
Corso di Sistemi e Architetture per Big Data
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Distributed and
Federated Machine Leaning

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Machine Learning

• The Machine Learning (ML) hype

Valeria Cardellini - SABD 2022/23 1

Machine Learning

• Enabled by huge leap in parallelization and
innovation in ML infrastructure and tools

Valeria Cardellini - SABD 2022/23 2

Tensor Processing Unit (TPU): AI
accelerator application-specific
integrated circuit (ASIC) specialized
in calculations with tensors (multi-
dimensional matrices)
Also as Cloud service (Google Cloud
TPU)

Major deep learning frameworks (e.g.,
TensorFlow, PyTorch) are GPU-
accelerated

Is there a case for distributed ML?

• Some ML systems:
– Drive significant revenue
– Benefit from humongous amount of data
– Outscale even powerful machines (GPUs, TPUs)

• Which systems? Example: ad click prediction

Valeria Cardellini - SABD 2022/23 3

Li et al, Scaling Distributed Machine Learning with the Parameter Server, OSDI'14

What do ML algorithms look like?

• Common feature when computing ML
algorithms?
– ML algorithms are iterative in nature

• Key challenges:
– Lots of data
– Lots of parameters
– Lots of iterations

Valeria Cardellini - SABD 2022/23 4

Scale of industry ML problems

• Scale of ML industry problems
– 100 billion examples
– 10 billion features
– 1T - 1P training data
– 100 - 1000 machines

• It’s a problem of scale and scale changes
everything!

Valeria Cardellini - SABD 2022/23 5

Scaling out distributed ML

• 10-100s nodes enough for data/model

• Scale out for throughput

• Goal: more iterations/sec

Valeria Cardellini - SABD 2022/23 6

– Best case: 100x speedup from
1000 machines

– Worst case: 50% slowdown from
1000 machines

• Can you think of reasons
for performance
degradation?

Challenge of communication overhead

• Communication overhead scales badly with
number of machines
– E.g., for Netflix-like recommender systems

Valeria Cardellini - SABD 2022/23 7

Requirements of distributed ML

• Scale to industry-size problems
– GPT-3 has 175 billion parameters (variables and

inputs within the ML model)
– Wu Dao 2.0 is 10x larger than GPT-3

• Efficient communication

• Fault tolerance

• Easy to use

Valeria Cardellini - SABD 2022/23 8

Distributed training and inference

• What can we perform in a distributed
manner?
– Training: process of using a ML algorithm to build

a model
– Inference: process of using a trained ML algorithm

to make a prediction

Valeria Cardellini - SABD 2022/23 9

Parallelization methods for distributed training

• Focus on distributed training

• Methods for distributed training
1. Data parallelism: the usual SPMD approach
2. Model parallelism
3. Pipeline parallelism
– Plus hybrid forms of parallelism that we do not

explore

Valeria Cardellini - SABD 2022/23 10

– In particular, let’s consider deep
neural networks (DNNs), that is
artificial neural networks that have
an input layer, many hidden layers,
an output layer

Method 1: Data parallelism

Valeria Cardellini - SABD 2022/23 11

• Workers (machines or devices, e.g.,
GPUs) load an identical copy of
model (M)

• Training data is split (D(1), D(2), …)
into non-overlapping chunks or
(slices) and fed into model replicas of
workers for training

• Each worker performs training on its
chunks of training data, which leads
to updates of model parameters
– Model parameters between workers

need to be synchronized: how?

Method 2: Model parallelism

• Model is split (M(1), M(2), …) and each worker loads a
different part of model for training
– The model is the aggregate of all model parts

• Workers load an identical copy of data (D)

Valeria Cardellini - SABD 2022/23 12

Method 2: Model parallelism

• Use case: Deep Learning (DL)
• Main idea: partition DNN layers among different workers

– Worker(s) that hold input layer of DL model are fed with training
data

– In the forward pass, they compute their output signal which is
propagated to workers that hold the next layer of DL model

– In the backpropagation pass, gradients are computed starting at
workers that hold the output layer of the DL model, propagating
to workers that hold the input layers of the DL model

Valeria Cardellini - SABD 2022/23 13

Method 3: Pipeline parallelism

Valeria Cardellini - SABD 2022/23 14

• Combines model parallelism with data parallelism
• Use case: DL

– Model is split and each worker loads a different part of model
for training; training data is split into micro-batches

– Every worker computes output signals for a set of micro-
batches, propagating them to subsequent workers

– In the backpropagation pass, workers compute gradients for
their model partition for multiple micro-batches, immediately
propagating them to preceding workers

B: backpropagation

Parallelization methods: Pros and cons

• Data parallelism
✓Can be used with every ML algorithm with an

independent and identical distribution (i.i.d.)
assumption over data samples (i.e., most ML
algorithms)

✓Does not require domain knowledge of model
✗Parameter synchronization may become

bottleneck
✗Does not help when model size is too large to fit

on a single machine

Valeria Cardellini - SABD 2022/23 15

Parallelization methods: Pros and cons

• Model parallelism
✗Challenge: how to split the model into partitions

that are assigned to parallel workers
• Cannot automatically be applied to every ML algorithm,

because model parameters generally cannot be split up

✓Reduced model’s memory footprint
• As the model is split, less memory is needed for each

worker

✗Heavy communication needed between workers

Valeria Cardellini - SABD 2022/23 16

Optimizations for data parallelism

• Challenges of parameter synchronization in
data-parallel ML systems

1. How to synchronize parameters
– Centralized or decentralized manner?

2. When to synchronize parameters
– Should workers be forced to synchronize after

each batch, or do we allow them more freedom
to work with potentially stale parameters?

