

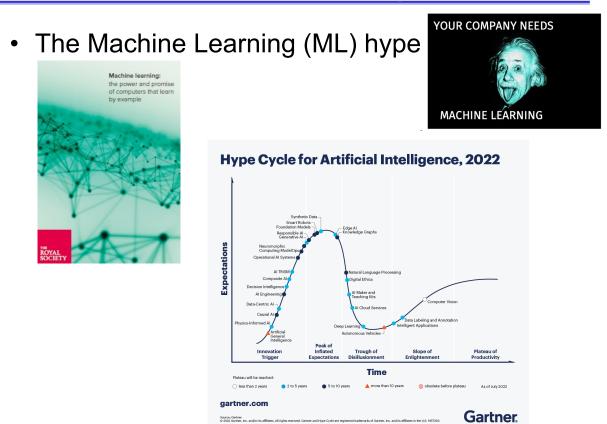
Introduction to Distributed and Federated Machine Leaning

Corso di Sistemi e Architetture per Big Data

A.A. 2022/23 Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Machine Learning

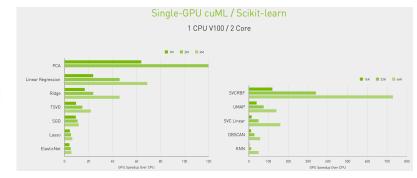


• Enabled by huge leap in parallelization and innovation in ML infrastructure and tools

Tensor Processing Unit (TPU): AI

accelerator application-specific integrated circuit (ASIC) specialized in calculations with tensors (multidimensional matrices) Also as Cloud service (Google Cloud TPU)

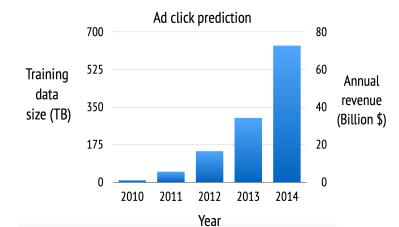
Major deep learning frameworks (e.g., TensorFlow, PyTorch) are GPUaccelerated



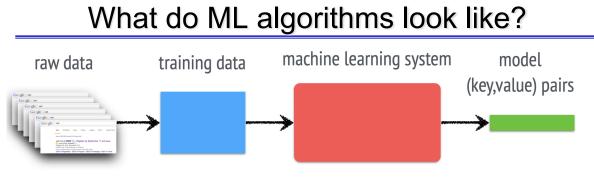
Valeria Cardellini - SABD 2022/23

Is there a case for distributed ML?

- Some ML systems:
 - Drive significant revenue
 - Benefit from humongous amount of data
 - Outscale even powerful machines (GPUs, TPUs)
- Which systems? Example: ad click prediction



Li et al, Scaling Distributed Machine Learning with the Parameter Server, OSDI'14



- Common feature when computing ML algorithms?
 - ML algorithms are iterative in nature
- Key challenges:
 - Lots of data
 - Lots of parameters
 - Lots of iterations

Scale of industry ML problems

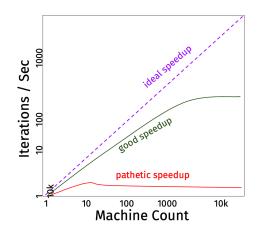
- Scale of ML industry problems
 - 100 billion examples
 - 10 billion features
 - 1T 1P training data
 - 100 1000 machines
- It's a problem of scale and scale changes everything!

Scale has been the single most important force driving changes in system software over the last decade

- Technical perspective: Is scale your enemy, or is scale your friend? John Ousterhout, CACM 54(7):110, July 2011.

Scaling out distributed ML

- 10-100s nodes enough for data/model
- Scale out for throughput
- Goal: more iterations/sec
 - Best case: 100x speedup from 1000 machines
 - Worst case: 50% slowdown from 1000 machines
- Can you think of reasons for performance degradation?



