
Corso di Sistemi e Architetture per Big Data
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Data Stream Processing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

1V. Cardellini - SABD 2022/23 1

Why data stream processing?

• Applications such as:

- Sentiment analysis on tweets @Twitter
- User profiling @Yahoo!
- Tracking of query trend evolution @Google
- Fraud detection in financial transactions
- Real-time advertising
- Healthcare analytics involving IoT medical sensors

• Require:

- Continuous processing of unbounded data streams
generated by multiple and distributed sources

- In (near) real-time fashion

V. Cardellini - SABD 2022/23 2

Why data stream processing?

• In the early years data stream processing

(DSP) was considered a solution for very

specific problems (e.g., financial tickers)

• Now we have more general settings

- E.g., social media, Internet of Things

V. Cardellini - SABD 2022/23 3

Why data stream processing?

• Decrease latency to obtain results and improve

data freshness

- Events are processed close to the time they are
generated

- Applications respond to events as they occur
- No delays involved with batch processing
- No data persistence on stable storage

• Simplify data analytics pipelines and underlying

infrastructure

4V. Cardellini - SABD 2022/23 4

Data stream

• “A data stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the
order in which items arrive, nor is it feasible to locally
store a stream in its entirety. Queries over streams
run continuously over a period of time and
incrementally return new results as new data arrive.”
Golab and Özs, Issues in data stream management, ACM SIGMOD
Rec., 2003.

• A data stream refers to both velocity and variety of
Big data

• A stream is an unbounded sequence of tuples,
where a tuple is an ordered list of values

V. Cardellini - SABD 2022/23 5

Data stream: example

V. Cardellini - SABD 2022/23 6

• Data stream related to maritime

traffic in the Mediterranean

0x3b62baab6210a8e69d3e7f9df53d000c83d00fd0,2,
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA,12
0x0fe9acdb3675a8a2942fafbd4af61bc37e44c0ec,146,
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO,88
0xb35dc6acdc29f2241296c44384fa2b0f7044d257,20,
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA,66
…

Each tuple contains the fields:
SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING,TIMESTAMP,
departurePortName,Reported_Draught

tuples

Traditional DSP challenges

• Stream data can arrive at high

velocity, with high volumes and

highly variable arrival patterns

- High resource requirements for
processing

7V. Cardellini - SABD 2022/23

• Processing stream data has real-time aspects

- Stream processing applications have QoS
requirements, e.g., end-to-end latency

- Must be able to react to events as they occur
• Faults can happen during processing

Challenges for DSP in Cloud-Edge continuum

• Goals: increase scalability and reduce latency

• How? Rely not only on Cloud resources but

also on distributed and near-edge computation

(Fog/edge computing)

V. Cardellini - SABD 2022/23 8

DSP application model

• A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

• Represented by a directed dataflow graph
– Graph vertices: operators
– Graph edges: streams
– Graph is often referred to

as topology
• Graph is typically acyclic: directed acyclic graph (DAG)

– Most systems only support DAGs, few support also cyclic
computations (e.g., Flink)

• Application topology does not usually change during
processing

V. Cardellini - SABD 2022/23 9

DSP application model: examples

10

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome
filterByCoordinates countByWindow globalRankdatasource parser partialRank

• DAG for WordCount application in DSP salsa

• DAG for NYC taxi streaming analysis: data streams
originated from NYC taxis are processed to find the
top-10 most frequent routes during the last 30 minutes

V. Cardellini - SABD 2022/23 10

DSP programming model
• Dataflow programming

– Programming paradigm that models a program
as a directed graph of data (dataflow) flowing
between operations

– Pioneered by Jack Dennis and his students at
MIT in the 1960s

• Examples

– Apache NiFi: automates dataflow between
systems

– Apache Flink: stream and batch processing
– Apache Beam: unifies batch and streaming data

processing on top of several execution engines
– TensorFlow: ML library based on dataflow

programming

V. Cardellini - SABD 2022/23 11

DSP programming model

• Flow composition: how to create the

topology associated with the directed graph

for a DSP application

• Flow manipulation: use of processing

elements (i.e., operators) to perform

transformations on data

12V. Cardellini - SABD 2022/23 12

Data flow manipulation

• How streaming data is manipulated by the

operators in the flow graph?

