
Corso di Sistemi e Architetture per Big Data
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Addressing Deployment Challenges
in Data Stream Processing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP deployment challenges

• Let’s consider two challenges when deploying DSP
applications

a) How to place DSP operators on underlying
computing infrastructure (i.e., operator placement)

b) How to determine and adapt at run-time the number
of replicas per operator (i.e., operator elasticity)

V. Cardellini - SABD 2022/23 1

DSP operator placement

2V. Cardellini - SABD 2022/23

• Goal: determine which distributed computing nodes
should host and execute each application operator, with
the goal of optimizing application QoS

Placement: Edge-Cloud continuum

• Edge/Fog + Cloud computing: allows to increase
scalability and availability, reduce latency, network
traffic, and power consumption

• But placement becomes more challenging

3V. Cardellini - SABD 2022/23

Placement: challenges

4V. Cardellini - SABD 2022/23

• Significant network latencies
– E.g., geo-distributed resources

• Heterogeneous computing and networking resources
– E.g., capacity limits , business constraints

• Computing/network resources can be unavailable
• Data movement around the network

• Plus peculiarities of DSP applications:
– Computational requirements may be unknown a-priori and

change continuously
– Long-running applications

à Need to adapt to internal and external changes

Placement: frameworks

• Most frameworks use simple placement
policies

• Apache Storm
– Round Robin as default strategy
– Resource Aware Scheduler as alternative
storm.apache.org/releases/2.1.1/Resource_Aware_Scheduler_overview.html

• Takes into account resource availability on machines and
resource requirements of workloads

• But requires user to specify memory and CPU
requirements for individual topology components

V. Cardellini - SABD 2022/23 5

Placement: different approaches

• Several operator placement policies in literature that
address the problem but:
– Different assumptions (system model, application topology,

QoS attributes and metrics, …)
– Different objectives
– Not easily comparable

• Main methodologies:
– Mathematical programming

• Optimal operator placement problem: NP-hard
• Does not scale well, but provides useful insights

– Heuristics
• Majority of policies

– Deep Reinforcement Learning

6V. Cardellini - SABD 2022/23

Placement: different approaches

• Who is the decision maker?
– Centralized placement strategies

• Require global view (full resource and network state,
application state, workload information)

✓ Capable of determining optimal global solution
✗Scalability

– Decentralized placement strategies
• Take decision based only on local information
✓ Scalability, better suited for run-time adaptation
✗Optimality is not guaranteed

7V. Cardellini - SABD 2022/23

ODP: Optimal DSP Placement

• We proposed ODP
– Centralized policy for optimal placement of DSP applications
– Formulated as Integer Linear Programming (ILP) problem

• Our goals:
– To compute the optimal placement (of course!)

– To provide a unified general formulation of the
placement problem for DSP applications (but not only!)

– To consider multiple QoS attributes of applications
and resources

– To provide a benchmark for heuristics

8V. Cardellini - SABD 2022/23

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for
Distributed Stream Processing Applications, DEBS ’16

ODP: model

DSP application

9V. Cardellini - SABD 2022/23

Operators
• Ci: required computing

resources
• Ri: execution time per data unit

Data streams
• li,j: data rate from operator i to j

ODP: model

Computing and network resources

10V. Cardellini - SABD 2022/23

(Logical) Network links
• du,v: network delay from u to v
• Bu,v: bandwidth from u to v
• Au,v: link availability

Computing resources
• Cu: amount of resources
• Su: processing speed
• Au: resource availability

ODP: model

Decision variables
• Determine where to map DSP operators and data streams

11V. Cardellini - SABD 2022/23

i

j

xi,u= 1

y(i,j),(u,v)=1

xj,v= 1

u

z

v

w

ODP: some QoS metrics

12V. Cardellini - SABD 2022/23

• Response time
max end-to-end delay between sources and destination

• Application availability
probability that all components/links are up and running

• Inter-node traffic
overall network data rate

• Network usage
in-flight bytes

SlinksÎl rate(l)Lat(l)

R

ODP: optimal problem formulation

13V. Cardellini - SABD 2022/23

Latency

Availability

Network bandwidth and node
capacity constraints

Assignment and
integer constraints

Tunable knobs to set the
optimal placement goals

ODP: scalability issue

14V. Cardellini - SABD 2022/23

Placement problem is NP-hard: does not scale well!