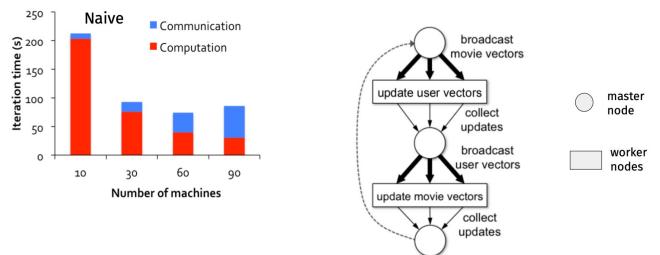
Valeria Cardellini - SABD 2022/23

6

Challenge of communication overhead

 Communication overhead scales badly with number of machines

- E.g., for Netflix-like recommender systems



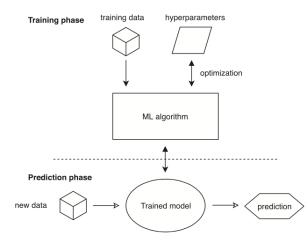
Requirements of distributed ML

- Scale to industry-size problems
 - GPT-3 has 175 billion parameters (variables and inputs within the ML model)
 - Wu Dao 2.0 is 10x larger than GPT-3
- Efficient communication
- Fault tolerance
- · Easy to use

Valeria Cardellini - SABD 2022/23

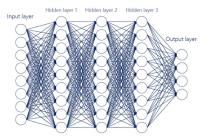
Distributed training and inference

- What can we perform in a distributed manner?
 - Training: process of using a ML algorithm to build a model
 - Inference: process of using a trained ML algorithm to make a prediction



Parallelization methods for distributed training

- Focus on distributed training
 - In particular, let's consider deep neural networks (DNNs), that is artificial neural networks that have an input layer, many hidden layers, an output layer



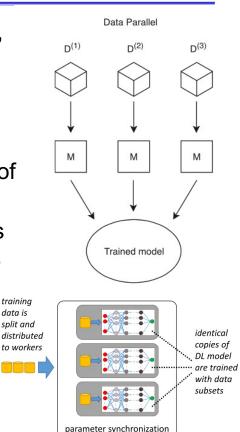
- · Methods for distributed training
 - 1. Data parallelism: the usual SPMD approach
 - 2. Model parallelism
 - 3. Pipeline parallelism
 - Plus hybrid forms of parallelism that we do not explore

Valeria Cardellini - SABD 2022/23

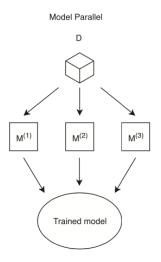
10

Method 1: Data parallelism

- Workers (machines or devices, e.g., GPUs) load an identical copy of model (M)
- Training data is split (D⁽¹⁾, D⁽²⁾, ...) into non-overlapping chunks or (slices) and fed into model replicas of workers for training
- Each worker performs training on its chunks of training data, which leads to updates of model parameters
 - Model parameters between workers need to be synchronized: how?



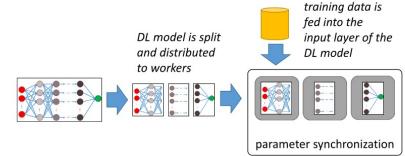
Method 2: Model parallelism



- Model is split (M⁽¹⁾, M⁽²⁾, ...) and each worker loads a different part of model for training
 - The model is the aggregate of all model parts
- Workers load an identical copy of data (D)

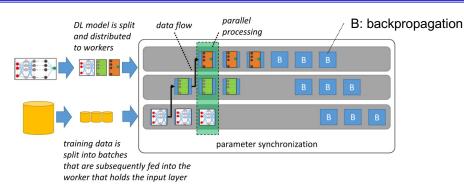
Valeria Cardellini - SABD 2022/23

Method 2: Model parallelism



- Use case: Deep Learning (DL)
- Main idea: partition DNN layers among different workers
 - Worker(s) that hold input layer of DL model are fed with training data
 - In the forward pass, they compute their output signal which is propagated to workers that hold the next layer of DL model
 - In the backpropagation pass, gradients are computed starting at workers that hold the output layer of the DL model, propagating to workers that hold the input layers of the DL model

Method 3: Pipeline parallelism



- · Combines model parallelism with data parallelism
- Use case: DL
 - Model is split and each worker loads a different part of model for training; training data is split into micro-batches
 - Every worker computes output signals for a set of microbatches, propagating them to subsequent workers
 - In the backpropagation pass, workers compute gradients for their model partition for multiple micro-batches, immediately propagating them to preceding workers