• Operator properties:

- Operator type
- Operator state
- Windowing

V. Cardellini - SABD 2022/23 13

DSP operator

• Self-contained processing element that

- Transforms one or more input streams into another
stream

- Can execute a generic user-defined code
• Algebraic operation (filter, aggregate, join, ..)
• User-defined and possibly complex operation (POS-tagging,

machine learning algorithm, …)

- Can execute in parallel with other operators

14V. Cardellini - SABD 2022/23 14

Types of operators

• Edge adaptation: converting data from

external sources into tuples that can be

consumed by downstream operators

• Aggregation: collecting and summarizing a

subset of tuples from one or more streams

• Splitting: partitioning a stream into multiple

streams

• Merging: combining multiple input streams

15V. Cardellini - SABD 2022/23 15

Types of operators

• Logical and mathematical operations:

applying different logical processing,

relational processing, and mathematical

functions to tuple attributes

• Sequence manipulation: reordering,

delaying, or altering the temporal properties

of a stream

• Custom data manipulations: applying data

mining, machine learning, ...

16V. Cardellini - SABD 2022/23 16

DSP operator: state

• Operator can be stateless or stateful

• Stateless: processing depends only on current

input

- Operator knows nothing about state and thus
processes tuples independently of each other,
independently of prior history or even from tuple
arrival order

- E.g., filter, map
- Easily parallelizable
- No synchronization in a multi-threaded context
- Easy restart upon failures (no need to recover state)

V. Cardellini - SABD 2022/23 17

DSP operator: state

• Stateful: keeps some sort of state (i.e.,

information across multiple tuples) that

operator can read and modify during execution,

e.g.,

- Aggregation or summary of tuples per
minute/hour/day

- When an application searches for certain patterns,
the state will store the sequence of events
encountered so far

- When training a machine learning model over a
stream of data points, the state holds the current
version of the model parameters

V. Cardellini - SABD 2022/23 18

DSP operator: state

V. Cardellini - SABD 2022/23 19

- Entirely stored within in-
memory data structures and
replicated to disk only for
fault tolerance

- Entirely stored on non-
volatile memory (e.g., disk)

• State may be stored in different ways:

- Hybrid solution: partially stored in memory for
improved performance and flushed to disk to scale in
size

- Stored on a storage service (e.g., Redis)

• State is mostly private to operator but in some

system can be shared between operators

- Shared state makes execution more complex

Windowing

• Window: buffer associated with an operator input
port to retain incoming tuples over which we can apply
computations so to process them as a whole
- E.g., the most frequently purchased items over the last hour

• Window is characterized by:

- Size: amount of data that should be buffered before
triggering operator execution

• Statically defined: time-based (e.g., 30 seconds) or count-
based (e.g., the last 100 tuples)

• Dynamically defined: session-based
- Sliding interval: how the window moves forward

• Time-based or count-based

20V. Cardellini - SABD 2022/23 20

Windowing: patterns
• Different windowing patterns by combining window size

and sliding interval:
- Sliding window: static window size and sliding interval with

value different from window size, single tuples may be included
in multiple consecutive windows

- Tumbling window: sliding interval equal to window size, no
overlapping of windows

21

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

Sliding window (size:2; slide:1) Tumbling window (size:2; slide:2)

V. Cardellini - SABD 2022/23 21

V. Cardellini - SABD 2022/23 22

Windowing: patterns

Tumbling windows

Sliding windows

V. Cardellini - SABD 2022/23 23

Windowing: patterns

Session windows

• Window can be also dynamically defined: session
window
- Dynamic size of window length, depending on inputs
- Starts with an input and expands itself if the following input

has been received within the gap duration
- Closes when there’s no input received within the gap duration

after receiving the latest input
- Enables to group events until there are no new events for

specified time duration (inactivity)

V. Cardellini - SABD 2022/23 24

Windowing: emit

• Once a trigger determines that a window is ready for
processing, it fires, i.e., emits the result of the current
window

• Example: tumbling time window of 1 minute that sums
the values

Tumbling window of 1 minute that sums
the values

Sliding window of 1 minute that
sums the values every half minute

How to define a DSP application

• Topology description
⎯ Explicitly defines operators (built-in or user-defined) and links

through a DAG
⎯ Used in Flink, Storm, Spark Streaming, …

• Formal language
– Declarative language that specifies result (SQL-like)

• e.g., Streams Processing Language (SPL) in IBM
Streams

– Imperative language that specifies composition of basic
operators

• e.g., SQuAl (Stream Query Algebra) used in
Aurora/Borealis

• The first offers more flexibility, the latter more rigor and
expressiveness

V. Cardellini - SABD 2022/23 25

“Hello World”: a variant of WordCount

• Goal: emit the top-k words in terms of

occurrence when there is a rank update

Words source Words counter Sorter
(word) (word, counter) (rank)

• Which operators can be a bottleneck?

• How to scale the application in order to

sustain the traffic load?

