dynamic batch sizing is particularly relevant

for micro-batched DSP systems, where a fundamental choice is how much data to include in each

micro-batch, as larger batches improve resource utilization but lead to higher buffering latency.

Other mechanisms manipulate the stream themselves. In presence of parallel instances of op-

erators, load distribution (or stream partitioning) mechanisms change the way incoming data are

routed to the various instances, aiming, e.g., to balance the processing load. Whereas this task can

be solved by means of traditional load balancing techniques in presence of stateless operators,

stateful operators require more attention. Indeed, to avoid altering the application semantics, each

data unit may be required to be sent to a specific operator instance (e.g., based on a key attribute).

For this reason, load distribution mechanisms may be forced to migrate portions of the operator

internal state, every time they change the data routing schemes.

Another mechanism available in this group is stream scheduling, that is determining the order in

which computation on data has to be performed. This can be realized by altering the order in which

tuples, groups of tuples or micro-batches should be processed. Although many applications require

the original data ordering to be preserved during computation, it is sometimes possible to increase

resource utilization efficiency by processing locally buffered data in a different order. Furthermore,

if operators are not executed concurrently over the computing infrastructure, a scheduling decision

must also be made about which operator has to be executed at any time on the available processing

units, even though the ordering of data is not changed.

Some adaptation mechanisms specifically target situations where DSP systems must face an

excessive volume of input data. These overload management mechanisms aim at mitigating the

overload to reduce performance degradation. The most relevant mechanisms in this group are

backpressure and load shedding. Backpressure is a mechanism to propagate overload notifications

from operators backwards to the data sources in the topology, so that data emission rates can be

throttled to alleviate overload. When this happens, tuples that cannot be immediately emitted by

the sources are usually kept in buffers and not discarded. Conversely, load shedding techniques aim

at reducing the processing load by dropping some input tuples. To do so, these mechanisms may try

to identify “less interesting” data in the input stream, with respect to application-dependent criteria,

so as to minimize the impact on results accuracy. It is worth remarking that other mechanisms
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(e.g., operator scaling) we have mentioned also help to deal with large volumes of data. However,

overload management mechanisms differ from them as they mainly represent “emergency tools”

rather than strategies to avoid overload in the long term.

Another class of mechanisms acts on the fault tolerance strategies embedded in DSP systems.

The key observation behind these mechanisms is that fault tolerance comes at the cost of additional

computational or communication demand (e.g., extra operator load due to periodic state checkpoint-

ing). As such, these mechanisms dynamically trade off fault tolerance and computational overhead

based, e.g., on current workload. Examples of mechanisms in this group are adaptive replication

and adaptive checkpointing. Active replication consists in running redundant replicas of DSP

operators, which increase application resiliency and possibly reduce tail processing latency in case

of timing issues [173], at the cost of possibile increase of provisioning costs and state management

overheads. In this survey, we focus on adaptive active replication, in which the degree of operator

replication is dynamically adjusted based, e.g., on the currently available computing resources.

Adaptive checkpointing instead regulates the frequency and the granularity of state checkpoints

and tuple acknowledgments that enable processing recovery in case of failures. While in principle

these operations should be performed as frequently as possible, adaptive mechanisms trade-off the

risk of data loss with checkpointing overhead.

The last group of adaptation mechanisms we identify copes with infrastructure adaptation, thus
comprising all those operations - possibly not specifically designed for DSP systems - used to

manage the computing infrastructure. Among them, the most relevant mechanism for DSP systems

is infrastructure scaling, which consists in elastically scaling the number of computing nodes in the

infrastructure, e.g., to accommodate a larger number of application components. Infrastructure

scaling is often coupled with horizontal operator scaling, so as to dynamically add (or remove)

computing nodes based on the current number of operator instances in use. Moreover, looking

at the network level and, thus, at the exchange of data streams between distributed nodes, the

advancements in the area of Software Defined Networking (SDN) have created opportunities to

perform network adaptation (e.g., to dynamically allocate bandwidth to operators and applications).

3 BUILDING A TAXONOMY OF ADAPTIVE DSP SOLUTIONS
The great variety of mechanisms available for DSP adaptation have been extensively investigated by

the research community. In this survey, we explore the most relevant solutions from the literature,

analyzing how they cope with key questions in the adoption of the different mechanisms (e.g.,

when adaptation should be triggered, which metrics should be taken into account).

Our analysis considers more than 140 published research works on the topic, which have been

reviewed and classified.
1
To give an overview of the wide spectrum of DSP adaptation approaches

investigated so far, we classify the most relevant solutions along several dimensions, which are

inspired by the 5W1H (or Six Ws) pattern, which is widely used in the journalism domain: what,
why, who, when, where, and how. As depicted in Figure 6, these questions helped us identifying the

following relevant features:

What? This question deals with the actions performed to adapt DSP applications and the

targeted entities. In particular, we first determine which adaptationmechanisms are exploited, hence
identifying the type of actions performed at run-time (e.g., operator scaling). We also investigate

the granularity at which actions are performed (e.g., tuple, operator), to better characterize the

adapted entities. Furthermore, we verify whether the operator internal state is involved in the

adaptation enactment, as it possibly represents an additional entity to take care of.

1
See Appendix A for information on how the publications have been selected.
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Fig. 6. Dimensions used to classify existing adaptation solutions, inspired by the 5W1H approach.

Why? This question investigates the motivation behind the design of the adaptation strategy.

We characterize existing solutions looking at their objective, which may consist, e.g., in optimizing

one or more QoS metrics, or satisfying some constraints. The set of considered metrics is a relevant
aspect as well, given the variety of functional and non-functional attributes adopted in the literature.

Who? This question aims to identify the authorities responsible for decisions regarding the

adaptation of DSP applications. In practice, we are interested in determining how decisions are

made at run-time within the (possibly complex) architecture of large-scale DSP systems. This is a

relevant aspect as not all control schemes are equally effective or scalable (e.g., centralized control

schemes often suffer from scalability issues) Moreover, DSP systems may host applications falling

under the responsibility of multiple tenants, and, thus, we check whether adaptation solutions

explicitly consider multi-tenancy scenarios.

How? This question investigates the methodology adopted to evaluate and plan adaptation

actions, i.e., to devise the adaptation control policy. As shown in the following, a wide spectrum of

approaches have been exploited in the literature, ranging from simple heuristics to model-based

approaches and machine learning techniques.

When? This question investigates time-related aspects of adaptation decisions. Two main issues

must be addressed in this context. First, it is important to determine when adaptation should be

triggered. For instance, adaptation actions could be planned periodically or only triggered upon the

occurrence of particular events. Second, we distinguish between reactive and proactive solutions.
Where? This question deals with the computing environment targeted by each work, which

can significantly impact the design and implementation of adaptation schemes. First of all, we

verify whether a distributed system is considered, and possibly whether geographical distribution is

admitted. Furthermore, we check whether homogeneous computing resources are assumed to be

available in the considered infrastructure, or instead resource heterogeneity is contemplated. We

also verify whether Edge-based deployments are considered and whether the work assumes the

availability of specific hardware (e.g., GPUs).
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Fig. 7. Popularity of the different groups of adaptation mechanisms per year.

4 TAXONOMY OF ADAPTIVE DSP SOLUTIONS
Based on the approach introduced above, we analyze and compare the most relevant research

contributions in the area of self-adaptive DSP. A detailed classification of each reviewed work is

reported in Appendix A, where we also provide an illustration of the complete taxonomy. In the

following, we will discuss our main findings for every dimension considered in our taxonomy.

4.1 What: Adaptation Actions and Controlled Entities
4.1.1 Mechanisms. Adaptation mechanisms represent the actions available to adapt applications

and their components at run-time. As already described in Section 2.4, for the sake of analysis,

we have classified them into the following groups: topology adaptation, deployment adaptation,

processing adaptation, overload management, fault tolerance adaptation, and infrastructure adapta-

tion. As shown in Figure 7, not all the groups have received the same attention so far within the

research community. Indeed, deployment adaptation mechanisms have been explored way more

than the other tools. Processing and infrastructure adaptation mechanisms are the most popular

groups among the remaining ones, and the interest for them has increased during the last decade.

The other groups have received a limited amount of attention so far.

Topology adaptation techniques are mostly used for static application optimization, but a few

works have applied them for run-time adaptation. For instance, Lohrmann et al. [114], Madsen

et al. [118] and Wang et al. [181] leverage operator fusion, combined with other mechanisms,

to improve performance at run-time. They conveniently combine sequences of operators into

“components” (i.e., fused operators), hence reducing (i) the number of processing entities (e.g.,

threads) required for execution and (ii) the amount of data exchanged between operators. Operator

fusion and reordering at run-time have been first exploited in Aurora [2]; in particular, reordering is

driven by a performance model that takes into account the operators’ execution time and selectivity

(i.e., number of output tuples per input tuple). Jonathan et al. [85] instead exploit various run-time

query re-planning tools (e.g., reordering operators) to reduce network usage in wide-area stream

processing systems. In particular, they focus on the ordering of aggregation operators, which

possibly require a significant exchange of data between multiple geographical regions.

Reuse of operators is instead exploited to improve resource efficiency when multiple queries or

applications need to apply identical operations on the same input data stream in [35, 91, 102, 142].

These solutions are able to automatically detect opportunities of reuse, verifying equivalence

between operations and data streams. For instance, Chaturvedi et al. [35] target the specific scenario
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of IoT analytics, where data flows generated by devices are likely processed by multiple streaming

topologies for different purposes, and reuse can avoid resource wastage.

Deployment adaptation mechanisms are by far the most investigated ones, as illustrated above,

with both operator placement and scaling being widely adopted. Changing the placement of

operators at run-time is necessary to achieve consistent QoS in face of workload and infrastructure

condition variations (e.g., increasing network congestion or the availability of new computing

nodes may conveniently trigger new placement decisions). Indeed, in addition to the large number

of solutions to the initial placement problem (e.g., [40, 45, 128]), adaptive placement strategies have

been developed as well (e.g., [7, 48, 84, 116, 117, 138, 144, 184, 186]). For instance, Aniello et al. [7]

design an online placement solution for Apache Storm, which migrates operators at run-time

based on continuously monitored performance metrics. Luthra et al. [116] consider the placement

problem for CEP operators in a dynamic users environment and show how different placement

techniques may be required to fulfill QoS requirements of different applications, or during different

time periods (e.g., “rush hours”). Therefore, they present a transition strategy to switch between

different placement techniques at run-time.

A slightly different approach than placement to tackle the deployment adaptation is presented by

Gu et al. [59], who consider the operators composition problem in order to select and connect already

deployed operators into user-required DSP applications with QoS requirements. The selection

occurs by adaptively probing a subset of candidates to discover an optimal composition.

A common issue faced by adaptive placement solutions is how to efficiently migrate operators

whenever their deployment must be updated. As we will also discuss in the following, this task is

particularly challenging in presence of stateful operators, whose internal state must be migrated as

well. Aiming to reduce the migration overhead, several works present improved mechanisms to

make DSP operator migrations smoother (e.g., [75, 125, 137]).

As elasticity is considered a key feature for modern DSP, a large number of works investigated

solutions for operator scaling. We note that the vast majority of them focus on horizontal operator

scaling (e.g., [27, 52, 53, 55, 57, 60, 98, 113, 115]). In practice, the number of parallel operator

instances is adjusted by starting (or terminating) threads or processes where instances are executed.

Unfortunately, not all the most popular DSP frameworks offer native support for efficient horizontal

operator scaling, with each parallelism adaptation causing significant reconfiguration overhead.

For this reason, researchers have been also extending existing frameworks or studying different

implementations to enable seamless operator scaling (see, e.g., [16, 127, 159, 179]).

A smaller number of strategies involves vertical operator scaling (e.g., [44, 76, 121, 147, 161]),

where the amount of computational resources allocated to operator instances is dynamically

adjusted rather than the parallelism level. As mentioned above, vertical scaling hinges on lower-

level mechanisms to alter resource allocation or configuration as required, usually with negligible

adaptation overhead. For instance, De Matteis and Mencagli [44] exploit dynamic voltage and
frequency scaling (DVFS) of modern CPUs to realize a vertical scaling solution. Hoseiny Farahabady

et al. [76] rely on Linux cgroups to allocate CPU shares to operators at operating system-level.

The main disadvantage of vertical scaling is the limited scalability it provides. Indeed, without

increasing the number of instances for operators, the amount of extra computational capacity that

can be supplied to operator instances on demand is limited (e.g., CPU frequency cannot be increased

beyond the maximum value supported by hardware). To address this issue, a few works combine

vertical and horizontal scaling. For example, De Matteis and Mencagli [44] exploit horizontal scaling

for performance-oriented adaptation, whereas vertical scaling is use for energy-aware adaptation.