• How to minimize communication overhead
for parameter synchronization

Valeria Cardellini - SABD 2022/23 17

How to synchronize parameters: architecture

1. How to synchronize parameters
– Centralized or decentralized manner?

• Centralized: parameter server

• Decentralized: all-reduce

Valeria Cardellini - SABD 2022/23 18

Centralized: Parameter server

• The most prominent architecture of data parallel ML
systems

• Workers periodically push their computed parameters
(or parameter updates) to a parameter server (PS),
which keeps the shared model, and pull the updated
model parameters from PS

Valeria Cardellini - SABD 2022/23 19

Parameter server: distributed gradient descent

Valeria Cardellini - SABD 2022/23 20

PS updates the
model weights

Workers send
gradients to PS

Workers pull
weights from PS

l(xi, yi, w) is a loss
function (e.g.,
regression or
classification
error) that
depends on data
xi, labels yi and
parameters w

Li et al., Scaling distributed machine learning with the parameter server, OSDI 2014

Parameter server: on multiple GPUs

1. Compute loss and
gradient on each GPU

2. All gradients are
aggregated on one
GPU acting as
parameter server

3. Parameter update
happens and
parameters are re-
distributed to all
GPUs

Valeria Cardellini - SABD 2022/23 21

Centralized: Multiple parameter servers
• To mitigate performance bottleneck and SPoF, there

can be multiple parameter servers which manage the
model’s parameters

– Parameters are partitioned among multiple PSs and each
PS is only responsible for maintaining the parameters in its
partition

– When a worker wants to send a gradient, it partitions that
gradient vector and send each chunk to the corresponding
PS; later, it will receive the corresponding chunk of the
updated model from that parameter server

Valeria Cardellini - SABD 2022/23 22

Decentralized: All-reduce

• All-reduce: collective communication which computes some
reduction (e.g., sum) of data (e.g., gradients) on multiple
workers and make the result (e.g., weights) available on all
the workers

• All-reduce should be implemented efficiently because naïve
solution (all-to-all) is too costly: communication cost of fully
connected network is O(n2) with n workers

• How? Use different topologies, such as ring or tree
Valeria Cardellini - SABD 2022/23 23

Decentralized: Pros and cons

• Decentralized architecture pros
✓ No need of implementing parameter server(s), which also

eases deployment
✓ Easier to achieve fault tolerance: no SPoF (if single PS)

• When a node in the decentralized architecture fails, other
nodes can easily take over its workload and training proceeds
without interruptions

• Heavy-weight checkpointing of parameter server state is not
necessary

• Decentralized architecture cons
✗ Communication cost increases (at most quadratically) with

number of workers
✗ Changing the communication topology or partitioning the

gradients induces new complexities and trade-offs

Valeria Cardellini - SABD 2022/23 24

When to synchronize

2. When to synchronize parameters
– Should workers be forced to synchronize after

each batch, or do we allow them more freedom
to work with potentially stale parameters?

• Synchronous

• Bounded asynchronous

• Asynchronous

Valeria Cardellini - SABD 2022/23 25

When to synchronize: sync

• Synchronous (sync)
– After each iteration (i.e., processing of a batch),

workers synchronize their parameter updates, so
that all workers use the same synchronized set of
model parameters

– Requires barriers between iterations
✓Reasoning about model convergence is easier
✗Straggler problem, where the slowest worker

slows down all others

Valeria Cardellini - SABD 2022/23 26

When to synchronize

• How to address straggler problem?

• Let’s relax the synchronization requirement

• How?
– Asynchronous manner: a worker who finishes

processing a batch can pull the current
parameters from PS and start the next batch, even
if other workers haven’t finished processing the
earlier batch

– Asynchronous manner is suitable to geo-
distributed training servers

• But be careful: this is the usual trade-off
between performance and model guarantees

Valeria Cardellini - SABD 2022/23 27

When to synchronize

• Bounded asynchronous
– Workers may train on stale parameters,

but staleness is bounded
• ML algorithms are robust, converge even with

some stale state

Valeria Cardellini - SABD 2022/23 28

✓Allows for mathematical analysis and proof of
model convergence properties

✓Bound allows workers for more freedom in making
training progress independently from each other,
which mitigates the straggler problem and
increases throughput

When to synchronize: async

• Asynchronous (async)
– No barriers at all: workers update their model

completely independently from each other
✓Completely avoids straggler problem
✗No guarantees on a staleness bound, i.e., a

worker may train on an arbitrarily stale model
✗Hard to mathematically reason about model

convergence

Valeria Cardellini - SABD 2022/23 29

Example: TensorFlow

• TensorFlow: Python-friendly open-source software
library for ML and AI
– Can be used across a range of ML and AI tasks, but focus

on training and inference of DNNs
– Initially developed by Google Brain team for internal Google

use in research and production, then released in 2015
– A TensorFlow computation is described by a DAG with

operations and units of data that flow between operations
– Can run also on multiple devices