Valeria Cardellini - SABD 2022/23

14

Parallelization methods: Pros and cons

- Data parallelism
 - Can be used with every ML algorithm with an independent and identical distribution (i.i.d.) assumption over data samples (i.e., most ML algorithms)
 - ✓ Does not require domain knowledge of model
 - X Parameter synchronization may become bottleneck
 - X Does not help when model size is too large to fit on a single machine

Parallelization methods: Pros and cons

Model parallelism

X Challenge: how to split the model into partitions that are assigned to parallel workers

• Cannot automatically be applied to every ML algorithm, because model parameters generally cannot be split up

✓ Reduced model's memory footprint

As the model is split, less memory is needed for each worker

X Heavy communication needed between workers

Optimizations for data parallelism

- Challenges of parameter synchronization in data-parallel ML systems
- 1. How to synchronize parameters
 - Centralized or decentralized manner?
- 2. When to synchronize parameters
 - Should workers be forced to synchronize after each batch, or do we allow them more freedom to work with potentially stale parameters?
- How to minimize communication overhead for parameter synchronization

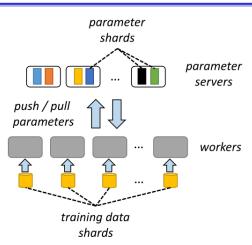
How to synchronize parameters: architecture

- 1. How to synchronize parameters
 - Centralized or decentralized manner?
- Centralized: parameter server
- Decentralized: all-reduce

Valeria Cardellini - SABD 2022/23

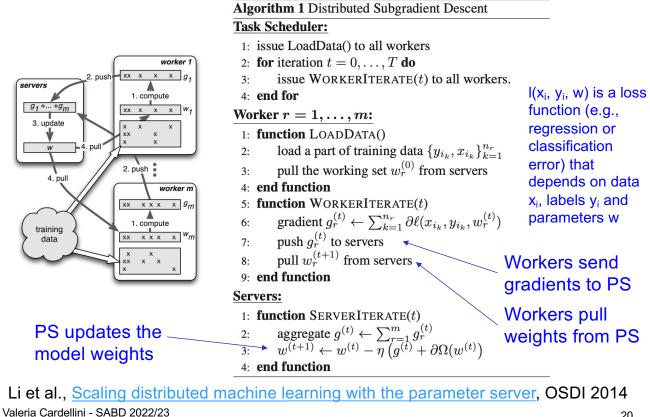
18

Centralized: Parameter server



- The most prominent architecture of data parallel ML systems
- Workers periodically push their computed parameters (or parameter updates) to a parameter server (PS), which keeps the shared model, and pull the updated model parameters from PS

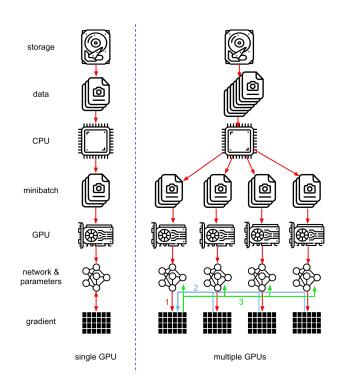
Parameter server: distributed gradient descent



20

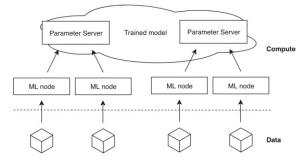
Parameter server: on multiple GPUs

- Compute loss and 1. gradient on each GPU
- All gradients are 2. aggregated on one **GPU** acting as parameter server
- 3. Parameter update happens and parameters are redistributed to all **GPUs**



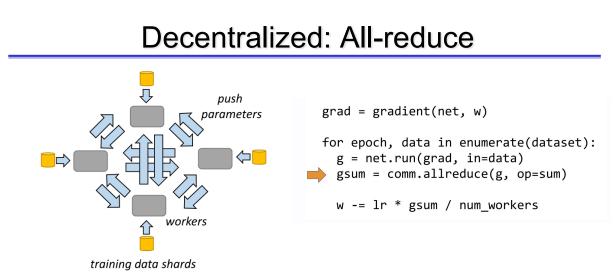
Centralized: Multiple parameter servers

• To mitigate performance bottleneck and SPoF, there can be multiple parameter servers which manage the model's parameters