The group of processing adaptation mechanisms is the second most investigated in the literature.

Among them, algorithm adaptation is used, e.g., in [66, 94, 100, 104, 195]. For instance, Heintz

et al. [66] consider a DSP system spanning Edge and Cloud data centers, and devise a strategy
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to adapt the amount of computation to be performed at the Edge, taking into account both the

amount of data sent over network and the “freshness” of data reaching the Cloud.

Configuration tuning can be used to adapt system configuration at run-time, as in [22, 38, 41, 114,

175]. For instance, Cammert et al. [22] adjust the size of time-based windows and time granularities

on the basis of a detailed cost model; Cheng et al. [38] use a learning algorithm to adjust the

scheduling parameters for a micro-batch streaming system. Lohrmann et al. [114] dynamically size

operator output buffers based on current load; Tudoran et al. [175] instead optimize the size of the

data batches transferred between operators in a geographically distributed DSP system;

Several research works investigate load distribution and routing strategies (e.g., [3, 23, 31, 50, 92,

95, 107, 143]). For instance, Rivetti et al. [143] present a solution to balance load among parallel

instances of a stateless operator, accounting for variable tuple processing times. Katsipoulakis

et al. [92] instead propose “holistic” stream partitioning strategies for stateful operators, where both

load imbalance and processing overhead are considered. TelegraphCQ [31], an early-generation DSP

framework, adaptively determines the data routing to operators on a tuple basis. It also provides

load balancing through partitioning of the stream and the corresponding operator state by means of

Flux [157], whose policy tries to maximize the benefit of rebalancing while minimizing the number

of moved partitions.

Scheduling mechanisms are investigated in [18, 38, 51, 133, 177, 199]. This kind of adaptation is

applied both to traditional and micro-batched stream processing. For instance, Bellavista et al. [18]

present a priority-based tuple scheduling solution, where incoming tuples are reordered based on

the priority level of their destination operator. Farhat et al. [51] target window-based operators,

whose execution is frequently blocked, and exploit watermarks to robustly infer stream progress

based on window deadlines and network delay, and schedule operator execution accordingly.

Conversely, Palyvos-Giannas et al. [133] directly interact with the operating system scheduler to

dynamically adjust priorities of multiple DSP applications and operators, based on their performance

requirements. Cheng et al. [38] instead target micro-batched streaming systems, and propose an

adaptive scheduler for micro-batches.

When facing transient load peaks, overload management mechanisms can help limiting perfor-

mance degradation. Backpressure, which is considered as an overload symptom in some works (e.g.,

[53]), has been exploited as a mechanism as well in [6, 37]. For example, Chen et al. [37] present a

backpressure controller which predicts the future cost of checkpointing and adjusts the flow rate

to accurately control the input size during checkpointing, when processing capacity is reduced.

Load shedding has been extensively studied in the literature (e.g., in [1, 2, 11, 89, 90, 93, 163, 168,

169]). For instance, Babcock et al. [11] formalize an optimization problem with the objective of

minimizing its adverse impact on the results accuracy within the limits imposed by load constraints

and study where to insert load shedding operators in the application graph 𝐺𝑑𝑠𝑝 . Kalyvianaki

et al. [89] present a feedback control-based approach to satisfy latency constraints by dropping

data during overload periods. Tatbul et al. [168] introduce two approaches for load shedding:

one drops a fraction of the tuples in a randomized fashion, while the second drops tuples based

on the importance of their content. Similarly, Katsipoulakis et al. [93] present a solution based

on concept-driven load shedding, where the tuples to be dropped are selected so as to maximize

processing accuracy.

Fault tolerance plays an important role in DSP. On the one hand, interruptions in stream com-

putation can have a dramatic impact on latency; on the other hand, failures cannot be avoided,

especially in distributed environments, and, thus, efficient recovery mechanisms are necessary.

A small number of research works have investigated approaches for adaptive fault tolerance

[17, 46, 49, 70, 79, 81]. Among them, Bellavista et al. [17] and Heinze et al. [70] exploit active

replication to guarantee fault tolerance, and trade-off replication degree with resource consumption.
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Similarly, Fang et al. [49] focus on active replication and integrate it with stream routing techniques

to balance load among operator replicas while also minimizing the recovery time from faults.

Hwang et al. [81] rely on active replication across a wide area and focus on replication transparency

to deliver what non-replicated processing would produce without failures. Du and Gupta [46]

adapt the completion timeout associated with tuples so as to quickly replay straggler data units

and limit the increase in latency during recovery phases. Huang and Lee [79] build on a notion

of approximate fault tolerance, whose idea is to mitigate backup overhead by adaptively issuing

backups, while ensuring that errors upon failures are bounded with theoretical guarantees.

At the infrastructure level, adaptation mainly consists in infrastructure auto-scaling, in order to

(i) complement operator scaling and provision computing nodes as needed, and (ii) to adapt the

amount of allocated resources as new applications are submitted for execution (or the running ones

are stopped). As for operator scaling, a significant amount of effort has been spent on this issue

(e.g., in [52, 82, 115, 120, 141, 177]). Depending on the considered platform, infrastructure scaling is

implemented by scaling the number of active Virtual Machines (VMs) (e.g., [82]) or containers (e.g.,

[120]). Infrastructure scaling is often coupled with operator scaling to achieve multi-level elasticity
solutions (e.g., [115, 120]).

Aljoby et al. [5] exploit SDN to adapt the infrastructure at the network level. They dynamically

provision network bandwidth for streams flowing between nodes over a multi-hop network, based

on the demand monitored at application level.

4.1.2 Granularity. The granularity level of adaptation in the majority of the considered approaches

is the single operator (e.g., [6, 14, 21, 86, 87, 112, 132, 158, 180]) or small groups of operators (e.g.,

[35, 62, 198]). For instance, Guo and Zhou [62] present a component-based solution to the operator

scaling problem, where groups of operators are combined into so-called components based on the

amount of data they exchange with each other, and scaling actions are applied on whole components

instead of single operators. A few works also consider whole applications (e.g., [41, 66, 196]).

Several solutions, especially those acting on data streams (e.g., load distribution, shedding),

perform adaptation with finer granularity, at level of single tuples (e.g., [3, 23, 50, 95, 168, 185]) or

batches of tuples (e.g., [38, 177]). Solutions acting at the infrastructure level usually work with the

granularity of the computing node (e.g., [47, 82, 176]) or the network link [5].

4.1.3 State. Operator internal state represents an additional challenge for adaptation, because its

consistency must be preserved across configuration changes, and it might be necessary to move the

state itself along with operators when deployment is modified [171]. Indeed, most of the existing

solutions take into account the presence of stateful operators and design adaptation strategies

consequently. In some cases, new mechanisms must be designed and implemented to overcome

limitations of existing DSP frameworks (e.g., [27, 52, 179]). For instance, Fernandez et al. [52] present

an integrated approach for auto-scaling and fast recovery of stateful operators, while Cardellini

et al. [27] and Wang et al. [179] extend Apache Storm to allow for horizontal scaling of stateful

operators. There are also a few works where state management is not included, either because

optimizations for stateless operators are proposed (e.g., [143]), or support for stateful adaptation is

left under the responsibility of application developers (e.g., [112]).

It is worth noting that the stateless or stateful nature of the operators under control should be

taken into account when picking the adaptation mechanisms to use. Indeed, some mechanisms

better suit stateless operators (e.g., load distribution enjoys more flexibility when streams can be

re-routed without moving state; similarly, placement of stateless operators can be re-configured

more easily), while other mechanisms instead are mostly meaningful for stateful queries (e.g.,

adaptive state checkpointing).
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4.2 Why: Adaptation Goals
4.2.1 Objectives. Adaptation actions are usually motivated by one or more goals, defined, e.g.,

in terms of performance or operational costs. Specifically, adaptation aims at optimizing one or

more metrics, satisfying some requirements, or a combination of both. For instance, just looking

at placement adaptation solutions, we can find a variety of approaches. Li et al. [108] formulate

a single-objective optimization problem, aiming to minimize application latency; Ottenwälder

et al. [132] instead formulate a multi-objective problem, where conflicting metrics (such as network

traffic, latency, and adaptation overhead) are considered; similarly Madsen et al. [117] and Silva

Veith et al. [160] devise a multi-objective formulation and also add constraints to the problem (e.g.,

maximum migration overhead [117], limited network and node capacity [160]).

4.2.2 Metrics. A broad spectrum of different metrics have been used to specify the adaptation

objectives and requirements. We classify them as either application-oriented or system-oriented.

Application-oriented metrics capture aspects of application operation that can be directly perceived

by users (e.g., latency, processing accuracy); system-oriented metrics instead capture aspects of the

system that can have impact on application but are usually observed at level of the underlying DSP

system (e.g., resource utilization).

Among application-oriented metrics, the most popular ones are processing latency and through-

put. Latency (or response time) plays an important role as DSP applications are often required to

process events with (near) real-time requirements, and many adaptation solutions rely on latency

as a key performance metric (e.g., [55, 88, 89, 108, 178, 180, 196]). Latency refers to the time it

takes to process data units since they enter the system, although slightly different definitions are

used in practice. Indeed, latency may be defined at level of single operator (e.g., [55, 180]) or as

end-to-end latency along source-to-sink paths in the application DAG (e.g., [88, 166]). Moreover,

latency experienced by data units may be simply defined in terms of time spent waiting in buffers

and being processed (e.g., [55], or [196], where batching time is also considered); or, alternatively, it

can be defined as the difference between the current wall-clock time and the latest fully processed

event timestamp (e.g., [178], where watermarks [4] are exploited). Latency is often used to formulate

soft real-time constraints (e.g., in [20, 37, 172, 189, 199]), requiring input tuples to be fully processed

within given deadlines. In these works, adaptation is often aimed at minimizing deadline violations

(i.e., missed deadlines in real-time terminology) [20, 172]. A similar approach is adopted by Zhou

et al. [199], who associate each tuple with a utility value in a time-critical DSP system, assigning

positive utility only to tuples processed within their deadline. A complementary metric to latency

is slowdown (e.g., used in [158]), which is defined as the ratio of latency to the ideal processing time

and can be more appropriate than latency in case of heterogeneous workloads.

Besides latency, another popular performance metric is throughput (e.g., [30, 82, 86, 87, 130, 131,
188]), which measures the number of data units processed per unit of time. Throughput is mainly

adopted within operator scaling solutions (e.g., [86, 87]), where the number of parallel instances is

adjusted in a way that allows application throughput to sustain the incoming data rate.

In addition to processing performance, we are sometimes interested in evaluating the “quality”

of the results computed by the application, especially when using adaptation mechanisms that may

have an impact on it. We indicate metrics used for this purpose as accuracy metrics, although in

practice different metric definitions are used in the reviewed works [66, 93, 104, 195]. For instance,

Le Quoc et al. [104] instead present StreamApprox, a framework for approximate stream processing,

where achieved accuracy is estimated using statistical theory. Heintz et al. [66] also rely on algorithm

adaptation to adjust the amount of computation performed on Edge nodes in a geo-distributed DSP

system. They consider staleness as the reference metric, which measures the delay in getting the
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expected results. Therefore, accuracy in this context is not only about getting the exact results, but

also about the time we get those results.

Similarly, other works such as [17, 136, 190] look at the content of data streams, but they measure

data loss, instead of accuracy. For example, Zacheilas et al. [190] propose an operator scaling

strategy that accounts for potential loss of data caused by resource under-provisioning. Bellavista

et al. [17] introduce internal completeness metrics in their adaptive fault tolerance solution, where

the amount of data lost in presence of different levels of replication are estimated.

Other metrics, such as resource cost and adaptation overhead, provide information about the

downsides of performance and accuracy improvements.Cost (used, e.g., in [26, 69, 74, 134]) measures

the expenses due to acquisition or usage of computing resources for running the DSP system. For

example, Hochreiner et al. [74] design an elastic DSP system for IoT scenarios, where the cost of

used computing resources is minimized.

As mentioned above, several adaptation mechanisms are characterized by a (possibly significant)

adaptation overhead, which is taken into account, e.g., in [20, 50, 67, 132, 179, 185]. For instance,

Fang et al. [50] present a load distribution strategy for stateful operators, where the overheads of

state migration are taken into account when planning adaptation actions. Similarly, Borkowski

et al. [20] design a solution to the operator scaling problem, where the “cost” of reconfigurations,

in terms of overhead, is minimized.

Performance-related and accuracy-related metrics are sometimes combined to define custom

utility functions (e.g., in [88, 99, 100, 162, 163, 199]). For instance, we already mentioned [199], where

tuple utility depends on real-time constraint satisfaction. Another example is given by Kumbhare

et al. [100], who use a utility function to combines resource cost and a so-called “application value”

that depends on current processing accuracy.

