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Why data stream processing?

• Applications such as:

- Sentiment analysis on tweets @Twitter
- User profiling @Yahoo!
- Tracking of query trend evolution @Google
- Fraud detection in financial transactions
- Real-time advertising
- Healthcare analytics involving IoT medical sensors

• Require:

- Continuous processing of unbounded data streams 
generated by multiple and distributed sources

- In (near) real-time fashion

V. Cardellini - SABD 2022/23 2

Why data stream processing?

• In the early years data stream processing 

(DSP) was considered a solution for very 

specific problems (e.g., financial tickers)

• Now we have more general settings

- E.g., social media, Internet of Things
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Why data stream processing?

• Decrease latency to obtain results and improve 

data freshness

- Events are processed close to the time they are 
generated

- Applications respond to events as they occur
- No delays involved with batch processing
- No data persistence on stable storage

• Simplify data analytics pipelines and underlying 

infrastructure
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Data stream

• “A data stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp) 
sequence of items. It is impossible to control the 
order in which items arrive, nor is it feasible to locally 
store a stream in its entirety. Queries over streams 
run continuously over a period of time and 
incrementally return new results as new data arrive.”
Golab and Özs, Issues in data stream management,  ACM SIGMOD 
Rec., 2003. 

• A data stream refers to both velocity and variety of 
Big data

• A stream is an unbounded sequence of tuples, 
where a tuple is an ordered list of values
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Data stream: example
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• Data stream related to maritime 

traffic in the Mediterranean

0x3b62baab6210a8e69d3e7f9df53d000c83d00fd0,2,   
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA,12
0x0fe9acdb3675a8a2942fafbd4af61bc37e44c0ec,146, 
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO,88
0xb35dc6acdc29f2241296c44384fa2b0f7044d257,20, 
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA,66
…

Each tuple contains the fields: 
SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING,TIMESTAMP, 
departurePortName,Reported_Draught

tuples

Traditional DSP challenges

• Stream data can arrive at high 

velocity, with high volumes and 

highly variable arrival patterns

- High resource requirements for 
processing
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• Processing stream data has real-time aspects

- Stream processing applications have QoS 
requirements, e.g., end-to-end latency

- Must be able to react to events as they occur
• Faults can happen during processing



Challenges for DSP in Cloud-Edge continuum

• Goals: increase scalability and reduce latency

• How? Rely not only on Cloud resources but

also on distributed and near-edge computation

(Fog/edge computing)
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DSP application model

• A DSP application is made of a network of operators
(processing elements) connected by streams, at least 
one data source and at least one data sink

• Represented by a directed dataflow graph
– Graph vertices: operators
– Graph edges: streams
– Graph is often referred to                                                            

as topology
• Graph is typically acyclic: directed acyclic graph (DAG)

– Most systems only support DAGs, few support also cyclic 
computations (e.g., Flink)

• Application topology does not usually change during 
processing
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DSP application model: examples

10

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome
filterByCoordinates countByWindow globalRankdatasource parser partialRank

• DAG for WordCount application in DSP salsa

• DAG for NYC taxi streaming analysis: data streams 
originated from NYC taxis are processed to find the 
top-10 most frequent routes during the last 30 minutes
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DSP programming model
• Dataflow programming

– Programming paradigm that models a program 
as a directed graph of data (dataflow) flowing 
between operations

– Pioneered by Jack Dennis and his students at 
MIT in the 1960s

• Examples

– Apache NiFi: automates dataflow between
systems

– Apache Flink: stream and batch processing 
– Apache Beam: unifies batch and streaming data  

processing on top of several execution engines
– TensorFlow: ML library based on dataflow 

programming
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DSP programming model

• Flow composition: how to create the 

topology associated with the directed graph

for a DSP application

• Flow manipulation: use of processing 

elements (i.e., operators) to perform

transformations on data
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Data flow manipulation

• How streaming data is manipulated by the 

operators in the flow graph?

