
Corso di Sistemi e Architetture per Big Data
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

MapReduce and Hadoop

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

1Valeria Cardellini - SABD 2022/23

MapReduce

2Valeria Cardellini - SABD 2022/23

MapReduce
• Programming model for processing huge

amounts of data sets over thousands of servers
– Originally proposed by Google in 2004: MapReduce:

simplified data processing on large clusters

– Based on a shared nothing approach

• Also an associated implementation (framework)
of the distributed system that runs the
corresponding programs

• Some examples of applications for Google:
– Web indexing

– Reverse Web-link graph

– Distributed sort

– Web access statistics

3Valeria Cardellini - SABD 2022/23

MapReduce: programmer view

• MapReduce hides system-level details
– Key idea: separate the what from the how
– MapReduce abstracts away the “distributed” part of

the system

– Such details are handled by the framework

• Programmers get simple API
– Don’t have to worry about handling

• Parallelization
• Data distribution
• Load balancing
• Fault tolerance

4Valeria Cardellini - SABD 2022/23

Typical Big Data problem

• Iterate over a large number of elements (e.g., tuples,

documents)

• Extract something of interest from each element

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction

of the two Map and Reduce operations

5Valeria Cardellini - SABD 2022/23

Your first MapReduce example (in Lisp)

• Example: sum-of-squares (sum the square of
numbers from 1 to n) in MapReduce fashion

• Map function:
map square [1,2,3,4]

returns [1,4,9,16]

• Reduce function:
reduce [1,4,9,16]

returns 30 (sum of square elements)

6Valeria Cardellini - SABD 2022/23

MapReduce: model
• Processing occurs in two phases: Map and Reduce

– Functional programming roots (e.g., Lisp)

• Input and output: set of key-value pairs

• Programmers specify two functions: Map and Reduce

map(k1, v1) → [(k2, v2)]

reduce(k2, [v2]) → [(k3, v3)]

– (k, v) denotes a (key, value) pair
– […] denotes a list
– Keys do not have to be unique: different pairs can have the

same key
– Keys of input elements (k1) are not relevant
– The output keys of reduce (k2) are often identical to the input

keys of reduce (k3)

7Valeria Cardellini - SABD 2022/23

Map
• Execute a function on a set of key-value pairs

(input shard) to create a new list of key-value
pairs

map (input_key, input_value) →

list(output_key, intermediate_value)
• Map tasks are distributed across machines by

automatically partitioning input data into shards
– Parallelism is achieved as keys can be

simultaneously processed by different map tasks

• MapReduce system groups together all
intermediate values associated with the same
intermediate key and passes them to Reduce
tasks

8Valeria Cardellini - SABD 2022/23

Reduce

• Combine values in sets to create a new value
reduce (output_key, list(intermediate_value)) →

list(output_key, output_value)
- Parallelism is achieved as Reduce tasks operating

on different keys can be executed simultaneously

9Valeria Cardellini - SABD 2022/23

MapReduce program
• A MapReduce program, referred to as a job, consists of:

– Code for Map and Reduce
– Configuration parameters (where input lies, where output will be

stored)
– Input data set, stored on underlying distributed file system

• Input does not fit on a single computer’s disk

• Each MapReduce job is divided by system into smaller

units called tasks
– Map tasks or mappers
– Reduce tasks or reducers
– All mappers need to finish before reducers can begin

• Output of MapReduce job is also stored on distributed file

system

• A MapReduce program may consist of many rounds of

different map and reduce functions
10Valeria Cardellini - SABD 2022/23

MapReduce computation
1. Some number of Map tasks each are given in input one or more

chunks of data from distributed file system
2. These Map tasks turn the chunk into a sequence of key-value

pairs
– The way key-value pairs are produced from input data is determined

by the code written by the programmer for the Map function
3. The key-value pairs from each Map task are collected by the

master controller and sorted by key
4. The keys are divided among all the Reduce tasks, so all key-

value pairs with the same key wind up at the same Reduce task
5. The Reduce tasks work on one key at a time, and combine all the

values associated with that key in some way
– The manner of combination of values is determined by the code

written by the programmer for the Reduce function
6. Output key-value pairs from each reducer are written persistently

back onto the distributed file system
7. Output ends up in r files, where r is the number of reducers