Among system-oriented metrics, the most used one is resource utilization (e.g., [20, 27, 57, 60,

68, 72, 91, 120, 134, 152, 165, 176]), which captures the utilization level of a computing resource,

usually CPU. As in different application domains, utilization is often used in conjunction with

threshold-based adaptation policies, where actions are triggered whenever the utilization level

violates a pre-defined threshold value (e.g., [27, 57, 74]). A related metric is load imbalance, which
measures the load difference among parallel instances of an operator. This metric is especially used

by load distribution solutions (e.g., [3, 50, 92, 191]), which often aim at minimizing this metric, as

better load balancing leads to better performance.

Another classic performance index used for adaptation (e.g., [6, 106, 176]) is queue length, which
measures the amount of data stored in system buffers (e.g., operator input queue), ready to be

processed. For instance, Li et al. [106] use operator queue length, along with resource utilization,

as key metrics to trigger operator scaling actions by means of a threshold-based policy.

Several works also look at the usage of communication resources, measuring the network usage
of operators (e.g., [21, 48, 110, 186, 191]), that is the amount of traffic they exchange with each

other. This metric is particularly relevant for systems deployed in (geographically) distributed

environments, where delay and bandwidth may severely impact performance. For example, Xu

et al. [186] and Liu and Buyya [110], respectively, present T-Storm and D-Storm, which integrate

traffic-aware solutions to the operator placement problem in Apache Storm.

Energy consumption has received growing interest over the last years, as efforts towards sus-

tainable computing have been promoted. A few works present adaptation strategies that exploit

energy consumption as key metric (e.g., [33, 43, 47, 166, 182]). For instance, Eibel et al. [47] and De

Matteis and Mencagli [43] leverage DVFS to dynamically adjust the frequency of CPU cores where

operators are executed, so as to trade-off performance with energy consumption. Chao et al. [33]

instead consider energy consumption while placing operators on mobile phones.
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Fig. 8. Popularity of the different metrics among the reviewed publications.

Other less popular metrics include availability and fairness. Application availability is taken

into account by Chao and Stoleru [32] when placing operators on mobile phones with intermittent

connectivity. Fairness is considered by Aljoby et al. [5] to allocate network capacity to different

applications, and by Kalyvianaki et al. [90], to perform load shedding in a multi-tenant DSP system.

Figure 8 provides a graphical representation of the overall popularity of the aforementioned

metrics. It is easy to realize that – as expected – few key metrics (i.e., latency, throughput, cost,

utilization, adaptation overhead, network usage) are used far more frequently than the other ones.

4.3 Who: Controlling Authorities and Tenants
We now turn our attention towards the entities in charge of managing the adaptation process and

the adapted applications. Specifically, we look at the controlling authority, which is responsible for

making adaptation decisions, and the presence of multiple tenants within the DSP system, whose

applications are possibly associated with different objectives and requirements.

4.3.1 Controlling Authority. The vast majority of approaches in the literature consider a centralized
adaptation controller (e.g., [36, 48, 52, 55, 62, 82, 100, 117, 188]). In such a scheme, a single entity

is responsible for the entire adaptation process. This centralized controller, hence, needs global

information about the adapted applications and the underlying computing infrastructure, in order

to make decisions about when and how adaptation actions should be performed. On the one hand,

exploiting such a complete view of the system, centralized controllers are able to identify optimal

adaptation policies (e.g., [55, 117]). On the other hand, scalability issues may arise when dealing

with the complexity of the whole system, as the computational cost of the control algorithms

may significantly increase with the number of involved applications, operators, and infrastructure

elements. Moreover, from a fault tolerance perspective, a centralized controller represents a “single

point of failure”, whose faults inhibit adaptation capabilities for the whole system.

Decentralized control schemes (e.g., [90, 122, 131, 134, 138, 144]) overcome the scalability limi-

tations of centralized approaches by distributing the adaptation responsibility to a multitude of

controllers (e.g., a controller for each operator), which plan adaptation actions based on local,

usually partial, information about the system. However, such a limited system view makes often

difficult (or even impossible) for them to identify optimal adaptation policies, although some works

(e.g., [122, 144]) propose optimal decentralized strategies. For instance, Rizou et al. [144] present a

solution to the placement problem where each operator optimizes its own deployment; exploiting

mathematical properties of the objective function, they are still able to identify the global optimum.

Mencagli [122] relies on game theory to devise a distributed control strategy for operator scaling,

where each operator makes decisions about its own parallelism level.
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It is also worth noting that the choice of the control architecture to adopt is also influenced

by the adaptation mechanisms that must be supported. Indeed, while it is particularly difficult to

devise optimal decentralized strategies for, e.g., the operator placement or scaling problems, for

other mechanisms such as load shedding and load distribution, it is less critical to have a global

system view, as they usually work at level of single buffers or operators.

A few works (e.g., [1, 6, 25, 43, 56, 59]) investigate hierarchical (or hybrid) control schemes, which

are neither centralized nor fully decentralized. Having multiple controllers, often organized in a

hierarchical fashion, it is possible to increase the scalability with respect to a single centralized

controller, while avoiding the lack of coordination of fully decentralized schemes. In particular,

controllers at different layers of the hierarchy usually workwith different time scales and granularity

of control (e.g., components at the top of the hierarchy may rely on a coarse-grained view of the

system, with lower layers taking care of finer adaptation control). For example, Amini et al. [6]

present a two-layer vertical operator scaling and backpressure strategy: the first layer employs

global optimization to compute and communicate resource allocation targets to resource controllers

instantiated on each processing node; the second layer uses these allocation targets, along with

local monitoring information, to inform upstream operators of the desired input rate. Similarly,

Cardellini et al. [25] rely on a two-layered hierarchy to control operator scaling: at the top layer,

controllers manage single DSP applications by coordinating decentralized controllers, which make

adaptation decisions for single operators. Abadi et al. [1] consider a three-layered hierarchy: at

the operator level, a local controller is responsible for load shedding; a neighborhood controller is

responsible for load balancing the resources at a node with those of its immediate neighbors; at

the highest level, a global controller is responsible for making global optimization decisions and

sending proper instructions (e.g., regarding the amount of load shedding) to lower-level controllers.

4.3.2 Multi-Tenancy. A DSP system may host multiple applications running concurrently. Hosted

applications in turn may fall under the responsibility of either a single authority or a multitude

of tenants. The former scenario is especially popular for DSP systems deployed in on-premise

computing infrastructures, whereas the latter is commonly found, e.g., in DSP platforms offered

as Cloud Software-as-a-Service products. The majority of the reviewed works consider single
tenants, often focusing on a single running application in their adaptation strategies. A few works

tackle more complex multi-tenancy scenarios (e.g., [78, 88, 90, 136]). For instance, Kalim et al. [88]

consider a DSP system with multiple applications and tenants, where operator scaling is used to

dynamically allocate resources to the applications so as to satisfy all their SLOs. Pham et al. [136]

instead introduce differentiated classes of service in a DSP system, so as to accommodate the needs

of multiple applications by means of load shedding and adaptive resource allocation.

4.4 How: Planning Methodology
The planning methodology identifies the techniques used to determine adaptation policies, that is

to make adaptation decisions. Several approaches have been exploited so far in the literature. We

will group them into the following classes: mathematical optimization and game theory, control

theory, graph theory, stochastic modeling (and, in particular, queueing theory), heuristics, and

machine learning. Note that here we use the term “heuristic” in a broad sense, referring both to

implementations of metaheuristics for adaptation optimization, and custom algorithms (e.g., rule-

based and, in particular, threshold-based scaling policies), which do not fall into any of the other

categories. As such, this group embraces a large number of works, as demonstrated by Figure 9,

where the popularity of the different methodologies over time is depicted. We also observe that,

besides resulting the most used techniques overall, optimization and heuristics were almost the only
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popular options in the past. More recently, other methodologies have been increasingly considered,

especially control theory, machine learning and stochastic modeling.

As we explained in Section 4.2, themotivations that lie behind adaptation can usually be expressed

as an optimization problem, with one or more key metrics as objectives, and possibly constraints to

be satisfied. Therefore, the most natural way to derive adaptation policies hinges on the modeling

and resolution of the underlying optimization problem, by means of mathematical optimization
tools. This approach is exploited, e.g., to control various adaptation actions, such as operator

placement (e.g., [117, 132, 144]) and scaling (e.g., [62, 113]), load distribution (e.g., [155, 191]), or

micro-batch size tuning (e.g., [41]). For example, Madsen et al. [117] rely on a mixed-integer linear

program formulation of the operator placement problem, where the objective to be minimized is a

load imbalance function, with a maximum migration overhead constraint. Lohrmann et al. [113]

instead focus on the operator scaling problem and cope with a nonlinear formulation, where they

aim at minimizing the amount of allocated resources subject to a maximum latency constraint. The

resulting problem is solved by means of gradient descent. Robust optimization, a field of optimization

that deals with uncertainty in the data of optimization problems, has been so far only exploited by

Lei and Rundensteiner [105] to design a load distribution approach that is resilient to workload

fluctuations at run-time and hence can avoid operator migration overheads.

Given themultitude of entities usually involved in the adaptation process (e.g., operators, different

applications), game theory represents a promising tool for the analysis of their interactions. Game

theory hinges on the notion of game equilibria (their existence and possibly uniqueness) and how

far the equilibria solutions are from the optimum (price of anarchy). However, the set of tools in this

field has been so far scarcely adopted to self-adapt DSP applications. Mencagli [122] investigates

this technique to drive DSP operator scaling in a decentralized fashion, where each operator is an

agent that chooses its own parallelism level. A non-cooperative scenario is first considered, where

agents are shown to reach the best equilibrium in a Pareto sense. Then, a cooperative scenario is

studied, where an incentive-based mechanism is used to promote cooperation among agents, so as

to get closer to system optimum. Balazinska et al. [13] present an approach based on distributed

algorithmic mechanism design for managing load in federated DSP systems. It is based on private

pairwise contracts prenegotiated between participants, that set bounded prices for migrating load

and specify the set of operators that each participant is willing to execute on behalf of others.

A few works exploit methods from control theory to devise adaptation policies. In this case, three

main entities are identified: disturbance, decision variables, system configuration. Disturbances

represent dynamics that cannot be controlled, even though their future value can be predicted (at
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least in the short term), while decision variables map to the adaptation actions. Control-theoretic

approaches are used in conjunction with a variety of adaptation mechanisms: operator scaling (e.g.,

[20, 44, 78, 123]), load distribution [123, 124], backpressure [37], load shedding [89]. For instance,

Mencagli et al. [123] rely on both PID controllers and fuzzy logic in their two-layered adaptive DSP

solution. PID controllers regulate load distribution among parallel operator instances, whereas

fuzzy logic controls scaling actions on longer time scales. Kalyvianaki et al. [89] instead design a

discrete-time control algorithm for load shedding, which at each time step selects the number of

tuples to be processed so as to keep processing latency within a pre-defined value.

Being DSP applications usually modeled as DAGs, it is not surprising that graph theory has also

been used to devise adaptation policies. In particular, it has been applied to drive operator scaling

[87], operator placement [48, 132] and load distribution [23]. For example, Eskandari et al. [48]

present a solution to the operator placement problem based on two-phase graph partitioning. In the

first phase, they partition the application graph to decide which operators should be placed in the

same computing node. Then, a second partitioning is used to assign operators to processes within

each node, so as to minimize inter-node and inter-process communication. Ottenwälder et al. [132]

deal with the placement problem as well and exploit a time-graph to model the migration plans

associated with possible placement solutions for each operator. Based on this time-graph, they

identify the best placement (and, hence, migration plan) solving a shortest path problem.

A few works exploit stochastic modeling tools to devise adaptation policies (e.g., [80, 82, 146, 163]).

For instance, Slo et al. [163] present a load shedding solution for CEP systems, where shedding is

driven by a probabilistic model. They aim at minimizing the impact of dropped events on accuracy,

while keeping latency within a defined bound. Imai et al. [82] and Runsewe and Samaan [146]

both propose infrastructure scaling strategies for DSP systems running in the Cloud, which rely

on predictions of future workloads. In the former work, an ARMA model is used for workload

forecasting; in the latter, a layered multi-dimensional hidden Markov model is used, where the lower
layer predicts resource utilization of single applications, and the top layer predicts the overall

system load based on that information.

