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DSP deployment challenges

• Let’s consider two challenges when deploying DSP 
applications

a) How to place DSP operators on underlying 
computing infrastructure (i.e., operator placement)

b) How to determine and adapt at run-time the number 
of replicas per operator (i.e., operator elasticity)
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DSP operator placement
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• Goal: determine which distributed computing nodes 
should host and execute each application operator, with 
the goal of optimizing application QoS

Placement: Edge-Cloud continuum

• Edge/Fog + Cloud computing: allows to increase 
scalability and availability, reduce latency, network 
traffic, and power consumption

• But placement becomes more challenging
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Placement: challenges
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• Significant network latencies
– E.g., geo-distributed resources

• Heterogeneous computing and networking resources
– E.g., capacity limits , business constraints

• Computing/network resources can be unavailable
• Data movement around the network

• Plus peculiarities of DSP applications:
– Computational requirements may be unknown a-priori and 

change continuously
– Long-running applications

à Need to adapt to internal and external changes

Placement: frameworks

• Most frameworks use simple placement 
policies

• Apache Storm
– Round Robin as default strategy
– Resource Aware Scheduler as alternative 
storm.apache.org/releases/2.1.1/Resource_Aware_Scheduler_overview.html

• Takes into account resource availability on machines and 
resource requirements of workloads

• But requires user to specify memory and CPU 
requirements for individual topology components
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Placement: different approaches

• Several operator placement policies in literature that 
address the problem but:
– Different assumptions (system model, application topology, 

QoS attributes and metrics, …)
– Different objectives
– Not easily comparable

• Main methodologies:
– Mathematical programming

• Optimal operator placement problem: NP-hard
• Does not scale well, but provides useful insights

– Heuristics
• Majority of policies

– Deep Reinforcement Learning
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Placement: different approaches

• Who is the decision maker?
– Centralized placement strategies

• Require global view (full resource and network state, 
application state, workload information)

✓ Capable of determining optimal global solution
✗Scalability

– Decentralized placement strategies
• Take decision based only on local information
✓ Scalability, better suited for run-time adaptation
✗Optimality is not guaranteed
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ODP: Optimal DSP Placement

• We proposed ODP
– Centralized policy for optimal placement of DSP applications
– Formulated as Integer Linear Programming (ILP) problem

• Our goals:
– To compute the optimal placement (of course!)

– To provide a unified general formulation of the 
placement problem for DSP applications (but not only!)

– To consider multiple QoS attributes of applications 
and resources

– To provide a benchmark for heuristics
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V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for 
Distributed Stream Processing Applications, DEBS ’16

ODP: model

DSP application
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Operators
• Ci: required computing 

resources 
• Ri: execution time per data unit

Data streams
• li,j: data rate from operator i to j



ODP: model

Computing and network resources
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(Logical) Network links
• du,v: network delay from u to v
• Bu,v: bandwidth from u to v
• Au,v: link availability

Computing resources
• Cu: amount of resources
• Su: processing speed
• Au: resource availability

ODP: model

Decision variables
• Determine where to map DSP operators and data streams
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ODP: some QoS metrics
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• Response time
max end-to-end delay between sources and destination

• Application availability
probability that all components/links are up and running

• Inter-node traffic
overall network data rate

• Network usage
in-flight bytes

SlinksÎl rate(l)Lat(l) 

R

ODP: optimal problem formulation
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Latency

Availability

Network bandwidth and node 
capacity constraints

Assignment and 
integer constraints

Tunable knobs to set the 
optimal placement goals



ODP: scalability issue
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Placement problem is NP-hard: does not scale well!

We need heuristics to compute placement
in a feasible amount of time

Centralized placement heuristics
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L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS '13

• Example of centralized heuristic that aims to reduce 
inter-node traffic

• Aniello et al.: co-locate pairs of communicating tasks 
on same computing node as to minimize inter-node 
communication and balance CPU demand
Greedy heuristic – Key idea: 

– Rank task pairs according to exchanged traffic 

– For each pair:

» If task pairs have not been yet assigned, assign them to same 
node

» If either is assigned, consider least loaded node and those 
where they have been assigned. Work out the configuration 
which minimizes the inter-process traffic



Decentralized placement heuristic
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P. Pietzuch et al., Network-aware operator placement for stream-processing systems,  
ICDE ‘06

SlinksÎl rate(l)Lat(l) 
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• Heuristics goal: reduce network usage
– Network usage metric combines link latencies and exchanged

data rates among DSP operators: 

• Pietzuch et al. exploit spring relaxation idea:
– DSP application regarded as a system of springs, whose 

minimum energy configuration corresponds to minimizing 
network usage 

• Features
– Decentralized policy to minimize network impact

– Adaptive to change in network conditions

Decentralized placement heuristic

17

1. Represents DSP application as an equivalent system of springs
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Network of springs tries to minimize potential energy E

Streams as springs, that restore a force F = ½ • k • s:
– k (spring constant): exchanged data rate on link
– s (spring extension): latency on link

Decentralized placement heuristic
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2. Determines operator placement in the cost space by minimizing the 
elastic energy of the equivalent system

Lat = s

DR = k

P1

S
P2
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Decentralized placement heuristic
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3. Maps its decision back to physical nodes
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ODP as benchmark
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Distributed placement heuristic that minimizes network usage

Pietzuch et al. : 

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed 
Stream Processing Applications, DEBS ’16

Not only placement
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• Stream processing workloads are characterized by:
– High volume and production rate

• Exploit replication (i.e., operator elasticity): concurrent 
execution of multiple operator replicas on different data 
portions

• How to determine the number of replicas?