- Parameters are partitioned among multiple PSs and each PS is only responsible for maintaining the parameters in its partition
- When a worker wants to send a gradient, it partitions that gradient vector and send each chunk to the corresponding PS; later, it will receive the corresponding chunk of the updated model from that parameter server

Valeria Cardellini - SABD 2022/23



- All-reduce: collective communication which computes some reduction (e.g., sum) of data (e.g., gradients) on multiple workers and make the result (e.g., weights) available on all the workers
- All-reduce should be implemented efficiently because naïve solution (all-to-all) is too costly: communication cost of fully connected network is O(n²) with n workers

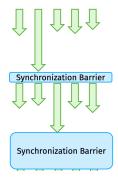
• How? Use different topologies, such as ring or tree Valeria Cardellini - SABD 2022/23

- Decentralized architecture pros
 - No need of implementing parameter server(s), which also eases deployment
 - ✓ Easier to achieve fault tolerance: no SPoF (if single PS)
 - When a node in the decentralized architecture fails, other nodes can easily take over its workload and training proceeds without interruptions
 - Heavy-weight checkpointing of parameter server state is not necessary
- Decentralized architecture cons
 - X Communication cost increases (at most quadratically) with number of workers
 - X Changing the communication topology or partitioning the gradients induces new complexities and trade-offs

When to synchronize

- 2. When to synchronize parameters
 - Should workers be forced to synchronize after each batch, or do we allow them more freedom to work with potentially stale parameters?
- Synchronous
- Bounded asynchronous
- Asynchronous

- Synchronous (sync)
 - After each iteration (i.e., processing of a batch), workers synchronize their parameter updates, so that all workers use the same synchronized set of model parameters
 - Requires barriers between iterations
 - ✓ Reasoning about model convergence is easier
 - X Straggler problem, where the slowest worker slows down all others



When to synchronize

- How to address straggler problem?
- Let's relax the synchronization requirement
- How?
 - Asynchronous manner: a worker who finishes processing a batch can pull the current parameters from PS and start the next batch, even if other workers haven't finished processing the earlier batch
 - Asynchronous manner is suitable to geodistributed training servers
- But be careful: this is the usual trade-off between performance and model guarantees

When to synchronize

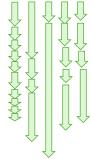
Bounded asynchronous

 Workers may train on stale parameters, but staleness is bounded

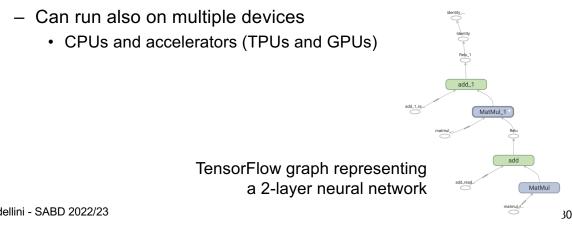
- ML algorithms are robust, converge even with some stale state
- Allows for mathematical analysis and proof of model convergence properties
- Bound allows workers for more freedom in making training progress independently from each other, which mitigates the straggler problem and increases throughput

When to synchronize: async

- Asynchronous (async)
 - No barriers at all: workers update their model completely independently from each other
 - ✓ Completely avoids straggler problem
 - X No guarantees on a staleness bound, i.e., a worker may train on an arbitrarily stale model
 - X Hard to mathematically reason about model convergence



- TensorFlow: Python-friendly open-source software • library for ML and AI
 - Can be used across a range of ML and AI tasks, but focus on training and inference of DNNs
 - Initially developed by Google Brain team for internal Google use in research and production, then released in 2015
 - A TensorFlow computation is described by a DAG with operations and units of data that flow between operations



Example: TensorFlow

- tf.distribute.Strategy: TensorFlow API to distribute training across multiple devices
- Uses data parallelism to scale out model training •
 - Supports both centralized (based on parameter server) and decentralized (based on all-reduce)
 - Supports both synchronous and asynchronous parameter update