A particular class of models that is widely used for performance management is queueing theory,
which has also been applied to DSP systems adaptation (e.g., [55, 76, 113, 147, 172, 180]). For example,

to tackle the operator scaling problem, Fu et al. [55] model DSP applications as queueing networks,

where each operator is associated with a GI/G/k station. The resulting model is used to estimate

application latency and allocate resources accordingly. A similar approach is used by Lohrmann

et al. [113], where, however, each operator instance is modeled as a GI/G/1 station, and Kingman’s

approximation [19] is exploited to estimate latency. Wang et al. [180] instead consider the operator

placement problem, again modeling operators as GI/G/k stations. They use the resulting model

to predict both application latency and throughput, resorting to the Allen-Cunneen formula for

latency approximation [19]. Russo Russo et al. [147] present a vertical operator scaling solution that

leverages Markovian Arrival Processes (MAP) [19] for online characterization of bursty workloads

and the analytical resolution of the associated MAP/MAP/1 queueing models.

Most of the reviewed works rely on heuristic algorithms – in the broad sense explained above –

to plan adaptation (e.g., [2, 7, 36, 57, 59, 62, 64, 102]). For example, Chatzistergiou and Viglas [36]

present fast, linear-time heuristics for the operator placement problem, where they aim at minimiz-

ing inter-node traffic. The placement problem is also considered by Lakshmanan and Strom [102],

whose goal is to minimize the end-to-end latency through an ant colony-based heuristic approach.

Greedy heuristics have been frequently exploited to drive adaptation (e.g., [7, 62–64]). For instance,

Guo and Zhou [62] tackle the joint optimization of operator scaling and placement. Given the

complexity of the resulting formulation, they resort to greedy resolution algorithms.
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Among heuristic approaches, several works have investigated threshold-based algorithms (e.g.,

[27, 57, 60, 79, 95, 106, 141]), where adaptation actions are triggered whenever a certain metric

becomes higher (or lower) than a predefined threshold. For example, Gulisano et al. [60] consider

the operator scaling problem; they trigger scale-out actions whenever resource utilization exceeds

a high utilization threshold, and scale-in actions when utilization is lower than a low utilization

threshold. Kleiminger et al. [95] instead tackle the problem of distributing load between a local

stream processor and the Cloud; to switch between local and remote processing, they monitor the

operator input queue length, triggering adaptation when a maximum size threshold is exceeded.

Ravindra et al. [141] consider a similar environment, where the DSP system spans a hybrid public-

private Cloud. To trigger the allocation of new computing nodes and the switch between private

and public Cloud deployment, they rely on a threshold defined in terms of maximum latency. Huang

and Lee [79] present an adaptive fault tolerance solution, which relies on three user-configurable

threshold parameters: (i) the maximum divergence between the current state and the most recent

backup state, (ii) the maximum number of unprocessed non-backup items and (iii) the maximum

number of not-yet-acknowledged items.

The ever increasing popularity of machine learning (ML) methods has not been ignored by the

DSP community and a few works have investigated the applicability of ML techniques to DSP

adaptation (e.g., [82, 98, 115, 126, 190, 196]), focusing on different methodologies and adaptation

mechanisms. For instance, Kombi et al. [98] exploit regression techniques to forecast the operator

input rate and adjust its parallelism accordingly. To predict workload and resource utilization in

the near future, Lombardi et al. [115] rely on artificial neural networks; these predictions are then

used as the input for a threshold-based operator scaling policy. Isotonic regression is applied by

Zhang et al. [196] to estimate the impact of different batch sizes in a micro-batched DSP system,

and dynamically adjust the configuration based on the workload and operating conditions.

A branch of ML of particular interest is reinforcement learning (RL), a collection of techniques

to learn optimal behaviors in stochastic environments with respect to a set of available actions

and associated rewards. RL has been applied to drive DSP adaptation in, e.g., [8, 25, 38, 68, 108,

115, 148, 160]. Heinze et al. [68] use RL to drive operator scaling considering a reward function

based on operator resource utilization: the closer to a pre-defined target value, the higher the

reward for the agent. Similarly, Cardellini et al. [25] use RL for operator scaling and, specifically,

investigate model-based RL algorithms, which allow for significant reduction of the training phases.

Operator scaling is also considered by Lombardi et al. [115], where RL is used to learn the optimal

utilization thresholds for their policy. Cheng et al. [38] instead leverage RL to allocate resources

to different jobs and tasks in a batched DSP system, using a performance-based reward function

to discriminate good and bad choices. Li et al. [108] consider the operator placement problem,

aiming to minimize the end-to-end latency. Dealing with very large state spaces, they exploit deep

neural networks in conjunction with RL (deep RL). Silva Veith et al. [160] also tackle the placement

problem using RL techniques; in particular, they consider a multi-objective formulation and exploit

various algorithms, including Monte Carlo Tree Search, for its resolution.

4.5 When: Triggers and Time Horizon
In this section, we look at the aspects of adaptation related to time, that is to when adaptation

actions should be performed, and which time horizon should be used for planning.

4.5.1 Trigger. Adaptation actions can either be triggered by periodic timers or in response to

particular events. Timer-based adaptation is simpler to design and implement, as it requires to

set a single parameter (i.e., the adaptation activation interval) and guarantees that the adaptation

policy keeps planning any required action over time. The interval between consecutive adaptation
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rounds usually ranges between few seconds and several minutes. Clearly, this interval should be

short enough to allow the adaptation policy to quickly respond to condition changes; however, too

frequent metrics collection and adaptation planning introduce overheads, so the activation interval

must be set based on a trade-off between responsiveness and efficiency. Timer-based adaptation is

adopted by most existing approaches (e.g., [1, 14, 53, 87, 100, 109, 152, 176]). For instance, Floratou

et al. [53] and Kalavri et al. [87] present operator scaling approaches where the system periodically

collects the required metrics from operators (e.g., throughput) and invokes an adaptation policy.

Other works (e.g., [2, 3, 35, 37, 90, 199]) consider event-triggered adaptation actions. In order to

implement this kind of scheme, one or more types of event must be associated with the execution

of an adaptation policy. In the literature, the most used event for this purpose is the arrival of a new

tuple to a buffer, which is associated with load shedding, load distribution and stream scheduling

strategies (e.g., [2, 90, 92, 199]). For instance, Katsipoulakis et al. [92] present a load distribution

strategy that is triggered every time an incoming tuple is detected. Chaturvedi et al. [35] instead

present an operator reuse strategy where adaptation is triggered whenever a new application is

submitted for execution, or one is terminated. Differently from these works, Ottenwälder et al. [132]

consider user-related triggering events. Indeed, in their geo-distributed CEP placement solution,

operator migrations are planned and possibly executed in response to users’ location changes.

4.5.2 Proactivity. A second important issue is the time horizon considered to plan adaptation

actions. Specifically, reactive approaches look at information from the past to make adaptation

decisions, thus possibly reacting to condition changes. Conversely, proactive strategies make

decisions looking at a limited future time horizon, in order to adapt applications in advance. It

is clear that proactive solutions are harder to realize, as they require predictions about future

working conditions, and their efficacy depends on the accuracy of such predictions. It is therefore

no surprising that the vast majority of the existing approaches rely on reactive adaptation schemes

(e.g., [3, 30, 57, 60, 118, 124, 154, 155, 165, 195]). Examples of reactive policies are given by the

aforementioned threshold-based heuristics, where actions are triggered by threshold violations,

which are usually evaluated against latest available monitoring information (e.g., average resource

utilization in the last minute).

A few works propose proactive adaptation strategies (e.g., [21, 43, 72, 78, 80, 82, 98, 99, 146, 190]),

relying on several different techniques. A key challenge in designing proactive adaptation solutions

is forecasting the application load in the near future, especially for operator and infrastructure

scaling strategies. Zacheilas et al. [190] deal with this issue exploiting regression methods based on

Gaussian Processes for workload prediction; Imai et al. [82] and Hoseiny Farahabady et al. [78] rely

on, respectively, ARMA and ARIMA forecasting models; Hidalgo et al. [72] model the incoming load

using a Markov chain; a more complex state-based method is used by Runsewe and Samaan [146],

where multi-layer hidden Markov models are considered. Buddhika et al. [21] instead design a

custom data structure, called prediction ring, to track data stream arrivals and predict resource

utilization. Prediction rings are similar to circular buffers, where exponential smoothing is used to

update arrival rate estimates over time. The data structure is also used to compute an interference

score that quantifies the impact of placing an additional operator instance alongside other instances

on a givenmachine. Besides prediction, another issue is related to proactive control and optimization

of adaptation actions. Some works (e.g., [43, 77]) exploit model predictive control (MPC), a control-

theoretic approach that uses a model to predict the future system behavior over a limited prediction

horizon. For instance, De Matteis and Mencagli [43] use MPC to control operator scaling and

optimize a multi-objective cost function, which accounts for QoS violations, resource usage, and

adaptation overhead. Similarly, Kumbhare et al. [99] propose a lookahead optimization approach,

where a prediction model is used to solve an optimization problem over a sliding future time
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Fig. 10. Publications dealing with geographical distribution, resource heterogeneity and Edge-based deploy-
ments throughout the last decade.

window, and accordingly control auto-scaling. They consider a utility maximization problem, with

a constraint on the minimum application throughput to be guaranteed.

4.6 Where: Computing Environment
The last question we analyze is related to where adaptation is implemented. DSP systems are

deployed in a variety of different environments, including parallel multi-core servers, Cloud in-

frastructures, and Fog/Edge platforms. As these computing environments exhibit very different

characteristics, adaptation strategies usually make some assumptions about the environment they

target. In particular, we characterize target environments looking at their degree of system dis-

tribution, the heterogeneity of the offered computing resources, the inclusion of nodes located at

the Edge, and the availability of specialized hardware. It is clear that these aspects are partially

correlated (e.g., solutions targeting Edge platforms are more likely to consider geographically

distributed deployments and heterogeneous nodes). In recent years increasing attention has been

devoted to Fog/Edge platforms and geo-distributed settings in general, not only in the DSP domain.

This trend is confirmed by our literature review, which shows a growing number of adaptation

strategies dealing with this kind of environments as well as resource heterogeneity (see, Figure 10).

4.6.1 System Distribution. We first look at the degree of distribution of the computing environment.

Some works target single-machine environments, exploiting the parallelism provided by multi-

core and multi-processor architectures (e.g., [56, 86, 123, 124, 154, 156]). In these environments,

the most investigated issues are operator scaling and stream scheduling, which enable efficient

utilization of the hardware. For instance, Kahveci and Gedik [86] present Joker, a DSP run-time

that is able to automatically scale the execution of Java-based multi-threaded DSP applications.

Schneider and Wu [156] tackle the same problem for applications running on top of IBM Streams,

presenting a solution to fully exploit the parallelism provided by machines with hundreds of cores.

De Matteis and Mencagli [44] also target multi-threaded scenarios, additionally considering energy

consumption in their resource allocation policy. Conversely, Fu et al. [56] consider the problem

of scheduling the execution of operators in a time-sharing fashion on resource-constrained Edge

nodes, where the number of available cores is likely smaller than needed.

Most of the reviewed works target (locally) distributed computing environments, where DSP

systems can scale their execution on several nodes (e.g., [7, 20, 27, 48, 50, 67, 93, 109, 120, 196]).

In addition to operator scaling, which is widely adopted also in single-machine environments,

operator placement is particularly relevant for distributed DSP systems, where potential increases

in computing capacity come at the cost of inter-node communication, whose performance impact

might be significant. For instance, Eskandari et al. [48] and Wu et al. [184] propose placement

solutions aiming to minimize the network traffic produced by operator instances, as well as Huang
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et al. [80], who focus on load distribution. Distributed infrastructures, especially those in the Cloud,

often provide the additional benefit of being elastic, i.e., computing nodes can be provisioned as

needed at run-time. Indeed, infrastructure-level scaling is investigated, e.g., by Marangozova-Martin

et al. [120] and Borkowski et al. [20], where it is coupled with operator scaling.

A few works (e.g., [30, 131, 132, 138, 144, 153, 175, 181, 193]) have investigated adaptation for

DSP systems in geographically distributed environments, where network-related aspects such

as delay, unreliability, limited bandwidth play a key role. For this reason, operator placement is

even more relevant in this context, as operator instances must be carefully assigned to computing

nodes taking into account network aspects. This problem is tackled, e.g., by Rizou et al. [144],

where a distributed optimization algorithm is used to find a placement solution that minimizes

the amount of data sent over network. Pietzuch et al. [138] also present a decentralized solution

for the placement problem exploiting a physics-inspired model, which enables minimization of

the network usage. Saurez et al. [153] specifically target Fog computing scenarios, and devise a

run-time placement adaptation strategy to migrate operators and satisfy latency requirements.

4.6.2 Resource Heterogeneity. For distributed infrastructures, a key question is whether computing

nodes are assumed to be homogeneous (i.e., they have identical technical specifications) or heteroge-
neous. So far, most of the solutions have targeted homogeneous environments, but a few works

consider more challenging, heterogeneous settings (e.g., [46, 64, 91, 100, 131, 132, 148, 155, 180]).

Among the various mechanisms, operator placement is particularly impacted by heterogeneity.

