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Machine Learning

• The Machine Learning (ML) hype
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Machine Learning

• Enabled by huge leap in parallelization and 
innovation in ML infrastructure and tools
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Tensor Processing Unit (TPU): AI 
accelerator application-specific 
integrated circuit (ASIC) specialized 
in calculations with tensors (multi-
dimensional matrices)
Also as Cloud service (Google Cloud 
TPU)

Major deep learning frameworks (e.g., 
TensorFlow, PyTorch) are GPU-
accelerated

Is there a case for distributed ML? 

• Some ML systems: 
– Drive significant revenue 
– Benefit from humongous amount of data 
– Outscale even powerful machines (GPUs, TPUs)

• Which systems? Example: ad click prediction
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Li et al, Scaling Distributed Machine Learning with the Parameter Server, OSDI'14 



What do ML algorithms look like?

• Common feature when computing ML 
algorithms?
– ML algorithms are iterative in nature 

• Key challenges: 
– Lots of data
– Lots of parameters
– Lots of iterations
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Scale of industry ML problems 

• Scale of ML industry problems
– 100 billion examples
– 10 billion features
– 1T - 1P training data
– 100 - 1000 machines

• It’s a problem of scale and scale changes 
everything!
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Scaling out distributed ML

• 10-100s nodes enough for data/model 

• Scale out for throughput

• Goal: more iterations/sec
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– Best case: 100x speedup from 
1000 machines

– Worst case: 50% slowdown from 
1000 machines

• Can you think of reasons
for performance 
degradation?

Challenge of communication overhead

• Communication overhead scales badly with 
number of machines 
– E.g., for Netflix-like recommender systems
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Requirements of distributed ML

• Scale to industry-size problems
– GPT-3 has 175 billion parameters (variables and 

inputs within the ML model)
– Wu Dao 2.0 is 10x larger than GPT-3

• Efficient communication

• Fault tolerance

• Easy to use 
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Distributed training and inference

• What can we perform in a distributed 
manner?
– Training: process of using a ML algorithm to build 

a model
– Inference: process of using a trained ML algorithm 

to make a prediction
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Parallelization methods for distributed training

• Focus on distributed training

• Methods for distributed training
1. Data parallelism: the usual SPMD approach
2. Model parallelism 
3. Pipeline parallelism
– Plus hybrid forms of parallelism that we do not 

explore
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– In particular, let’s consider deep 
neural networks (DNNs), that is 
artificial neural networks that have 
an input layer, many hidden layers, 
an output layer

Method 1: Data parallelism
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• Workers (machines or devices, e.g., 
GPUs) load an identical copy of 
model (M)

• Training data is split (D(1), D(2), …) 
into non-overlapping chunks or 
(slices) and fed into model replicas of 
workers for training

• Each worker performs training on its 
chunks of training data, which leads 
to updates of model parameters
– Model parameters between workers 

need to be synchronized: how?



Method 2: Model parallelism

• Model is split (M(1), M(2), …) and each worker loads a 
different part of model for training 
– The model is the aggregate of all model parts

• Workers load an identical copy of data (D)
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Method 2: Model parallelism

• Use case: Deep Learning (DL)
• Main idea: partition DNN layers among different workers

– Worker(s) that hold input layer of DL model are fed with training 
data

– In the forward pass, they compute their output signal which is 
propagated to workers that hold the next layer of DL model

– In the backpropagation pass, gradients are computed starting at 
workers that hold the output layer of the DL model, propagating 
to workers that hold the input layers of the DL model

Valeria Cardellini - SABD 2022/23 13



Method 3: Pipeline parallelism
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• Combines model parallelism with data parallelism
• Use case: DL

– Model is split and each worker loads a different part of model 
for training; training data is split into micro-batches

– Every worker computes output signals for a set of micro-
batches, propagating them to subsequent workers

– In the backpropagation pass, workers compute gradients for 
their model partition for multiple micro-batches, immediately 
propagating them to preceding workers 

B: backpropagation

Parallelization methods: Pros and cons

• Data parallelism
✓Can be used with every ML algorithm with an 

independent and identical distribution (i.i.d.) 
assumption over data samples (i.e., most ML 
algorithms)

✓Does not require domain knowledge of model
✗Parameter synchronization may become 

bottleneck 
✗Does not help when model size is too large to fit 

on a single machine 
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Parallelization methods: Pros and cons

• Model parallelism
✗Challenge: how to split the model into partitions 

that are assigned to parallel workers 
• Cannot automatically be applied to every ML algorithm, 

because model parameters generally cannot be split up

✓Reduced model’s memory footprint
• As the model is split, less memory is needed for each

worker 

✗Heavy communication needed between workers 
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Optimizations for data parallelism

• Challenges of parameter synchronization in 
data-parallel ML systems

1. How to synchronize parameters
– Centralized or decentralized manner? 

2. When to synchronize parameters
– Should workers be forced to synchronize after 

each batch, or do we allow them more freedom 
to work with potentially stale parameters?