Operator placement and replication
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ODRP: Opt. DSP Replication and Placement

23

• We proposed ODRP
– Centralized policy for optimal replication and placement of 

DSP applications

– Formulated as Integer Linear Programming (ILP) problem that 
extends ODP

• Our goals:
– Jointly determine optimal number of replicas and their 

placement
– Consider multiple QoS attributes of applications and resources

– Provide a unified general formulation

– Provide a benchmark for heuristics

• Limitation: scalability, in practice we need heuristics
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V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator replication and 
placement for distributed stream processing systems, ACM Perf. Eval. Rew., 2017.



DSP deployment challenges

• How to self-adapt at run-time the application 
deployment?

• DSP applications are:
– long-running
– subject to varying workloads
– with computational requirements unknown a-priori
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• Which main mechanisms do we need for run-time 
adaptation?
⎼ Migration: move operators from one node to another
⎼ Elastic scaling: change parallelism at application and/or 

infrastructure level

Elasticity: limits of centralized approaches

• Centralized optimization algorithms do not scale for 
large problem instances

• Centralized MAPE architecture does not scale in  
geo-distributed environments
– Components are distributed but control logic is still 

centralized

• Which solution for Edge-Cloud continuum? 
Decentralize MAPE

25
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How to decentralize control?

• Many patterns for decentralized control 
– Each one having pros and cons

26
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D. Weyns et al., On patterns for decentralized control in self-adaptive 
systems. In Software Engineering for Self-Adaptive Systems II, 2013

How to decentralize control?

• Our approach: 
– Hierarchical distributed architecture to support

run-time adaptation
– Based on efficient distribution of MAPE control loops

Global view

Local views
…
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Local elasticity policy

• Let’s focus on the local policy to control the 
elasticity of each DSP operator 

• The policy can rely only on limited local view of 
system
– e.g., utilization and input data rate of the operator it 

controls
• Two classes of elasticity policies

– Classic threshold-based policy (e.g., used by AWS 
Auto Scaling)
✗Need experience to choose thresholds

– Based on Reinforcement Learning
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V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation 
for elastic Data Stream Processing, Future Generation Computer Systems, 2018

• A branch of ML dealing with sequential decision-making
• Agent interacts with environment through actions and 

receives feedback in the form of reward (paid cost)
• Goal: learn to act as to maximize (minimize) long-term 

reward (cost)
• Trial-and-error experience 

Environment

ActionsState

Reward

RL agent

Reinforcement Learning in a nutshell
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Reinforcement Learning in a nutshell

• We consider different classes of RL 
algorithms:
– Baseline model-free learning algorithms (e.g., Q-

learning)
– Model-based learning algorithms that exploit what 

is known or can be estimated about system 
dynamics
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Sutton and Barto, Reinforcement Learning: An Introduction, 2020

RL-based local elasticity policy

• At each step RL agent performs an 
action, looking at current state st

• Chosen action at causes payment of 
immediate cost ct and transition to a new 
state st+1
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Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

• To minimize expected long-term (discounted) cost, 
RL agent estimates Q(s, a)
– Q-function: expected long-run cost that follows the execution

of action a in state s



RL-based local elasticity policy: Q-learning

• Q-learning: baseline model-free RL algorithm
• Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current 
estimates of Q-function stored in Q-table) by greedily 
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its 
knowledge about system
• We consider ε-greedy action selection method

• Q-learning: update step of Q-function 
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Q-table

RL-based local elasticity policy: 
advanced RL techniques

• We have exploited advanced RL techniques in order 
to deal with large state space (e.g., due to 
heterogeneous computing resources)
– Function Approximation 
– Deep Learning
– Goal: build approximate representations of state space and 

achieve near-optimal solutions with reduced memory 
demand

• Let’s consider the high-level ideas
• To learn more about:

– Our tutorial at Performance 2021 Reinforcement Learning for 
Run Time Performance Management in the Cloud/Edge

– Russo Russo et al., Hierarchical Auto-Scaling Policies for 
Data Stream Processing on Heterogeneous Resources, 
ACM TAAS, 2023
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• We consider a heterogeneous computing 
infrastructure
– Nodes with different types/amount of resources

• RL agent must decide not only how many replicas to 
run but also which types of nodes to host them 

Auto-scaling on heterogeneous nodes

Homogeneous Heterogeneous
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• N resource types: Tres = { } 
• State s = (k, λ)

– ki = #replicas on nodes of type i
– λ = input data rate

• Actions A(s)={(δ,τ): δ∈{−1,+1}, τ
∈Tres}∪{do−nothing}

• Cost = wres resource cost + wperf performance 
+ wrcf reconfiguration

How to formulate?

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost
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• Q-learning does not work
✗Too much memory to store tabular representation 

of Q-function 
✗Very slow convergence

Standard RL algorithms do not work
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Available Node Types

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

 1  2  4  6  8  10

Note: each operator has its own Q-table! 
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Q-learning

Partial model knowledge

How to improve?
• We exploit multiple solutions
1. Separate the known from the unknown, inject partial model 

knowledge (i.e., post-decision states) and learn only the 
unknown part
– Do we really need to learn everything from scratch?

• We know which is the impact of scaling actions on the current 
deployment

• We know whether a reconfiguration cost is paid after a certain 
action

• We can estimate performance-related costs through a model
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• We exploit multiple solutions
2. Resort to non-linear function approximation (deep 

Q network)
3. Combine all together

How to improve?

Function approximation

Partial model knowledge

+
Function approximation
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Other DSP deployment challenges

• DSP applications and serverless DSP in the 
Edge-Cloud continuum?

• How to provide security guarantees?
• Thesis topics

V. Cardellini - SABD 2022/23 39