For instance, Kalyvianaki et al. [91] present a placement model in which computing nodes can be

equipped with different amounts of resources (e.g., CPU cores). Heterogeneous nodes also call for

proper load distribution strategies, as instances deployed on more powerful nodes are expected to

process more data. To this end, Du and Gupta [46] investigate a latency-based load distribution

scheme for heterogeneous platforms, where load imbalance among operator instances is measured

in terms of processing latency. Conversely, Schneider et al. [155] aim to minimize the time TCP

connections between operators are blocked because of full buffers, which happens when an operator

is overloaded. Kumbhare et al. [100] consider a Cloud DSP system with heterogeneous VMs and

study an operator and infrastructure scaling strategy. To make decisions about the VMs to allocate

and deallocate when needed, they associate each VM with a weight, which accounts for the amount

of resources available on that VM, its cost, and the remaining time in the current billing cycle.

4.6.3 Edge Deployment. The idea of deploying DSP applications in Edge platforms is attractive to

avoid moving user-generated data towards data centers and, thus, reducing latency and bandwidth

consumption. There is a limited number of adaptation solutions dealing with Edge computing

environments (e.g., [8, 32, 56, 131, 160, 193]), but their number has been growing over the last couple

of years. For instance, O’Keeffe et al. [131] maximize the throughput achieved by applications

running on top of IoT devices at the Edge, exploiting stream routing techniques inspired by back-

pressure routing in data networks. Aral et al. [8] consider a specific class of streaming applications,

where incoming data streams are used to train ML models. They envision a distributed learning

architecture, where local models are trained at the Edge and periodically sent to the Cloud, where

they are aggregated and broadcasted. Their adaptive solution dynamically adjusts the frequency of

updates from Edge to Cloud so as to keep model staleness under control.

4.6.4 Specific Hardware. While most of the existing DSP systems are designed to run on commodity

hardware, there is an increasing interest for hardware-conscious streaming systems, which can

be optimized to fully exploit specific hardware architectures. While the number of DSP systems

dealing with hardware other than general-purpose CPUs is large and growing, as surveyed by

Zhang et al. [197], few of them involve run-time adaptation. Among the solutions reviewed in this
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work, those targeting specific hardware are [5, 44, 47, 97]. For instance, Koliousis et al. [97] present

SABER, a hybrid relational DSP engine for CPUs and GPGPUs, which dynamically schedules

operators to the most suitable processor based on online observations. Aljoby et al. [5] instead

target specific hardware at the network level, assuming the availability of SDN-enabled switches.

5 CHALLENGES AND RESEARCH PERSPECTIVES
Our review shows that a lot of ground has been covered on adaptive DSP. However, there are still

areas in which we expect more research to be carried out in the next years, also based on the trends

we have highlighted above. In this section, we briefly outline the main open challenges and future

directions we envision for this field.

5.1 Multiple Adaptation Mechanisms
Our classification shows that more than 70% of the considered solutions focus on a single adaptation

mechanism, applied in isolation, and 90% of them consider no more than two mechanisms. The

mechanisms most frequently exploited in conjunction are (i) operator placement and scaling,

to optimize both the number and the deployment of operator instances (e.g., [26, 62, 182]), and

(ii) operator and infrastructure scaling, to elastically provision computing resources based on

application parallelism (e.g., [3, 20, 172]). To provide more general solutions, more effort must be

spent to tackle the challenges of multi-mechanism adaptation. On the one hand, joint adaptation

requires careful investigation of the possible interactions between different mechanisms. On the

other hand, the problem of adaptation planning, which is often complex with a single mechanism,

becomes even more challenging when multiple mechanisms must be jointly controlled.

Furthermore, our analysis also shows that some mechanisms have received much less attention

that others and, thus, much is still to be done for a complete exploration of these tools. A few

mechanisms, such as query re-planning or configuration tuning, have been thoroughly investigated

for static application optimization, but their adoption at run-time is still limited. Other mechanisms

are likely to receive new (or renewed) interest thanks to technology advancements that enable

their efficient adoption (e.g., widespread use of software containers will foster the adoption of

vertical operator scaling techniques; the increasing support for SDN will boost the exploration

of network-level adaptation). Similarly, we expect hardware-specific adaptation mechanisms like

adaptive query compilation [97] to gain popularity, given the increasing availability of DSP systems

able to efficiently exploit specialized computing platforms such as GPGPUs and FPGAs [197].

5.2 Integrated Support for Adaptation
Introducing adaptation into existing DSP frameworks often requires to cope with inefficient support

for application reconfiguration (e.g., [16, 75, 125, 137, 159, 179]), as most the frameworks have been

designed with performance, ease of programmability, and fault tolerance as primary objectives. As

DSP systems run in increasingly dynamic environments, we expect a shift in the role of application

adaptability, which will become a key pillar in the design of future systems.

On the one hand, we expect DSP system architectures to become more decentralized, especially

as regards the control plane. By doing so, systems will gain flexibility and scalability, which will

enable fine-grained control of the system components, from operator instances to buffers and

network resources. Some effort has already spent in this aim, e.g., by Mai et al. [119], who have

proposed a programmable control plane for distributed DSP that enables scalable reconfiguration.

On the other hand, as adaptation becomes a first-class citizen, we expect QoS objectives, which are

usually provided as configuration parameters for adaptation, to become primary entities in the

definition of DSP applications. Therefore, we expect extended programming models to enable the
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definition of parameters such as the minimum required throughput, availability, consistency, or the

allowed inaccuracy at different stages of processing, along with the application topology.

5.3 Edge/Fog and Mobile Computing Platforms
As data streams often originate from devices at network edges (e.g., IoT devices), many appli-

cations would benefit from running closer to their sources, exploiting Fog and Edge computing

environments. However, the most popular frameworks (e.g., Flink, Storm) are equipped with data

processing layers designed for large and locally distributed server-based platforms. To effectively

support real-time analytics at the edge of the network, this layer should be re-designed for con-

strained devices (e.g., with limited energy, or processing capacity), calling for specific lightweight

frameworks. While some effort has been recently spent in this aim (e.g., [56, 183, 187, 193, 194]),

but we expect this direction to be further explored as edge-oriented DSP frameworks are still far

from the solidity of the established alternatives.

Application deployment also requires more attention in Edge/Fog environments, because of the

higher heterogeneity and the more evident impact of network due to larger delays and limited

bandwidth. Indeed, network-aware Edge placement strategies for DSP have been proposed both for

off-line (e.g., [140, 150]) and on-line (e.g., [32, 153, 160]) deployment optimization. Nevertheless, a

significant gap exists between the richness of adaptation solutions for Cloud-based DSP systems and

the set of those applicable to Fog/Edge platforms. For instance, while scaling-out is the most widely

adopted mechanism to improve performance over Cloud-class resources, the resource scarcity of

Edge devices calls for different resource acquisition strategies.

Moreover, moving DSP applications at the Edge possibly means dealing with mobile sources and
mobile processing nodes, which can have a disruptive impact on application functionality. Initial

effort has been spent to tackle the challenges associated with mobile DSP (e.g., energy consumption

and unreliable network connectivity) (e.g., [32, 131, 170]), but there are still several issues to be

addressed (e.g., smooth operator migration and specific fault-tolerance mechanisms).

5.4 Serverless DSP
Serverless computing [29] is increasingly popular thanks to the scalability and flexibility it promises,

as well as its attractive pricing models. Researchers have started to investigate the use of serverless

for data analytics (e.g., [129]), in the aim of relieving users from several operational concerns.

However, in terms of performance, serverless computing environments have a few limitations that

prevent seamless adoption for DSP. First, the stateless and ephemeral nature of serverless functions

(i) forces operator internal state to be stored externally with possible overheads, and (ii) prevents

operators to directly exchange data streams, having to resort to data stores for in-transit data.

While researchers have started addressing these issues (e.g., [96]), the major serverless platforms

still suffer from these limitations. Furthermore, for real-time data analytics another important issue

is related to the cold start phenomenon [29], which can lead to latency spikes.

As research on serverless platforms continues, these limitations will be likely mitigated or

removed. Nevertheless, DSP systems will have to be adapted or, even, re-designed to fully exploit

serverless environments. Run-time application adaptation will require some effort as well, as the

mechanisms and policies used so far will not necessarily fit the new processing paradigm.

5.5 Security Guarantees
DSP applications often cope with privacy-sensitive information or perform analytics tasks that

may trigger safety-critical operations (e.g., anomaly detection in a manufacturing system). In either

case, stream integrity and confidentiality must be guaranteed to avoid unintended (and possibly

dangerous) behaviors. So far, security and privacy for DSP have received less attention compared
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to other aspects. Most of the related effort has been devoted to access control mechanisms for data

streams (e.g., [28]) and privacy preservation techniques (e.g., [103]). A few works exploit specialized

hardware features for increased security. For instance, Havet et al. [65] propose SecureStreams,
combining a high-level dataflow programming model with low-level Intel Software Guard Extensions
(SGX) to guarantee stream privacy and integrity. Park et al. [135] consider analytics on untrusted,

resource-constrained Edge devices and present StreamBox-TZ, which offers strong data security

and verifiable results by isolating computation in ARM-based Trusted Execution Environments.
Differently, Chaturvedi and Simmhan [34] apply Moving Target Defense, where the key idea is

varying system configuration (e.g., used port numbers, application topology) at run-time so that

any prior information available to attackers becomes hardily usable.

Security and privacy aspects must be also considered when deploying the applications over

distributed infrastructures. So far, security-related concerns have been mostly neglected by the

literature on DSP application placement, with few exceptions (e.g., [149, 153]). We expect security

aspects to be increasingly included in run-time adaptation solutions.

6 SUMMARY
We reviewed the existing approaches for run-time adaptation of DSP applications and systems.

Relying on the “5W1H” approach, we presented a taxonomy of the most relevant solutions, which

allowed us to identify past and present trends within this research area. A complementary taxon-

omy focused on the implementation and experimental evaluation of the solutions is available in

Appendix B. While a significant amount of work has been carried out on the topic, we identified a

few gaps that still exist in the literature, especially as regards recent trends (e.g., Fog/Edge-based

application deployment). Based on these observations, we outlined some research directions that

we expect to be pursued in the near future, to enhance current DSP systems and develop new ones.
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The appendix comprises two main sections. Appendix A provides details on the classification of the reviewed

works with respect to the taxonomy presented in the paper. Appendix B introduces a complementary taxonomy

focused on the implementation and evaluation of adaptation solutions.

Note: bibliographic references at the end of this appendix must be regarded as complementary to the bibliography
provided in the paper.

A SELECTION AND CLASSIFICATION OF THE REVIEWED ADAPTATION SOLUTIONS
This section complements the taxonomy presented in Section 3, including details on the selection

and classification of the reviewed works. As regards the selection of the relevant publications, we

adopted the following approach:

(1) A core collection of works was first identified relying on direct authors’ knowledge of the

research field.

(2) We enlarged this core collection through various iterations of backward snowballing [214],

which allowed us to identify related works not included in the first step.

(3) Analyzing the selected papers, we identified the most frequent publication venues (i.e.,

journals or conferences with 4+ selected publications). Checking the lists of papers published

in these venues, we added further papers to the collection.

(4) As a final step, we performed searches for relevant keywords (e.g., “stream processing”, “data

streaming”) on publication databases (i.e., Elsevier Scopus, Google Scholar, DBLP).

It is worth noting that many research works in the literature consider the same mechanisms we

have presented in Section 2.4 for static application optimization (e.g., initial operator placement,

static operator parallelization, offline topology re-planning). These works have not been considered

in our study, which is focused on run-time DSP adaptation. We eventually reviewed and classified

147 publications for this survey. Table 1 provides information about the most popular publication

venues among the reviewed works, while in Figure 1 we reported the distribution over time of the

relevant publications.

In the following, we report the detailed classification of the reviewedworks on DSP run-time adap-

tation. Figure 11 illustrates the taxonomy we consider. Table 3 shows the resulting characterization

of each work, with Table 2 providing a legend of the used labels and abbreviations.

Table 2. Description of the labels used in Table 3.

Group Legend

What
Mechanism AA Algorithm adaptation AR Active replication

BP Backpressure BS Dynamic batch sizing

CP Adaptive checkpointing CT Configuration tuning

DA Deployment adaptation IS Infrastructure scaling

(continued on next page)



1:2 Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo

Table 2. Description of the labels used in Table 3.