• How to minimize communication overhead 
for parameter synchronization
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How to synchronize parameters: architecture

1. How to synchronize parameters
– Centralized or decentralized manner? 

• Centralized: parameter server

• Decentralized: all-reduce
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Centralized: Parameter server

• The most prominent architecture of data parallel ML 
systems 

• Workers periodically push their computed parameters 
(or parameter updates) to a parameter server (PS), 
which keeps the shared model, and pull the updated 
model parameters from PS
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Parameter server: distributed gradient descent
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PS updates the 
model weights

Workers send 
gradients to PS

Workers pull 
weights from PS

l(xi, yi, w) is a loss
function (e.g.,  
regression or 
classification
error) that
depends on data 
xi, labels yi and 
parameters w

Li et al., Scaling distributed machine learning with the parameter server, OSDI 2014 

Parameter server: on multiple GPUs

1. Compute loss and 
gradient on each GPU

2. All gradients are 
aggregated on one 
GPU acting as 
parameter server

3. Parameter update 
happens and 
parameters are re-
distributed to all 
GPUs
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Centralized: Multiple parameter servers
• To mitigate performance bottleneck and SPoF, there 

can be multiple parameter servers which manage the 
model’s parameters

– Parameters are partitioned among multiple PSs and each 
PS is only responsible for maintaining the parameters in its 
partition

– When a worker wants to send a gradient, it partitions that 
gradient vector and send each chunk to the corresponding 
PS; later, it will receive the corresponding chunk of the 
updated model from that parameter server
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Decentralized: All-reduce

• All-reduce: collective communication which computes some 
reduction (e.g., sum) of data (e.g., gradients) on multiple 
workers and make the result (e.g., weights) available on all 
the workers

• All-reduce should be implemented efficiently because naïve 
solution (all-to-all) is too costly: communication cost of fully 
connected network is O(n2) with n workers

• How? Use different topologies, such as ring or tree
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Decentralized: Pros and cons

• Decentralized architecture pros
✓ No need of implementing parameter server(s), which also 

eases deployment
✓ Easier to achieve fault tolerance: no SPoF (if single PS) 

• When a node in the decentralized architecture fails, other 
nodes can easily take over its workload and training proceeds 
without interruptions

• Heavy-weight checkpointing of parameter server state is not 
necessary

• Decentralized architecture cons
✗ Communication cost increases (at most quadratically) with 

number of workers
✗ Changing the communication topology or partitioning the 

gradients induces new complexities and trade-offs
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When to synchronize

2. When to synchronize parameters
– Should workers be forced to synchronize after 

each batch, or do we allow them more freedom 
to work with potentially stale parameters?

• Synchronous

• Bounded asynchronous

• Asynchronous
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When to synchronize: sync

• Synchronous (sync)
– After each iteration (i.e., processing of a batch), 

workers synchronize their parameter updates, so 
that all workers use the same synchronized set of 
model parameters

– Requires barriers between iterations
✓Reasoning about model convergence is easier
✗Straggler problem, where the slowest worker 

slows down all others 
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When to synchronize

• How to address straggler problem? 

• Let’s relax the synchronization requirement

• How?
– Asynchronous manner: a worker who finishes 

processing a batch can pull the current 
parameters from PS and start the next batch, even 
if other workers haven’t finished processing the 
earlier batch

– Asynchronous manner is suitable to geo-
distributed training servers

• But be careful: this is the usual trade-off 
between performance and model guarantees
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When to synchronize

• Bounded asynchronous
– Workers may train on stale parameters, 

but staleness is bounded
• ML algorithms are robust, converge even with 

some stale state 
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✓Allows for mathematical analysis and proof of 
model convergence properties

✓Bound allows workers for more freedom in making 
training progress independently from each other, 
which mitigates the straggler problem and 
increases throughput