We need heuristics to compute placement
in a feasible amount of time

Centralized placement heuristics

15V. Cardellini - SABD 2022/23

L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS '13

• Example of centralized heuristic that aims to reduce
inter-node traffic

• Aniello et al.: co-locate pairs of communicating tasks
on same computing node as to minimize inter-node
communication and balance CPU demand
Greedy heuristic – Key idea:

– Rank task pairs according to exchanged traffic

– For each pair:

» If task pairs have not been yet assigned, assign them to same
node

» If either is assigned, consider least loaded node and those
where they have been assigned. Work out the configuration
which minimizes the inter-process traffic

Decentralized placement heuristic

16

P. Pietzuch et al., Network-aware operator placement for stream-processing systems,
ICDE ‘06

SlinksÎl rate(l)Lat(l)

V. Cardellini - SABD 2022/23

• Heuristics goal: reduce network usage
– Network usage metric combines link latencies and exchanged

data rates among DSP operators:

• Pietzuch et al. exploit spring relaxation idea:
– DSP application regarded as a system of springs, whose

minimum energy configuration corresponds to minimizing
network usage

• Features
– Decentralized policy to minimize network impact

– Adaptive to change in network conditions

Decentralized placement heuristic

17

1. Represents DSP application as an equivalent system of springs

V. Cardellini - SABD 2022/23

Network of springs tries to minimize potential energy E

Streams as springs, that restore a force F = ½ • k • s:
– k (spring constant): exchanged data rate on link
– s (spring extension): latency on link

Decentralized placement heuristic

18

2. Determines operator placement in the cost space by minimizing the
elastic energy of the equivalent system

Lat = s

DR = k

P1

S
P2

V. Cardellini - SABD 2022/23

Decentralized placement heuristic

19

3. Maps its decision back to physical nodes

V. Cardellini - SABD 2022/23

ODP as benchmark

20V. Cardellini - SABD 2022/23

Distributed placement heuristic that minimizes network usage

Pietzuch et al. :

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed
Stream Processing Applications, DEBS ’16

Not only placement

21

V.
 C

ar
de

llin
i -

SA
BD

 2
02

2/
23

• Stream processing workloads are characterized by:
– High volume and production rate

• Exploit replication (i.e., operator elasticity): concurrent
execution of multiple operator replicas on different data
portions

• How to determine the number of replicas?

Operator placement and replication

22V. Cardellini - SABD 2022/23

ODRP: Opt. DSP Replication and Placement

23

• We proposed ODRP
– Centralized policy for optimal replication and placement of

DSP applications

– Formulated as Integer Linear Programming (ILP) problem that
extends ODP

• Our goals:
– Jointly determine optimal number of replicas and their

placement
– Consider multiple QoS attributes of applications and resources

– Provide a unified general formulation

– Provide a benchmark for heuristics

• Limitation: scalability, in practice we need heuristics

V. Cardellini - SABD 2022/23

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator replication and
placement for distributed stream processing systems, ACM Perf. Eval. Rew., 2017.

DSP deployment challenges

• How to self-adapt at run-time the application
deployment?

• DSP applications are:
– long-running
– subject to varying workloads
– with computational requirements unknown a-priori

V. Cardellini - SABD 2022/23 24

• Which main mechanisms do we need for run-time
adaptation?
⎼ Migration: move operators from one node to another
⎼ Elastic scaling: change parallelism at application and/or

infrastructure level

Elasticity: limits of centralized approaches

• Centralized optimization algorithms do not scale for
large problem instances

• Centralized MAPE architecture does not scale in
geo-distributed environments
– Components are distributed but control logic is still

centralized

• Which solution for Edge-Cloud continuum?
Decentralize MAPE

25
V. Cardellini - SABD 2022/23

How to decentralize control?

• Many patterns for decentralized control
– Each one having pros and cons

26
V. Cardellini - SABD 2022/23

D. Weyns et al., On patterns for decentralized control in self-adaptive
systems. In Software Engineering for Self-Adaptive Systems II, 2013

How to decentralize control?