Group Legend

(continued from previous page)
LD Load distribution LS Load shedding

NT Network adaptation OF Operator fusion

OP Operator placement OR Operator reuse

OS Operator (horizontal) scaling TA Topology adaptation

TS Stream scheduling VS Operator vertical scaling

Granularity A Application G Group of operators

H Computing node MB Micro-batch

NL Network link O Operator

T Tuple

Why
Objective S Single objective M Multiple objectives

C Constraints satisfaction

Metric AC Accuracy AO Adaptation overhead

AV Availability C Cost

DL Data loss E Energy

F Fairness L Processing latency

LI Load imbalance NU Network usage / traffic

Q Queue length S Data staleness

T Throughput U Resource utilization

UF Custom utility function (O) Other

Who
Authority C Centralized D Decentralized

H Hybrid / Hierarchical

Multi-tenancy S Single tenant M Multiple tenants

How
Methodology C Control theory GM Game theory

GR Graph theory H Heuristic

HG Heuristic - Greedy HT Heuristic - Threshold-based

ML Machine learning RL ML - Reinforcement learning

OP Mathematical optimization Q Queueing theory

SM Stochastic modeling

When
Trigger E Event P Periodic timer

Proactivity P Proactive R Reactive

Where
Distribution SM Single machine LD Local distribution

GD Geographical distribution

Others ✓ Yes x No
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Fig. 11. Illustration of the taxonomy.
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Table 1. Most popular publication venues among the reviewed works.

Venue Type # of Publications Frequent Venues (≥ 3 works)

Journal 46

IEEE Trans. Par. Dist. Syst. (13)

VLDB Endow. (6)

Fut. Gen. Comp. Sys. (4)

IEEE Trans. on Cloud Comput. (4)

ACM Trans. Database Syst. (3)

Conference 102

ICDE (11)

DEBS (9)

Middleware (9)

ICDCS (8)

SIGMOD (7)

CCGRID (6)

SoCC (3)

CLOUD (3)
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Table 3. Categorization of existing approaches for self-adaptive DSP (see Tab. 2 for a legend).

What Why Who How When Where

Paper Mech. Entit. State Obj. Metric Auth. Tenancy Method. Trigger Proact. Distr. Heter. Edge Sp.Hw.

Abadi et al. [1] LS,OP,TA,TS O,T ✓ S UF H S H P R LD

Abadi et al. [2] LS,OF,TA O,T M AC,DL,L H S H E R SM

Abdelhamid et al. [3] IS,LD,OS T,O,H ✓ M,C L,LI C S HG,HT E R LD

Aljoby et al. [5] NT NL S,C F,NU,UF C M H,OP P R LD ✓
Amini et al. [6] BP,VS O S,C Q,T H S C,OP P R LD

Aniello et al. [7] OP O x S NU C S HG P R LD ✓
Aral et al. [8] AA A ✓ S S,UF C S RL,SM P P GD ✓
Babcock et al. [11] LS A,T S,C AC,U C S H,SM E R SM

Balazinska et al. [13] LD T S,C U,UF D M GM,H E R GD

Balkesen et al. [14] LD,OS T,O ✓ S U C S H P P LD

Bellavista et al. [17] AR O ✓ S,C C,DL C S H,OP P R LD

Bellavista et al. [18] TS T C (O) D S H E R LD

Borkowski et al. [20] IS,OS O ✓ M AO,NU,U D S C P R LD

Buddhika et al. [21] OP O ✓ M NU,U C S H P P LD

Cammert et al. [22] CT O ✓ S,C (O),U C S H E;P R SM

Caneill et al. [23] LD T ✓ S NU D S GR P R GD

Cardellini et al. [25] OS O ✓ M AO,C,L H S RL P P LD

Cardellini et al. [26] OP,OS O ✓ M,C AO,C,L C S OP P R GD ✓
Cardellini et al. [27] OS O ✓ S U C S HT P R LD

Cerviño et al. [30] IS O S T C S H P R GD ✓
Chao and Stoleru [32] LD,OP,TS T,O M,C (O),AV C S H,OP E R LD ✓ ✓
Chao et al. [33] OP,OS O M,C E,L,LI C S H,OP P R LD ✓ ✓
Chaturvedi et al. [35] OR G S U C M H E R LD

Chatzistergiou and Viglas [36] OP G x M NU,U C S H P R LD ✓
Chen et al. [37] BP A ✓ M L,T C S C E P LD

Cheng et al. [38] BS,CT,OS,TS MB,A ✓ M L,T C M C,RL P R LD

Das et al. [41] BS A C U C S OP P R LD

De Matteis and Mencagli [43] OS O ✓ M AO,C,E,L,T H S C P P LD

De Matteis and Mencagli [44] OS,VS O ✓ M AO,C,E,L,T C S C P P SM ✓
Du and Gupta [46] CP,LD T x S L C S H P R LD ✓

(continued on next page)
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Table 3. Categorization of existing approaches for self-adaptive DSP (see Tab. 2 for a legend).

What Why Who How When Where

Paper Mech. Entit. State Obj. Metric Auth. Tenancy Method. Trigger Proact. Distr. Heter. Edge Sp.Hw.

Eibel et al. [47] VS H ✓ S,C E H S H P R LD ✓
Eskandari et al. [48] OP O S NU C S GR P R LD

Fang et al. [49] AR,LD T ✓ S,C AO,LI D S H E R LD

Fang et al. [50] LD T ✓ S,C AO,LI C S H P R LD

Farhat et al. [51] TS O ✓ M L,U D S H P R LD

Fernandez et al. [52] IS,OS O ✓ C U C S HT P R LD

Floratou et al. [53] OS O ✓ C T,U C S H P R LD

Fu et al. [55] OS O ✓ S L C S HG,Q P R LD

Fu et al. [56] TS T,O M L,T H S Q E R SM ✓
Gedik et al. [57] OS O ✓ C T,U C S HT P R LD

Gu et al. [59] DA O M,C U,UF H M H E R GD

Gu et al. [206] AR,DA O M,C U,UF H M H,OP E;P P,R GD

Gu et al. [207] FT H,O S DL D S H,ML E P LD

Gulisano et al. [60] LD,OS O,T ✓ C U C S HT P R LD

Guo and Zhou [62] OP,OS G ✓ M AO,NU C S HG,OP P R LD

Guo and Zhou [63] LD T ✓ M AO,LI D S HG,OP P R LD

Han et al. [64] OP O S,C U C S HG P R LD ✓
Heintz et al. [66] AA A M NU,S C S H,OP P R GD ✓ ✓
Heinze et al. [67] OP,OS O ✓ C AO,U C S H,HT P R LD

Heinze et al. [68] OS O ✓ S U C S RL P P LD

Heinze et al. [69] OS O ✓ S,C C,L C S H P R LD

Heinze et al. [70] AR O ✓ S,C L,U C S H P R LD

Hidalgo et al. [72] OS O x C U C S HT,SM P P,R LD

Hochreiner et al. [74] OS O ✓ M,C C,U C S HT,OP P R GD ✓
Hoseiny Farahabady et al. [76] VS O C L C M C,Q P P LD

Hoseiny Farahabady et al. [77] IS,OP O,H S,C U,UF C M C P P LD ✓
Hoseiny Farahabady et al. [78] VS O M L,U D M C,OP,Q P P LD

Huang and Lee [79] CP T ✓ C (O) C S HT E R LD

Huang et al. [80] LD T x S NU D S OP,SM P P LD

Hwang et al. [81] AR O x S,C C,L C S H P R LD

(continued on next page)



R
un-tim

e
A
daptation

ofD
ata

Stream
Processing

System
s:The

State
ofthe

A
rt

1:7

Table 3. Categorization of existing approaches for self-adaptive DSP (see Tab. 2 for a legend).

What Why Who How When Where

Paper Mech. Entit. State Obj. Metric Auth. Tenancy Method. Trigger Proact. Distr. Heter. Edge Sp.Hw.

Imai et al. [82] IS H S T C S ML,SM P P LD

Jlassi and Tedeschi [84] OP,OR,OS O S,C NU,U C S H E R LD

Jonathan et al. [85] OP,OS,TA O ✓ M AO,L C S H P R GD

Kahveci and Gedik [86] OS O ✓ S T C S H P R SM

Kalavri et al. [87] OS O ✓ C T C S GR,H P R LD

Kalim et al. [88] OS O ✓ M L,T,UF C M H P R LD

Kalyvianaki et al. [89] LS T S L C S C P R LD

Kalyvianaki et al. [90] LS T ✓ S,C F D M H E R GD

Kalyvianaki et al. [91] OP,OR O C U C S OP P R LD ✓
Katsipoulakis et al. [92] LD T ✓ M (O),LI C S H E R SM

Katsipoulakis et al. [93] LS T ✓ S,C AC,U C S H E R LD

Katsipoulakis et al. [94] AA O ✓ S,C AC,U D S SM E R LD

Kleiminger et al. [95] LD T S T C S HT E R GD ✓
Koliousis et al. [97] OP O ✓ S T C S H P P SM ✓ ✓
Kombi et al. [98] OS O ✓ S T C S ML P P LD

Kumbhare et al. [99] AA,OP,OS O S,C T,UF C S H P P LD

Kumbhare et al. [100] AA,IS,OP,OS O x S,C C,T,UF C S H P R GD ✓
Lakshmanan and Strom [102] OP,OR O x S L D S H P R GD ✓
Lei and Rundensteiner [105] LD,TA A ✓ C C,U C S OP P R LD

Le Quoc et al. [104] AA T C C,L,T D S H E R LD

Li et al. [106] OS O ✓ C Q,U C S HT P R LD

Li et al. [108] OP O S L C S ML,RL P P LD ✓
Liao et al. [109] LD O ✓ S L C S H P R LD

Liu and Buyya [110] OP O S,C NU C S H P R LD ✓
Liu et al. [112] OS O x M L,T C S H P R LD

Lohrmann et al. [113] OS O S,C C,L C S OP,Q P R LD

Lohrmann et al. [114] CT,OF O ✓ S L C S H P R LD

Lombardi et al. [115] IS,OS O x C U C S HT,ML,RL P P LD

Luthra et al. [116] OP O ✓ S AO C S H P R GD ✓ ✓
Madsen et al. [117] LD,OP O ✓ S,C AO,LI C S OP P R LD

(continued on next page)
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Table 3. Categorization of existing approaches for self-adaptive DSP (see Tab. 2 for a legend).

What Why Who How When Where

Paper Mech. Entit. State Obj. Metric Auth. Tenancy Method. Trigger Proact. Distr. Heter. Edge Sp.Hw.

Madsen et al. [118] OF,OS O ✓ M L,NU C S H P R LD

Marangozova-Martin et al. [120] IS,OS O ✓ C U C S H P R LD ✓
Mei et al. [121] OP,OS,VS O ✓ C L C S H P P LD ✓
Mencagli [122] OS O M C,T D S GM P R LD ✓
Mencagli et al. [123] LD,OS T ✓ S U C S C E R SM

Mencagli et al. [124] LD T S U C S C P R SM

Mu et al. [126] OS O M AO,C,T C S ML P P LD

Ni et al. [130] OS O S T C S C,H P R SM

O’Keeffe et al. [131] LD T ✓ S T D S H P R GD ✓ ✓
Ottenwälder et al. [132] OP O ✓ M AO,L,NU D S GR,H,OP E P GD ✓
Palyvos-Giannas et al. [133] TS A,O ✓ M L,T,U D M H E R LD ✓ ✓
Papaemmanouil et al. [134] OP,OS O ✓ M C,L,U D S OP P R GD ✓
Pham et al. [136] LS,VS A S,C DL,L C M HT P R SM

Pietzuch et al. [138] OP O ✓ S NU D S H P R GD ✓
Ravindra et al. [141] AA,IS,OS O,T ✓ C L C S HT P R GD ✓
Repantis et al. [142] OP,OR O C L,NU D M H E R GD

Rivetti et al. [143] LD T x S L C S H E R LD

Rizou et al. [144] OP O S NU D S H,OP E R GD

Runsewe and Samaan [146] IS H - - C S SM P P LD

Russo Russo et al. [147] VS O ✓ S,C C,L C S Q,SM P R LD

Russo Russo et al. [148] OS O M AO,C,L H S RL P P LD ✓
Satzger et al. [152] IS,OS O ✓ C U C S HT P R LD

Saurez et al. [153] OP O ✓ C L,U H S H,HT P R GD ✓ ✓
Schneider et al. [154] OS O ✓ C U C S H P R SM

Schneider et al. [155] LD T x S (O) D S OP P R LD ✓
Schneider and Wu [156] OS O S T C S H P R SM

Shah et al. [157] LD T ✓ M AO,LI D S H E R LD

Sharaf et al. [158] TS O S L C S SM E R SM

Silva Veith et al. [160] OP O ✓ M,C AO,C,L,NU C S RL P P GD ✓ ✓
Singh et al. [161] CT,VS O ✓ C Q,U C S H P R LD ✓

(continued on next page)
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Table 3. Categorization of existing approaches for self-adaptive DSP (see Tab. 2 for a legend).

