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The ML, Al and Data (MAD) landscape in 2023

« A complicated, technical, and rapidly
evolving world, see matiturck.com/mad2023/

« Landscape organized according to flow of
data, from left to right

— From storing and processing to analyzing to
feeding ML/AI models and building user-
facing, Al-driven or data-driven applications

— Let’'s zoom on “open source” section
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Zooming on open-source infrastructure
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The reference Big Data stack

High-level Interfaces

uoneabaju| / poddng

Data Storage

Resource Management

Valeria Cardellini - SABD 2022/23

FRAMEWORKS
Processing Big Data  cwes st omem  &rine

* Frameworks to process Big Data
— NoSQL data stores and NewSQL databases

— Batch processing: store and process <::
datasets at massive scale (especially
Volume+Variety)

* MapReduce and Hadoop
» Spark

— Data stream processing: process fast data (in
real-time) as data is being generated, without
storing (especially Velocity)
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Parallel programming: background

» Parallel programming

— Simultaneous use of multiple computing resources
(e.g., processors) to solve a problem

— How? Break processing into parts that can be
executed concurrently on multiple computing
reso u rces problem instructions
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Parallel programming: background

« Simplest environment for parallel programming
— Master/worker architecture

* Master
— Gets data and splits it into g

chunks according to the
number of workers \

— Sends each worker equal @ I @
% @ % 3
e Worker
<

number of chunks
— Receives results from each
worker
» Workers:

— Receive some chunks of data
from master

— Perform processing
— Send back results to master

Worker 2
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Parallel programming: background

» Several styles of parallel programming

« Single Program, Multiple Data (SPMD) is the
most commonly used

— Single Program: all computing resources execute
the same program simultaneously

— Multiple Data: all computing resources may use
different data
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Example: Pi estimation

 Estimation algorithm for calculating 1
— Relies on Monte Carlo method

— Monte Carlo methods: a broad class of
computational algorithms that rely on repeated
random sampling to obtain numerical results

 Let’s first consider the sequential algorithm

* Then, how to realize a parallel and faster
version
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Example: Pi estimation

By definition, 1T is the area of a circle with
radius equal to 1
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Example: Pi estimation

« How to estimate 17

1. Pick a large number of points randomly inside
the circumscribed unit square

— A certain number of these points will end up inside
the area described by the circle, while the
remaining number of these points will lie outside of
it (but inside the square)

2.Count the fraction of points that end up inside
the circle out of a total population of points
randomly thrown at the circumscribed square
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Example: Pi estimation

* In formulas:

T Ninner
4 N, total
N, inner
T~4
N, total

* The more points generated, the greater the accuracy
of the estimation
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Example: Pi estimation

Total Number of points:
249

Points within circle: 185
Pi estimation: 2.97189

See animation at https://academo.org/demos/estimating-pi-monte-carlo/
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Example: Pi estimation

Total Number of points:
4163

Points within circle: 3259
Pi estimation: 3.13140

Total Number of points:
95770

Points within circle: 75212
Pi estimation: 3.14136

The more points generated,

the greater the accuracy of
the estimation
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Example: Pi estimation

« How to get an accurate and faster estimation
of r?

 From sequential to parallel computation

« Use master/worker approach

— Each worker runs the algorithm to generate a set
of random points, categorize them, and count how
many end up inside the circle

— The master collects from the workers the total
number of generated points and total number of
points inside the circle. It calculates the ratio of the
two numbers and multiplies it by 4
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Key idea behind MapReduce and Spark:
Divide and conquer

* Feasible approach to tackle large-data problems
— Partition a large problem into smaller sub-problems
— Solve independent sub-problems in parallel

— Combine intermediate results from each individual
worker Divide

/l\ |
BEE B
2 3 &3
I I
N | |

Conquer

Implementation details of divide
and conquer are complex
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Divide and conquer: how?

* Decompose the original problem in smaller,
parallel tasks

« Schedule tasks on workers distributed in a
cluster, keeping into account:
— Data locality
— Resource availability

* Ensure workers get input data

« Coordinate synchronization among workers
« Share partial results

« Handle failures
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Key idea behind MapReduce and Spark:
scale out, not up!

« For data-intensive workloads, a large number of
commodity servers is preferred over a small number
of high-end servers

— Cost of super-computers is not linear
— Data center efficiency

» Processing data is quick, 1/O is slow

« Shared nothing is preferable over sharing
— Shared nothing: each node is completely independent of
other nodes in the system, no shared memory or storage
v Scalability and fault tolerance
— Sharing: nodes share a common/global state that must be

managed
X Requires synchronization, deadlocks can occur, shared
resources can become bottlenecks (e.g., bandwidth to access

stored data)
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