When to synchronize: async

• Asynchronous (async)
– No barriers at all: workers update their model 

completely independently from each other
✓Completely avoids straggler problem
✗No guarantees on a staleness bound, i.e., a 

worker may train on an arbitrarily stale model
✗Hard to mathematically reason about model 

convergence
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Example: TensorFlow

• TensorFlow: Python-friendly open-source software 
library for ML and AI
– Can be used across a range of ML and AI tasks, but focus 

on training and inference of DNNs
– Initially developed by Google Brain team for internal Google 

use in research and production, then released in 2015
– A TensorFlow computation is described by a DAG with 

operations and units of data that flow between operations
– Can run also on multiple devices

• CPUs and accelerators (TPUs and GPUs)
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TensorFlow graph representing
a 2-layer neural network

Example: TensorFlow

• tf.distribute.Strategy: TensorFlow API to distribute 
training across multiple devices

• Uses data parallelism to scale out model training
– Supports both centralized (based on parameter server) and  

decentralized (based on all-reduce)
– Supports both synchronous and asynchronous parameter 

update
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Example: Apache MXNet

• MXNet: open-source DL library
• Scalable distributed training on multiple devices 

(CPUs, GPUs) by means of data parallelism and 
parameter servers 
mxnet.apache.org/versions/1.9.0/api/faq/distributed_training

• MXNet’s Parameter Server, KVStore, is implemented 
on top of a traditional key-value store 
– KV store for efficient parameter synchronization
– Devices push key-value pairs to KV store and pull the 

current value of a key from KV store: each parameter array 
in DNN is assigned a key, and value refers to the weights of 
that parameter array

– KVStore can be distributed (i.e., multiple parameter servers)

• Supports both synchronous and asynchronous 
parameter update
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Example: Pytorch

• Pytorch: open-source ML framework based on Torch 
library

• Scalable distributed training on multiple devices 
(CPUs, GPUs) by means of data parallelism and 
decentralized all-reduce
pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataPar
allel.html
– All-reduce is built on top of efficient collective communication 

libraries: gloo, MPI, and NVIDIA Collective Communications 
Library (NCCL)

• Also supports RPC-based distributed training for 
general distributed training scenarios
– Can be used to implement parameter servers
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What is federated ML?
• Scenario: training settings are distributed, 

collaborative, and multiple devices/clients
• Goal: train collaboratively a ML model on multiple 

client devices located at the network edge, where 
data is generated locally and remains decentralized
– No centralized training data: each client stores its own data 

and cannot read data of other clients
– Data is not independently or identically distributed
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What is federated ML?

• A broad definition: Federated learning (FL) is a 
ML setting where multiple clients collaborate in 
solving a ML problem, under the coordination of 
a central server or service provider

• Each client’s raw data is stored locally and not
exchanged or transferred; instead, focused
updates intended for immediate aggregation
are used to achieve the learning objective
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Federated learning system

• A central orchestration server organizes the 
training, but never sees raw data
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FL training process

• A server (service provider) orchestrates the training 
process, by repeating the following steps until training 
is stopped: 

1. Client selection: The server samples from a set of 
clients meeting eligibility requirements (e.g., in order 
to avoid impacting the device user)

2. Broadcast: The selected clients download the 
current model weights and a training program (e.g., a 
TensorFlow graph) from the server

3. Client computation: Each selected device locally
computes an update to the model by executing the 
training program (e.g., running SGD on the local
data)
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FL training process

4. Aggregation: The server collects an aggregate of 
the device updates. For efficiency, stragglers might
be dropped at this point. This stage is also the 
integration point for many other techniques, 
including: secure aggregation for added privacy, 
lossy compression of aggregates for communication
efficiency, and noise addition and update clipping for 
differential privacy

5. Model update: The server locally updates the 
shared model based on the aggregated update 
computed from the clients that participated in the 
current round. 

Valeria Cardellini - SABD 2022/23 38

Example: FL application
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• Next-word prediction on mobile phones, while 
preserving privacy of data and reducing strain on 
network



Example: FL application

• Goal: train a predictor in a distributed fashion, rather 
than sending raw data to a central server

• How it works
– Remote mobile devices communicate with a central server 

periodically to learn a global model
– At each communication round, a subset of selected devices 

performs local training on their non-identically distributed 
user data, and sends these local updates to the server

– After incorporating updates, the server sends back the new 
global model to another subset of devices

– Iterative training process continues until convergence is 
reached or some stopping criterion is met
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FL main challenges

• Communication overhead

• System heterogeneity

• Statistical heterogeneity

• Privacy concerns
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