What Why Who How When Where

Paper Mech. Entit. State Obj. Metric Auth. Tenancy Method. Trigger Proact. Distr. Heter. Edge Sp.Hw.

Slo et al. [162] LS T ✓ S,C L,UF D S H,SM E P SM

Slo et al. [163] LS T ✓ S,C L,UF D S H,SM E P SM

Sun et al. [165] LD T ✓ S,C U C S H E R LD ✓
Sun et al. [166] OP O M E,L C S H P R LD ✓
Tatbul et al. [168] LS T S,C AC,U C S H,OP P R SM

Tatbul et al. [169] LS T S,C DL,U C;D S H,OP P R LD

Tolosana-Calasanz et al. [172] IS,OS O,H S,C C,L C S C,Q P R GD

Tudoran et al. [175] CT O ✓ S L C S H P R GD

van der Veen et al. [176] IS H M Q,U C S HT P R LD

Venkataraman et al. [177] IS,TS MB S L D S H P P LD

Wang et al. [178] OS O ✓ S L C S HT P R LD ✓
Wang et al. [179] LD,OS O ✓ S,C AO C S H,Q P R LD

Wang et al. [180] OP O x M L,T C S H,Q P R LD ✓
Wang et al. [181] OF,OP O,G S L C S GR,H P R GD ✓
Wei et al. [182] OP,OS,VS O S,C C,E,L,NU C S H,OP,Q P P LD

Wu et al. [184] OP O S NU C S H P R LD

Xia et al. [215] LD,OP O,T S,C U,UF D S GR,OP E R GD

Xing et al. [185] OP T ✓ S AO,L C S HG P R LD

Xu et al. [186] OP O S NU C S H P R LD ✓
Xu et al. [188] OS O x S T C S H P R LD

Xu et al. [189] TS T ✓ C L D M H E R LD

Zacheilas et al. [190] OS O ✓ M AO,C,DL C S GR,ML P P LD

Zacheilas et al. [191] LD T ✓ M LI,NU C S H,OP E R LD

Zamani et al. [193] OP,OR A,O S,C C,L,NU C M OP E R GD ✓ ✓
Zhang et al. [195] AA O M AC,L C S OP P R GD

Zhang et al. [196] BS A ✓ S L C S H,ML E P LD

Zhou et al. [198] OP G ✓ S UF C S H P R LD

Zhou et al. [199] TS T ✓ S C,T,UF D M H E P SM
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B EVALUATION OF RUN-TIME ADAPTATION STRATEGIES
In this section, we focus on how adaptation solutions are evaluated. Assessing the effectiveness

and efficiency of DSP adaptation strategies is not trivial, because of the number of factors that

come into play, such as the targeted DSP framework, the considered applications, their workloads

and the input data sets used for experimentation. Such complexity has led researchers to adopt

a variety of assumptions and strategies in their experiments, as demonstrated by our review. For

this reason, although some recurring trends will be highlighted, a commonly adopted, reference

methodology for experimentation in this field is not yet available.

We consider a few key features to classify the reviewed works with respect to the performed

evaluation, as illustrated in Figure 12. First, we look at the implementation of the proposed solutions,
identifying the DSP framework where they are integrated (if any) and checking whether the

associated source code has been publicly released.
2
As regards the applications used for evaluation,

we check whether they are from public benchmarking suites, whether multiple applications are

considered and whether more than a single application instance is concurrently executed in the

experiments. Indeed, some works consider multiple DSP applications for evaluation, but only

one of them is executed in each experiment; other works consider a single reference application,

but multiple instances of the application are executed concurrently in the experiments (e.g., to

investigate performance interference). Furthermore, we look for the presence of any stateful and

window-based operators in the considered applications.

We also look at data sets, that is input data used to feed the applications, and workloads, that is
the arrival dynamics of these data (e.g., whether real timestamps or a Poisson process are used to

replay the data streams). For both data sets and workloads, we check whether real or synthetic

data are used, whether those data are publicly available, and whether multiple configurations are

used in the experiments.

In Table 5, we report the full characterization of the reviewed works with respect to the presented

evaluation (a legend of the symbols appearing in the table is provided in Table 4). In the following,

we will discuss the main findings of our analysis.

B.1 Implementation
The vast majority of the reviewed adaptation strategies (i.e., about 85%) have been evaluated by

means of a prototype implementation. Looking at the frameworks on top of which these solutions

have been built, it can be noted that 6 of them account for more than half the implementation

efforts (i.e., Borealis, Heron, IBM Streams, Flink, Spark, Storm).

The most used framework so far is Apache Storm3
[213], which is employed, e.g., in [7, 25, 36, 46,

50, 56, 62, 64, 82, 88, 93, 106, 110, 115, 120, 176, 186]. Storm is an open-source DSP system designed

for distributed, low-latency processing. It was initially developed at Twitter and first released in

2011; since 2014 it has been developed within the Apache Software Foundation.

Twitter Heron4 [209], first released in 2015, has been developed with the aim of overcoming

the main limitations of Storm, especially as regards fault tolerance, complexity of application

debugging, and operation in multi-tenant cluster environments. So far, Heron has been considered

in [47, 53, 87], where operator scaling strategies are presented.

2
We verified whether (i) a link to the source code has been included in the publication and (ii) a public repository can be

found using a search engine. As such, we may have classified as not publicly available solutions whose implementation is

actually public but we could not find a link.

3
http://storm.apache.org

4
https://apache.github.io/incubator-heron/

http://storm.apache.org
https://apache.github.io/incubator-heron/
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Evaluation

Implementation Framework / platform

Open source

Applications Benchmark suite

Multiple applications

Concurrent execution

Stateful operators

Window operators

Data sets Real or synthetic

Public availability

Multiple data sets

Workloads Real or synthetic

Public availability

Multiple workloads

Fig. 12. Dimensions used to classify the reviewed works with respect to the conducted evaluation.

Apache Flink5 [205] is another distributed streaming engine that enables low-latency data analysis.

Differently from the aforementioned frameworks, which focus on data streams, Flink provides a

unified solution for both bounded and unbounded data sets, that is both batch and streaming data

processing. Flink also provides several high-level APIs and libraries that simplify the implementation

of common data analytics use cases, such as graph analytics. Self-adaptation strategies have

been built on top of Flink for operator scaling [76, 87], operator placement [85] and algorithm

adaptation [104].

Similarly, Apache Spark6 [216] supports both batch and streaming applications. However, while

batch processing in Flink is built on top of a core streaming engine, Spark was developed with

batch scenarios in mind. The Spark Streaming module enables data streaming on top of Spark core

by means of a micro-batch mechanism, thus making this solution not suitable when low latency

is a critical requirement. Spark has received significant attention in the last years, with various

adaptive strategies built on top of it (e.g., [3, 37, 38, 41, 177, 196]). Most of them deal with issues

5
http://flink.apache.org

6
http://spark.apache.org

http://flink.apache.org
http://spark.apache.org
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specifically related to the micro-batched nature of Spark Streaming, such as micro-batch sizing

[41, 196] or scheduling [38, 177].

IBM Streams7 [201, 203] is a data streaming platform by IBM, which was first released in 2009

and has undergone continuous development since then.
8
Self-adaptation solutions built on top of

Streams deal with operator scaling [57, 130, 156] and load distribution [155].

Borealis9 [1] is a distributed streaming engine, which has received significant attention within

the research community in the past. Although the project has not been actively developed since

2008, a few reviewed works have been integrated in Borealis (e.g., [14, 138, 169, 185]).

The solutions not based on any of the aforementioned frameworks rely on other platforms,

which are not (yet) popular within the research community (e.g., Turbine [121], Samza [161]), or
their authors exploited their own DSP platforms.

When a prototype implementation is not used, self-adaptation strategies are evaluated by means

of simulation (e.g., [8, 99, 107, 132, 144, 160]). For this purpose, simulation toolkits specifically

designed for DSP systems have been developed recently (e.g., [200, 208, 212]). For instance, Ama-

rasinghe et al. [200] have developed ECSNeT++, which is built on top of OMNeT++
10
to simulate

execution of distributed DSP applications in Edge and Cloud platforms. Higashino et al. [208] have

developed CEPSim, a simulation toolkit for CEP applications deployed in Cloud environments.

As regards the public availability of the adaptation software, overall only 15% of the reviewed

solutions have been released as open-source software. While things seem to be improving (the

percentage raises up to 20% focusing on the last 5 years), these results suggest that this aspect

should be considered more within the research community. Artifact evaluation that is encouraged

by some conferences and journals can significantly boost the percentage of publicly available

adaptation software.

B.2 Applications
Looking at the DSP applications used for experiments, we note that the majority of the works

(2 out of 3) consider multiple applications, which enable the exploration of different scenarios.

Clearly some adaptation mechanisms, especially those possibly affecting query semantics, are more

sensible to changes in the application than others. For instance, the use of multiple applications is

particularly frequent in works exploring algorithm adaptation (e.g., [94, 104, 195]), load shedding

(e.g., [136, 163, 169]), and operator reuse (e.g., [35, 84, 142]). It is worth noting that only 17% of

the works comprise experiments where multiple applications are concurrently executed (e.g., to

investigate resource interference among co-located application [78]).

As regards the type of operators involved in the experiments, more than 70% of the works

consider stateful operators in the evaluation. This is not surprising, as we noted in Sec. 4.1.3

that most the adaptation solutions take internal operator state into account. Similarly, half of the

reviewed papers deal with window-based operators, which represent fundamental elements for

streaming computation, as discussed in Sec. 2.1.1.

We also observe that only 11% of the reviewed works rely on public benchmarking suites in their

experiments. Among them, popular options are represented by the Linear Road Benchmark [202]

(used, e.g., in [52, 57, 62, 100]), the Yahoo Streaming Benchmarks11 (used, e.g., in [38, 46, 177]), and

RIoTBench [211] (used, e.g., in [35, 160]). As more tools for DSP benchmarking have been presented

7
https://ibmstreams.github.io/

8
https://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2531&t=1

9
http://cs.brown.edu/research/borealis/public/

10
https://omnetpp.org/

11
https://github.com/yahoo/streaming-benchmarks

https://ibmstreams.github.io/
https://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2531&t=1
http://cs.brown.edu/research/borealis/public/
https://omnetpp.org/
https://github.com/yahoo/streaming-benchmarks
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Table 4. Description of the labels used in Table 5.

Group Legend

Framework B Borealis F Flink

H Heron IS IBM Streams

K Amazon Kinesis SP Spark Streaming

(SM) Simulator ST Storm

(O) Other, Custom Implementation

Data sets and workloads R Real S Synthetic

Others ✓ Yes (✓) Yes, partially

x No

recently (e.g., DSPBench [204], NAMB [210]), we expect future research efforts to increasingly take

advantage of them to evaluate adaptation strategies against publicly available applications.

B.3 Input Data Sets and Workloads
Another important aspect in the design of adaptation experiments regards the input data sets and

the workloads to use, as their characteristics can impact the behavior of the adaptation strategy.

As regards the data sets, the majority of the considered works (i.e., 57%) rely on real data for

the experiments, and almost half of them exploit public data sets, which are, hence, available

for reproducibility. Among the real data sets used in the experiments, popular choices are stock

exchanges data (used, e.g., in [43, 86]), transportation data (used, e.g., in [25, 93, 104]), and collections

of posts from social media (used, e.g., in [23, 143, 186]). It is worth observing that not all the

adaptation mechanisms are equally impacted by the choice of the data set. Indeed, while overall

60% of the works consider multiple data sets for their experiments, this percentage raises up to

70% for processing adaptation solutions (e.g., load distribution, algorithm adaptation), where the

distribution of input values is a critical factor. Conversely, the majority of the deployment adaptation

solutions use a single data set in the experiments.