• CPUs and accelerators (TPUs and GPUs)

Valeria Cardellini - SABD 2022/23 30

TensorFlow graph representing
a 2-layer neural network

Example: TensorFlow

• tf.distribute.Strategy: TensorFlow API to distribute
training across multiple devices

• Uses data parallelism to scale out model training
– Supports both centralized (based on parameter server) and

decentralized (based on all-reduce)
– Supports both synchronous and asynchronous parameter

update

Valeria Cardellini - SABD 2022/23 31

Example: Apache MXNet

• MXNet: open-source DL library
• Scalable distributed training on multiple devices

(CPUs, GPUs) by means of data parallelism and
parameter servers
mxnet.apache.org/versions/1.9.0/api/faq/distributed_training

• MXNet’s Parameter Server, KVStore, is implemented
on top of a traditional key-value store
– KV store for efficient parameter synchronization
– Devices push key-value pairs to KV store and pull the

current value of a key from KV store: each parameter array
in DNN is assigned a key, and value refers to the weights of
that parameter array

– KVStore can be distributed (i.e., multiple parameter servers)

• Supports both synchronous and asynchronous
parameter update

Valeria Cardellini - SABD 2022/23 32

Example: Pytorch

• Pytorch: open-source ML framework based on Torch
library

• Scalable distributed training on multiple devices
(CPUs, GPUs) by means of data parallelism and
decentralized all-reduce
pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataPar
allel.html
– All-reduce is built on top of efficient collective communication

libraries: gloo, MPI, and NVIDIA Collective Communications
Library (NCCL)

• Also supports RPC-based distributed training for
general distributed training scenarios
– Can be used to implement parameter servers

Valeria Cardellini - SABD 2022/23 33

What is federated ML?
• Scenario: training settings are distributed,

collaborative, and multiple devices/clients
• Goal: train collaboratively a ML model on multiple

client devices located at the network edge, where
data is generated locally and remains decentralized
– No centralized training data: each client stores its own data

and cannot read data of other clients
– Data is not independently or identically distributed

Valeria Cardellini - SABD 2022/23 34

What is federated ML?

• A broad definition: Federated learning (FL) is a
ML setting where multiple clients collaborate in
solving a ML problem, under the coordination of
a central server or service provider

• Each client’s raw data is stored locally and not
exchanged or transferred; instead, focused
updates intended for immediate aggregation
are used to achieve the learning objective

Valeria Cardellini - SABD 2022/23 35

Federated learning system

• A central orchestration server organizes the
training, but never sees raw data

Valeria Cardellini - SABD 2022/23 36

FL training process

• A server (service provider) orchestrates the training
process, by repeating the following steps until training
is stopped:

1. Client selection: The server samples from a set of
clients meeting eligibility requirements (e.g., in order
to avoid impacting the device user)

2. Broadcast: The selected clients download the
current model weights and a training program (e.g., a
TensorFlow graph) from the server

3. Client computation: Each selected device locally
computes an update to the model by executing the
training program (e.g., running SGD on the local
data)

Valeria Cardellini - SABD 2022/23 37

FL training process

4. Aggregation: The server collects an aggregate of
the device updates. For efficiency, stragglers might
be dropped at this point. This stage is also the
integration point for many other techniques,
including: secure aggregation for added privacy,
lossy compression of aggregates for communication
efficiency, and noise addition and update clipping for
differential privacy

5. Model update: The server locally updates the
shared model based on the aggregated update
computed from the clients that participated in the
current round.

Valeria Cardellini - SABD 2022/23 38

Example: FL application

Valeria Cardellini - SABD 2022/23 39

• Next-word prediction on mobile phones, while
preserving privacy of data and reducing strain on
network

Example: FL application

• Goal: train a predictor in a distributed fashion, rather
than sending raw data to a central server

• How it works
– Remote mobile devices communicate with a central server

periodically to learn a global model
– At each communication round, a subset of selected devices

performs local training on their non-identically distributed
user data, and sends these local updates to the server

– After incorporating updates, the server sends back the new
global model to another subset of devices

– Iterative training process continues until convergence is
reached or some stopping criterion is met

Valeria Cardellini - SABD 2022/23 40

FL main challenges

• Communication overhead

• System heterogeneity

• Statistical heterogeneity

• Privacy concerns

Valeria Cardellini - SABD 2022/23 41

References

• Mayer et al., Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques, and Tools, ACM
Computing Surveys, 2020

• Verbraeken et al., A Survey on Distributed Machine Learning,
ACM Computing Surveys, 2020

• McMahan and Ramage, Federated Learning: Collaborative
Machine Learning without Centralized Training Data, Google AI
blog, 2017

• Kairouz et al., Advances and Open Problems in Federated
Learning, 2021

Valeria Cardellini - SABD 2022/23 42