TensorFlow

- <u>MXNet</u>: open-source DL library
- Scalable distributed training on multiple devices (CPUs, GPUs) by means of data parallelism and parameter servers mxnet.apache.org/versions/1.9.0/api/faq/distributed_training
- MXNet's Parameter Server, KVStore, is implemented on top of a traditional key-value store
 - KV store for efficient parameter synchronization
 - Devices push key-value pairs to KV store and pull the current value of a key from KV store: each parameter array in DNN is assigned a key, and value refers to the weights of that parameter array
 - KVStore can be distributed (i.e., multiple parameter servers)
- Supports both synchronous and asynchronous parameter update

32

- Example: Pytorch
- <u>Pytorch</u>: open-source ML framework based on Torch library
- Scalable distributed training on multiple devices (CPUs, GPUs) by means of data parallelism and decentralized all-reduce

pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataPar allel.html

- All-reduce is built on top of efficient collective communication libraries: <u>gloo</u>, MPI, and NVIDIA Collective Communications Library (<u>NCCL</u>)
- Also supports RPC-based distributed training for general distributed training scenarios
 - Can be used to implement parameter servers

What is federated ML?

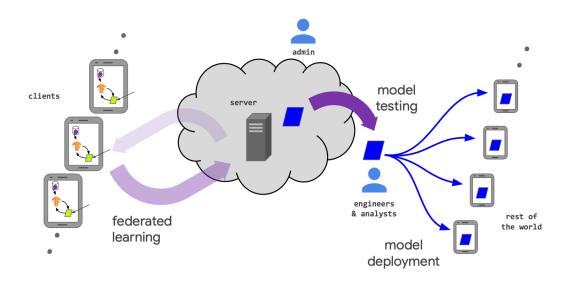
- Scenario: training settings are distributed, collaborative, and multiple devices/clients
- Goal: train collaboratively a ML model on multiple client devices located at the network edge, where data is generated locally and remains decentralized
 - No centralized training data: each client stores its own data and cannot read data of other clients
 - Data is not independently or identically distributed

Valeria Cardellini - SABD 2022/23

What is federated ML?

- A broad definition: Federated learning (FL) is a ML setting where multiple clients collaborate in solving a ML problem, under the coordination of a central server or service provider
- Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective

• A central orchestration server organizes the training, but never sees raw data



Valeria Cardellini - SABD 2022/23

36

FL training process

- A server (service provider) orchestrates the training process, by repeating the following steps until training is stopped:
- 1. Client selection: The server samples from a set of clients meeting eligibility requirements (e.g., in order to avoid impacting the device user)
- 2. Broadcast: The selected clients download the current model weights and a training program (e.g., a TensorFlow graph) from the server
- **3. Client computation:** Each selected device locally computes an update to the model by executing the training program (e.g., running SGD on the local data)

- 4. Aggregation: The server collects an aggregate of the device updates. For efficiency, stragglers might be dropped at this point. This stage is also the integration point for many other techniques, including: secure aggregation for added privacy, lossy compression of aggregates for communication efficiency, and noise addition and update clipping for differential privacy
- 5. Model update: The server locally updates the shared model based on the aggregated update computed from the clients that participated in the current round.

Example: FL application

 Next-word prediction on mobile phones, while preserving privacy of data and reducing strain on network



39

Example: FL application

- Goal: train a predictor in a distributed fashion, rather than sending raw data to a central server
- How it works
 - Remote mobile devices communicate with a central server periodically to learn a global model
 - At each communication round, a subset of selected devices performs local training on their non-identically distributed user data, and sends these local updates to the server
 - After incorporating updates, the server sends back the new global model to another subset of devices
 - Iterative training process continues until convergence is reached or some stopping criterion is met

Valeria Cardellini - SABD 2022/23

FL main challenges

- Communication overhead
- System heterogeneity
- Statistical heterogeneity
- Privacy concerns

- Mayer et al., <u>Scalable Deep Learning on Distributed</u> <u>Infrastructures: Challenges, Techniques, and Tools</u>, ACM Computing Surveys, 2020
- Verbraeken et al., <u>A Survey on Distributed Machine Learning</u>, ACM Computing Surveys, 2020
- McMahan and Ramage, <u>Federated Learning: Collaborative</u> <u>Machine Learning without Centralized Training Data</u>, Google AI blog, 2017
- Kairouz et al., <u>Advances and Open Problems in Federated</u> Learning, 2021