As regards the workloads, only 38% of the reviewed works rely on real traces and, among them,

less than half are publicly available. In most cases, realistic workloads are directly extracted from

real data sets that provide an event timestamp for each data unit. However, some works exploit

real workload traces that are independent of the data set in use, to experiment with the specific

properties of those traces (e.g., the well-known FIFA ’98World Cupweb trace is used in [82], network
traffic traces are used in [136, 147]). Overall, the vast majority of the considered publications include

multiple workload configurations in their experiments, especially those involving deployment

adaptation, overload management, and processing adaptation mechanisms.
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

Abadi et al. [1] B - - - - - -

Abadi et al. [2] - - - - - - -

Abdelhamid et al. [3] SP ✓ ✓ ✓ R,S x ✓ R,S ✓ ✓
Aljoby et al. [5] ST ✓ ✓ ✓ ✓ R:S x ✓ S x x

Amini et al. [6] (O),(SM) ✓ ✓ - - - S x ✓
Aniello et al. [7] ST ✓ ✓ ✓ S x x S x x

Aral et al. [8] (SM) ✓ ✓ R ✓ ✓ R ✓ ✓
Babcock et al. [11] (O) ✓ ✓ ✓ ✓ R ✓ x R ✓ x

Balazinska et al. [13] (O),(SM) ✓ ✓ ✓ ✓ R ✓ ✓ R ✓ ✓
Balkesen et al. [14] B ✓ ✓ R ✓ x S x ✓
Bellavista et al. [17] IS ✓ S x x S x x

Bellavista et al. [18] (O) ✓ ✓ ✓ R x x R x x

Borkowski et al. [20] (O) ✓ ✓ R ✓ x R,S x ✓
Buddhika et al. [21] (O) ✓ ✓ ✓ R ✓ ✓ S x ✓
Cammert et al. [22] (O) ✓ ✓ ✓ R x ✓ R,S x ✓
Caneill et al. [23] ST ✓ R,S ✓ ✓ R,S ✓ ✓
Cardellini et al. [25] ST ✓ ✓ R ✓ x R ✓ x

Cardellini et al. [26] ST ✓ ✓ R ✓ x R,S ✓ ✓
Cardellini et al. [27] ST ✓ ✓ ✓ R x x S x x

Cerviño et al. [30] (O) ✓ ✓ ✓ S x x S x x

Chao and Stoleru [32] (O) R x x R x x

Chao et al. [33] ST S x x S x ✓
Chaturvedi et al. [35] ST ✓ ✓ ✓ R,S x ✓ S x ✓
Chatzistergiou and Viglas [36] ST ✓ ✓ ✓ R (✓) ✓ R,S ✓ ✓
Chen et al. [37] SP ✓ ✓ ✓ R x x R x x

Cheng et al. [38] SP ✓ ✓ ✓ R,S x ✓ R x ✓
Das et al. [41] SP ✓ ✓ ✓ S x ✓ S x ✓

(continued on next page)
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

De Matteis and Mencagli [43] (O) ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
De Matteis and Mencagli [44] (O) ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
Du and Gupta [46] ST ✓ ✓ - x x - x x

Eibel et al. [47] H ✓ ✓ ✓ - x x - x x

Eskandari et al. [48] ST ✓ ✓ ✓ S x ✓ S x x

Fang et al. [49] ST ✓ ✓ R,S x ✓ R,S x ✓
Fang et al. [50] ST ✓ ✓ R,S (✓) ✓ S x x

Farhat et al. [51] F ✓ ✓ ✓ ✓ ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
Fernandez et al. [52] (O) ✓ ✓ ✓ ✓ R,S x ✓ R,S x ✓
Floratou et al. [53] H ✓ ✓ S x x S x x

Fu et al. [55] ST ✓ ✓ ✓ R x x S x x

Fu et al. [56] ST ✓ ✓ ✓ ✓ R ✓ x S x ✓
Gedik et al. [57] IS ✓ ✓ ✓ R,S x x - x x

Gu et al. [59] (SM) ✓ ✓ S x x S x ✓
Gu et al. [206] (SM) ✓ ✓ S x x S x ✓
Gu et al. [207] (O) ✓ ✓ R ✓ ✓ R ✓ ✓
Gulisano et al. [60] B ✓ ✓ ✓ - x x - x x

Guo and Zhou [62] ST ✓ ✓ ✓ ✓ S x ✓ - x x

Guo and Zhou [63] (SM) ✓ ✓ R,S x ✓ S x x

Han et al. [64] ST ✓ ✓ ✓ R ✓ x R ✓ x

Heintz et al. [66] ST ✓ R x ✓ R x x

Heinze et al. [67] (O) ✓ ✓ R ✓ x R ✓ ✓
Heinze et al. [68] (O) ✓ ✓ R ✓ ✓ R ✓ ✓
Heinze et al. [69] (O) ✓ ✓ ✓ R (✓) ✓ R (✓) ✓
Heinze et al. [70] (O) ✓ ✓ ✓ R (✓) ✓ R (✓) ✓
Hidalgo et al. [72] (O) ✓ ✓ R (✓) ✓ S x ✓
Hochreiner et al. [74] (O) ✓ ✓ R ✓ x R ✓ x

(continued on next page)
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

Hoseiny Farahabady et al. [76] F ✓ ✓ ✓ R x ✓ S x ✓
Hoseiny Farahabady et al. [77] ST ✓ - x x S x ✓
Hoseiny Farahabady et al. [78] (O) ✓ ✓ ✓ S x x S x ✓
Huang and Lee [79] (O) ✓ ✓ R ✓ ✓ - - -

Huang et al. [80] (SM) ✓ - - - R,S ✓ ✓
Hwang et al. [81] (O),(SM) ✓ ✓ S x x S x x

Imai et al. [82] (SM) ✓ ✓ ✓ ✓ - - - R (✓) ✓
Jlassi and Tedeschi [84] (SM) ✓ - - - - - -

Jonathan et al. [85] F ✓ ✓ ✓ ✓ R x ✓ S x x

Kahveci and Gedik [86] (O) ✓ ✓ ✓ ✓ R,S x ✓ - - -

Kalavri et al. [87] (O),F,H ✓ ✓ ✓ ✓ ✓ S x x S x x

Kalim et al. [88] ST ✓ ✓ ✓ R (✓) ✓ R,S x ✓
Kalyvianaki et al. [89] (O) ✓ ✓ S x x S x ✓
Kalyvianaki et al. [90] (O) ✓ ✓ ✓ ✓ R,S (✓) ✓ R,S x ✓
Kalyvianaki et al. [91] (O),(SM) ✓ ✓ ✓ S x ✓ - - -

Katsipoulakis et al. [92] (O) ✓ ✓ ✓ R ✓ ✓ - - -

Katsipoulakis et al. [93] ST ✓ ✓ ✓ R ✓ ✓ - - -

Katsipoulakis et al. [94] ST ✓ ✓ ✓ R ✓ ✓ - - -

Kleiminger et al. [95] (O) ✓ ✓ R x x R x x

Koliousis et al. [97] (O) ✓ ✓ ✓ ✓ ✓ R,S (✓) ✓ R,S (✓) ✓
Kombi et al. [98] ST ✓ ✓ S ✓ x S ✓ ✓
Kumbhare et al. [99] (SM) ✓ ✓ S x x S x x

Kumbhare et al. [100] (SM) ✓ ✓ ✓ S ✓ x S ✓ x

Lakshmanan and Strom [102] (SM) ✓ ✓ ✓ S x x S x x

Lei and Rundensteiner [105] (O) ✓ ✓ ✓ R ✓ ✓ R,S (✓) ✓
Le Quoc et al. [104] F,SP ✓ ✓ ✓ ✓ R,S (✓) ✓ S x ✓
Li et al. [106] ST ✓ ✓ ✓ ✓ S x x R ✓ x

(continued on next page)
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

Li et al. [108] ST ✓ ✓ R,S x ✓ S x ✓
Liao et al. [109] ST ✓ R ✓ ✓ - - -

Liu and Buyya [110] ST ✓ R x x S x ✓
Liu et al. [112] ST ✓ ✓ ✓ R x x R x x

Lohrmann et al. [113] (O) ✓ ✓ ✓ R,S x ✓ R,S x ✓
Lohrmann et al. [114] (O) - x x - x x

Lombardi et al. [115] ST ✓ ✓ ✓ R ✓ x R,S (✓) ✓
Luthra et al. [116] (O) ✓ ✓ ✓ S x x S x x

Madsen et al. [117] ST ✓ ✓ ✓ R ✓ x - - -

Madsen et al. [118] ST ✓ ✓ ✓ S x ✓ S x ✓
Marangozova-Martin et al. [120] ST ✓ ✓ R,S x ✓ S x ✓
Mei et al. [121] (O) ✓ ✓ R x x R x x

Mencagli [122] (SM) - - - S x -

Mencagli et al. [123] (O) ✓ ✓ ✓ ✓ R,S x ✓ R,S x ✓
Mencagli et al. [124] (O) ✓ ✓ ✓ ✓ S x x S x ✓
Mu et al. [126] (O) - - - R ✓ ✓
Ni et al. [130] IS ✓ ✓ ✓ R,S x ✓ R,S x ✓
O’Keeffe et al. [131] (O) ✓ ✓ ✓ - - - - - -

Ottenwälder et al. [132] (SM) ✓ ✓ ✓ S x x S x ✓
Palyvos-Giannas et al. [133] F,ST ✓ ✓ ✓ ✓ ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
Papaemmanouil et al. [134] (O) ✓ ✓ ✓ R x ✓ R x ✓
Pham et al. [136] (O) ✓ ✓ ✓ ✓ S x x R,S (✓) ✓
Pietzuch et al. [138] (SM),B ✓ ✓ - - - S x ✓
Ravindra et al. [141] (O) ✓ ✓ ✓ ✓ R x ✓ R x ✓
Repantis et al. [142] (O),(SM) ✓ ✓ S x x S x ✓
Rivetti et al. [143] ST ✓ R,S x ✓ - - -

Rizou et al. [144] (SM) ✓ S x ✓ S x ✓
(continued on next page)
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

Runsewe and Samaan [146] SP R x x S x x

Russo Russo et al. [147] F ✓ R ✓ x R,S (✓) ✓
Russo Russo et al. [148] (SM) S x x R ✓ x

Satzger et al. [152] (O) ✓ ✓ - x x S x x

Saurez et al. [153] (O) ✓ ✓ S x x S x ✓
Schneider et al. [154] (O) ✓ R,S x ✓ R,S x ✓
Schneider et al. [155] IS ✓ ✓ - - - S x ✓
Schneider and Wu [156] IS ✓ - x x S x x

Shah et al. [157] (SM) ✓ ✓ S x x S x ✓
Sharaf et al. [158] (SM) ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
Silva Veith et al. [160] (SM) ✓ ✓ ✓ - - - S x x

Singh et al. [161] (O) - - - - - -

Slo et al. [162] (O) ✓ ✓ ✓ R ✓ ✓ S x ✓
Slo et al. [163] (O) ✓ ✓ ✓ R ✓ ✓ S x ✓
Sun et al. [165] ST ✓ ✓ - - - S x ✓
Sun et al. [166] ST - - - S x ✓
Tatbul et al. [168] (SM) ✓ S x ✓ S x x

Tatbul et al. [169] B ✓ S x x R,S ✓ ✓
Tolosana-Calasanz et al. [172] (O) ✓ R,S (✓) ✓ R ✓ ✓
Tudoran et al. [175] (O) R,S (✓) ✓ R,S (✓) ✓
van der Veen et al. [176] ST ✓ - - - S x x

Venkataraman et al. [177] SP ✓ ✓ ✓ ✓ R,S x ✓ R,S x ✓
Wang et al. [178] (O) ✓ ✓ R x x R x x

Wang et al. [179] ST ✓ ✓ ✓ ✓ R,S x ✓ R,S x ✓
Wang et al. [180] ST ✓ ✓ R,S x ✓ R,S x ✓
Wang et al. [181] ST ✓ ✓ ✓ ✓ R,S ✓ ✓ R,S ✓ ✓
Wei et al. [182] (SM) ✓ - - - S x ✓

(continued on next page)
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Table 5. Categorization of the reviewed adaptation approaches with respect to their evaluation setup (see Fig. 12 for an illustration of the considered aspects
and Tab. 4 for a legend). Abbreviations in the column headers: Framewk. = Framework; Pub. = Publicly available; Bench. = From public benchmarking suite;
Mult. = Multiple applications; Concurr. = Concurrent execution of application instances; State = Stateful operator(s); Wind. = Window-based operator(s);
Mult. = Multiple.

Implementation Applications Data sets Workloads

Paper Framewk. Pub. Bench. Mult. Concurr. State Wind. Real Pub. Mult. Real Pub. Mult.

Wu et al. [184] (O) ✓ ✓ - x x - x x

Xia et al. [215] (SM) - - - S x x

Xing et al. [185] (SM),B ✓ S x ✓ S x ✓
Xu et al. [186] ST ✓ ✓ R,S (✓) ✓ - - -

Xu et al. [188] ST ✓ ✓ - - - - - -

Xu et al. [189] (O) ✓ ✓ ✓ ✓ R,S x ✓ R,S x ✓
Zacheilas et al. [190] ST ✓ ✓ R ✓ x R ✓ x

Zacheilas et al. [191] ST ✓ ✓ R,S x ✓ R,S x ✓
Zamani et al. [193] (O) ✓ ✓ S x x S x ✓
Zhang et al. [195] (O) ✓ ✓ ✓ ✓ R ✓ ✓ R ✓ ✓
Zhang et al. [196] SP ✓ ✓ S x ✓ S x ✓
Zhou et al. [198] (SM) ✓ ✓ ✓ S x ✓ S x ✓
Zhou et al. [199] (O) ✓ ✓ ✓ R,S (✓) ✓ S x ✓
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