• Our approach:
– Hierarchical distributed architecture to support

run-time adaptation
– Based on efficient distribution of MAPE control loops

Global view

Local views
…

V. Cardellini - SABD 2022/23 27

Local elasticity policy

• Let’s focus on the local policy to control the
elasticity of each DSP operator

• The policy can rely only on limited local view of
system
– e.g., utilization and input data rate of the operator it

controls
• Two classes of elasticity policies

– Classic threshold-based policy (e.g., used by AWS
Auto Scaling)
✗Need experience to choose thresholds

– Based on Reinforcement Learning

V. Cardellini - SABD 2022/23 28

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation
for elastic Data Stream Processing, Future Generation Computer Systems, 2018

• A branch of ML dealing with sequential decision-making
• Agent interacts with environment through actions and

receives feedback in the form of reward (paid cost)
• Goal: learn to act as to maximize (minimize) long-term

reward (cost)
• Trial-and-error experience

Environment

ActionsState

Reward

RL agent

Reinforcement Learning in a nutshell

V. Cardellini - SABD 2022/23

Reinforcement Learning in a nutshell

• We consider different classes of RL
algorithms:
– Baseline model-free learning algorithms (e.g., Q-

learning)
– Model-based learning algorithms that exploit what

is known or can be estimated about system
dynamics

V. Cardellini - SABD 2022/23 30

Sutton and Barto, Reinforcement Learning: An Introduction, 2020

RL-based local elasticity policy

• At each step RL agent performs an
action, looking at current state st

• Chosen action at causes payment of
immediate cost ct and transition to a new
state st+1

V. Cardellini - SABD 2022/23 31

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

• To minimize expected long-term (discounted) cost,
RL agent estimates Q(s, a)
– Q-function: expected long-run cost that follows the execution

of action a in state s

RL-based local elasticity policy: Q-learning

• Q-learning: baseline model-free RL algorithm
• Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current
estimates of Q-function stored in Q-table) by greedily
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its
knowledge about system
• We consider ε-greedy action selection method

• Q-learning: update step of Q-function

V. Cardellini - SABD 2022/23 32

Q-table

RL-based local elasticity policy:
advanced RL techniques

• We have exploited advanced RL techniques in order
to deal with large state space (e.g., due to
heterogeneous computing resources)
– Function Approximation
– Deep Learning
– Goal: build approximate representations of state space and

achieve near-optimal solutions with reduced memory
demand

• Let’s consider the high-level ideas
• To learn more about:

– Our tutorial at Performance 2021 Reinforcement Learning for
Run Time Performance Management in the Cloud/Edge

– Russo Russo et al., Hierarchical Auto-Scaling Policies for
Data Stream Processing on Heterogeneous Resources,
ACM TAAS, 2023

V. Cardellini - SABD 2022/23 33

• We consider a heterogeneous computing
infrastructure
– Nodes with different types/amount of resources

• RL agent must decide not only how many replicas to
run but also which types of nodes to host them

Auto-scaling on heterogeneous nodes

Homogeneous Heterogeneous

V. Cardellini - SABD 2022/23 34

• N resource types: Tres = { }
• State s = (k, λ)

– ki = #replicas on nodes of type i
– λ = input data rate

• Actions A(s)={(δ,τ): δ∈{−1,+1}, τ
∈Tres}∪{do−nothing}

• Cost = wres resource cost + wperf performance
+ wrcf reconfiguration

How to formulate?

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

V. Cardellini - SABD 2022/23 35

• Q-learning does not work
✗Too much memory to store tabular representation

of Q-function
✗Very slow convergence

Standard RL algorithms do not work
U

se
d

 M
e

m
o

ry
 [

lo
g

]

Available Node Types

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

 1 2 4 6 8 10

Note: each operator has its own Q-table!

V. Cardellini - SABD 2022/23 36

Q-learning

Partial model knowledge

How to improve?
• We exploit multiple solutions
1. Separate the known from the unknown, inject partial model

knowledge (i.e., post-decision states) and learn only the
unknown part
– Do we really need to learn everything from scratch?

• We know which is the impact of scaling actions on the current
deployment

• We know whether a reconfiguration cost is paid after a certain
action

• We can estimate performance-related costs through a model

V. Cardellini - SABD 2022/23 37

• We exploit multiple solutions
2. Resort to non-linear function approximation (deep

Q network)
3. Combine all together

How to improve?

Function approximation

Partial model knowledge

+
Function approximation

V. Cardellini - SABD 2022/23

Other DSP deployment challenges

• DSP applications and serverless DSP in the
Edge-Cloud continuum?

• How to provide security guarantees?
• Thesis topics

V. Cardellini - SABD 2022/23 39