• Operator properties:

- Operator type
- Operator state
- Windowing
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DSP operator

• Self-contained processing element that

- Transforms one or more input streams into another
stream

- Can execute a generic user-defined code
• Algebraic operation (filter, aggregate, join, ..)
• User-defined and possibly complex operation (POS-tagging, 

machine learning algorithm, …)

- Can execute in parallel with other operators
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Types of operators

• Edge adaptation: converting data from 

external sources into tuples that can be 

consumed by downstream operators

• Aggregation: collecting and summarizing a 

subset of tuples from one or more streams

• Splitting: partitioning a stream into multiple 

streams

• Merging: combining multiple input streams
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Types of operators

• Logical and mathematical operations: 

applying different logical processing, 

relational processing, and mathematical 

functions to tuple attributes

• Sequence manipulation: reordering, 

delaying, or altering the temporal properties 

of a stream

• Custom data manipulations: applying data 

mining, machine learning, ...
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DSP operator: state

• Operator can be stateless or stateful

• Stateless: processing depends only on current 

input

- Operator knows nothing about state and thus 
processes tuples independently of each other, 
independently of prior history or even from tuple 
arrival order

- E.g., filter, map
- Easily parallelizable
- No synchronization in a multi-threaded context
- Easy restart upon failures (no need to recover state)
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DSP operator: state

• Stateful: keeps some sort of state (i.e., 

information across multiple tuples) that 

operator can read and modify during execution, 

e.g.,

- Aggregation or summary of tuples per 
minute/hour/day

- When an application searches for certain patterns, 
the state will store the sequence of events 
encountered so far

- When training a machine learning model over a 
stream of data points, the state holds the current 
version of the model parameters
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DSP operator: state
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- Entirely stored within in-
memory data structures and 
replicated to disk only for 
fault tolerance

- Entirely stored on non-
volatile memory (e.g., disk)

• State may be stored in different ways:

- Hybrid solution: partially stored in memory for 
improved performance and flushed to disk to scale in 
size

- Stored on a storage service (e.g., Redis)

• State is mostly private to operator but in some 

system can be shared between operators

- Shared state makes execution more complex



Windowing

• Window: buffer associated with an operator input 
port to retain incoming tuples over which we can apply 
computations so to process them as a whole
- E.g., the most frequently purchased items over the last hour

• Window is characterized by:

- Size: amount of data that should be buffered before 
triggering operator execution

• Statically defined: time-based (e.g., 30 seconds) or count-
based (e.g., the last 100 tuples)

• Dynamically defined: session-based
- Sliding interval: how the window moves forward

• Time-based or count-based
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Windowing: patterns
• Different windowing patterns by combining window size

and sliding interval:
- Sliding window: static window size and sliding interval with 

value different from window size, single tuples may be included
in multiple consecutive windows

- Tumbling window: sliding interval equal to window size, no 
overlapping of windows

21

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

Sliding window (size:2; slide:1) Tumbling window (size:2; slide:2)
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Windowing: patterns

Tumbling windows

Sliding windows

V. Cardellini - SABD 2022/23 23

Windowing: patterns

Session windows

• Window can be also dynamically defined: session 
window 
- Dynamic size of window length, depending on inputs
- Starts with an input and expands itself if the following input 

has been received within the gap duration
- Closes when there’s no input received within the gap duration 

after receiving the latest input
- Enables to group events until there are no new events for 

specified time duration (inactivity)



V. Cardellini - SABD 2022/23 24

Windowing: emit

• Once a trigger determines that a window is ready for 
processing, it fires, i.e., emits the result of the current 
window

• Example: tumbling time window of 1 minute that sums 
the values

Tumbling window of 1 minute that sums 
the values

Sliding window of 1 minute that
sums the values every half minute

How to define a DSP application

• Topology description
⎯ Explicitly defines operators (built-in or user-defined) and links 

through a DAG
⎯ Used in Flink, Storm, Spark Streaming, …

• Formal language
– Declarative language that specifies result (SQL-like) 

• e.g., Streams Processing Language (SPL) in IBM 
Streams

– Imperative language that specifies composition of basic 
operators

• e.g., SQuAl (Stream Query Algebra) used in 
Aurora/Borealis

• The first offers more flexibility, the latter more rigor and 
expressiveness
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“Hello World”: a variant of WordCount

• Goal: emit the top-k words in terms of 

occurrence when there is a rank update 

Words source Words counter Sorter
(word) (word, counter) (rank)

• Which operators can be a bottleneck?