26V. Cardellini - SABD 2022/23

“Hello World”: a variant of WordCount
• Replication is the usual answer: let’s replicate the

operators when possible
• We use data parallelism (aka operator fission) and

redesign the application by dividing sorter into two
operators

• We need to partition the output stream: how?

27V. Cardellini - SABD 2022/23

Example of DSP application: DEBS’14 GC

• Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes
– Smart plugs deployed in households and equipped with sensors that

measure values related to power consumption

• Input data stream:
2967740693, 1379879533, 82.042, 0, 1, 0, 12

• Query 1: make load forecasts based on current
load measurements and historical data
– Output data stream:

ts, house_id, predicted_load

• Query 2: find outliers concerning energy
consumption
– Output data stream:

ts_start, ts_stop, household_id, percentage

debs.org/grand-challenges/2014

28V. Cardellini - SABD 2022/23

Example of DSP application: DEBS’15 GC

• Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

• Data stream composed of tuples
• Each tuple includes: pickup and drop-off points

(longitude and latitude), corresponding timestamps plus
information related to payment
07290D3599E7A0D62097A346EFCC1FB5,E7750A37CAB07D0DFF0AF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
00:02:00,120,0.44,-73.956528,40.716976,-
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50

29

debs.org/grand-challenges/2015

V. Cardellini - SABD 2022/23

Example of DSP application: DEBS’15 GC

• Query 1: identify top-10 most frequent routes during the
last 30 minutes

• Query 2: identify areas that are currently most profitable
for taxi drivers

• Both queries rely on sliding window operators
- Continuously evaluate query results

V. Cardellini - SABD 2022/23 30

debs.org/grand-challenges/2015

Example of DSP application: DEBS’16 GC

• Real-time analytics for a dynamic (evolving) social-
network graph

• Query 1: identify the posts that currently trigger the most
activity in the social network

• Query 2: identify large communities that are currently
involved in a topic

• Require continuous analysis
of dynamic graph considering
multiple streams that reflect
graph updates

debs.org/grand-challenges/2016

V. Cardellini - SABD 2022/23 31

Distributed DSP system

• Distributed system that executes DSP applications
- Continuously calculates results for long-standing queries
- Over potentially infinite data streams
- Using stateless or stateful operators

• System nodes may be heterogeneous
- Computing capacity, network bandwidth, …

• Must be highly optimized and with minimal overhead so
to deliver real-time response

• Must manage a number of issues
- Operator placement on computing nodes
- Node and operator failures
- …

32V. Cardellini - SABD 2022/23

Distributed DSP system

• Traditionally runs in a locally distributed cluster
within a data center (also Cloud-based)

• Assumptions:
- Scale out

• Commodity servers
• Data-parallelism (operator parallelism) is king

- Designed to handle failures

• Newer environments: edge computing and Cloud-
edge continuum

33V. Cardellini - SABD 2022/23

V. Cardellini - SABD 2022/23 34

Data-intensive system: a common view

• Distributed data-intensive systems for batch and
stream processing share some common
characteristics in terms of architecture

Margara et al. A Model and Survey of Distributed Data-Intensive Systems, 2023

V. Cardellini - SABD 2022/23 35

Data-intensive system: a common view
• Applications (i.e., jobs) and their lifecycle

- Job lifecycle includes: definition using API, compilation into an
execution plan, deployment, and execution

- Jobs are compiled into elementary units of execution (i.e.,
tasks) and run on slots offered by worker nodes

- Each task can be replicated (data parallelism)
- Tasks must be deployed onto the slots of the underlying

infrastructure through a placement algorithm

Main DSP frameworks

• Apache Storm

• Apache Flink

• Apache Samza

• Apache Spark Streaming

• Kafka Streaming

• Cloud-based services

– Google Cloud Dataflow
– Amazon Kinesis

36V. Cardellini - SABD 2022/23

DSP frameworks: processing model

(e.g., Apache Storm) (e.g., Apache Spark Streaming)

Source: N. Marz, J. Warren, Big Data, Manning Pub., 2015

37

• Main stream processing models:

- One-at-a-time: each tuple is individually processed
- Micro-batched: tuples are grouped before being

processed

V. Cardellini - SABD 2022/23 37

V.
 C

ar
de

llin
i -

SA
BD

 2
02

2/
23

38

DSP frameworks: evolution

• Early systems were designed as extensions of relational execution
engines with the addition of windows

• Modern systems have evolved considering completeness and
ordering (e.g., out-of-order computation) and have witnessed
architectural paradigm shifts (e.g., processing guarantees,
reconfiguration and state management)

• Recent shift towards general event-driven architectures, actor-like
programming models and microservices, and growing use of hw
accelerators

Fragkoulis et al., A Survey on the Evolution of Stream Processing Systems, 2023