• How to scale the application in order to 

sustain the traffic load?
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“Hello World”: a variant of WordCount
• Replication is the usual answer: let’s replicate the 

operators when possible
• We use data parallelism (aka operator fission) and 

redesign the application by dividing sorter into two 
operators 

• We need to partition the output stream: how?
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Example of DSP application: DEBS’14 GC

• Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes
– Smart plugs deployed in households and equipped with sensors that

measure values related to power consumption

• Input data stream:
2967740693, 1379879533, 82.042, 0, 1, 0, 12 

• Query 1: make load forecasts based on current
load measurements and historical data
– Output data stream: 

ts, house_id, predicted_load

• Query 2: find outliers concerning energy 
consumption
– Output data stream: 

ts_start, ts_stop, household_id, percentage

debs.org/grand-challenges/2014
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Example of DSP application: DEBS’15 GC

• Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data 
streams originating from New York City taxis 

• Data stream composed of tuples
• Each tuple includes: pickup and drop-off points 

(longitude and latitude), corresponding timestamps plus 
information related to payment
07290D3599E7A0D62097A346EFCC1FB5,E7750A37CAB07D0DFF0AF
7E3573AC141,2013-01-01 00:00:00,2013-01-01 
00:02:00,120,0.44,-73.956528,40.716976,-
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50
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debs.org/grand-challenges/2015
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Example of DSP application: DEBS’15 GC

• Query 1: identify top-10 most frequent routes during the 
last 30 minutes

• Query 2: identify areas that are currently most profitable
for taxi drivers

• Both queries rely on sliding window operators
- Continuously evaluate query results
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debs.org/grand-challenges/2015

Example of DSP application: DEBS’16 GC

• Real-time analytics for a dynamic (evolving) social-
network graph 

• Query 1: identify the posts that currently trigger the most 
activity in the social network

• Query 2: identify large communities that are currently 
involved in a topic

• Require continuous analysis 
of dynamic graph considering  
multiple streams that reflect 
graph updates

debs.org/grand-challenges/2016
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Distributed DSP system

• Distributed system that executes DSP applications
- Continuously calculates results for long-standing queries
- Over potentially infinite data streams
- Using stateless or stateful operators

• System nodes may be heterogeneous
- Computing capacity, network bandwidth, …

• Must be highly optimized and with minimal overhead so 
to deliver real-time response

• Must manage a number of issues
- Operator placement on computing nodes
- Node and operator failures
- …
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Distributed DSP system

• Traditionally runs in a locally distributed cluster 
within a data center (also Cloud-based)

• Assumptions:
- Scale out

• Commodity servers
• Data-parallelism (operator parallelism) is king 

- Designed to handle failures

• Newer environments: edge computing and Cloud-
edge continuum
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Data-intensive system: a common view

• Distributed data-intensive systems for batch and 
stream processing share some common 
characteristics in terms of architecture

Margara et al. A Model and Survey of Distributed Data-Intensive Systems, 2023 
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Data-intensive system: a common view
• Applications (i.e., jobs) and their lifecycle

- Job lifecycle includes: definition using API, compilation into an 
execution plan, deployment, and execution

- Jobs are compiled into elementary units of execution (i.e., 
tasks) and run on slots offered by worker nodes

- Each task can be replicated (data parallelism)
- Tasks must be deployed onto the slots of the underlying 

infrastructure through a placement algorithm



Main DSP frameworks

• Apache Storm 

• Apache Flink

• Apache Samza

• Apache Spark Streaming

• Kafka Streaming 

• Cloud-based services

– Google Cloud Dataflow
– Amazon Kinesis

36V. Cardellini - SABD 2022/23

DSP frameworks: processing model

(e.g., Apache Storm) (e.g., Apache Spark Streaming)

Source: N. Marz, J. Warren, Big Data, Manning Pub., 2015
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• Main stream processing models: 

- One-at-a-time: each tuple is individually processed
- Micro-batched: tuples are grouped before being

processed

V. Cardellini - SABD 2022/23 37



V.
 C

ar
de

llin
i -

SA
BD

 2
02

2/
23

38

DSP frameworks: evolution

• Early systems were designed as extensions of relational execution 
engines with the addition of windows

• Modern systems have evolved considering completeness and 
ordering (e.g., out-of-order computation) and have witnessed 
architectural paradigm shifts (e.g., processing guarantees, 
reconfiguration and state management)

• Recent shift towards general event-driven architectures, actor-like 
programming models and microservices, and growing use of hw
accelerators

Fragkoulis et al., A Survey on the Evolution of Stream Processing Systems, 2023