– Such output may be the input to a subsequent MapReduce phase

11Valeria Cardellini - SABD 2022/23

Where the magic happens
• Implicit between Map and Reduce phases is a

distributed “group by” operation on intermediate keys,

called shuffle and sort
– Transfer data from mappers to reducers, merging and

sorting mappers’ intermediate output
– Intermediate data arrives at each reducer sorted by key

• Intermediate keys are transient

– Not stored on distributed file system, rather “spilled” to local
disk of each machine

(k, v)
Pairs

Map
Function

(k’, v’)
Pairs

Reduce
Function

(k’’,
v’’)
Pairs

Input Splits Intermediate Outputs Final Outputs

12Valeria Cardellini - SABD 2022/23

MapReduce computation:
the complete picture

13Valeria Cardellini - SABD 2022/23

Simplified view of MapReduce: example

• Mappers are applied to input key-value pairs and generate an
arbitrary number of intermediate key-value pairs

• Reducers are applied to all intermediate values associated with the
same intermediate key

• Between Map and Reduce lies a barrier (Shuffle and Sort) that
involves a large distributed sort and group by

14Valeria Cardellini - SABD 2022/23

“Hello World” in MapReduce: WordCount

• Problem: count the number of occurrences for each word

in a large collection of documents

• Input: repository of documents, each document is an

element

• Map: read a document and emit a sequence of key-value

pairs where:

– Keys are words of the documents and values are equal to 1:
(w1, 1), (w2, 1), … , (wn, 1)

• Shuffle and sort: group by key and generate pairs of the

form (w1, [1, 1, … , 1]) , … , (wn, [1, 1, … , 1])

• Reduce: add up all the values and emit (w1, k) ,…, (wn, l)

• Output: (w, m) pairs where:

– w is a word that appears at least once among all the input documents and
m is the total number of occurrences of w among all those documents

15Valeria Cardellini - SABD 2022/23

WordCount in practice

Map Shuffle Reduce

16Valeria Cardellini - SABD 2022/23

Example: WordLengthCount
• Problem: count how many words of certain lengths exist in a

collection of documents
• Input: a repository of documents, each document is an

element
• Map: read a document and emit a sequence of key-value

pairs where the key is the word length and the value is the
word itself:

(i, w1), … , (j, wn)
• Shuffle and sort: group by key and generate pairs of the

form
(1, [w1, … , wk]) , … , (n, [wr, … , ws])

• Reduce: count the number of words in each list and emit:
(1, l) , … , (p, m)

• Output: (l,n) pairs, where l is a length and n is the total
number of words of length l in the input documents

17Valeria Cardellini - SABD 2022/23

Example: matrix-vector multiplication

• Sparse matrix A = [aij] size n x n
• Vector x = [xj] size n x 1
• Problem: matrix-vector multiplication y = Ax where

yi = Σj=1…n aijxj
– Used in many algorithms, e.g., PageRank

Valeria Cardellini - SABD 2022/23 18

Example: matrix-vector multiplication

• Let’s assume that x can fit into main memory of each
mapper

• Map: apply to ((i, j), aij) and produce key-value pair
(i, aijxj)

• Reduce: receive (i, [ai1x1, ..., ainxn]) as input and sum
all values of the list associated with a given key i, i.e.,
yi = Σj=1…n aijxj. The result will be a pair (i, yi)

19Valeria Cardellini - SABD 2022/23

Example: matrix-vector multiplication
• What happens if x cannot fit in mapper’s memory?
• Solution:

- Split x in horizontal stripes fitting in memory
- Split A accordingly in vertical stripes, stripes of A do not

need to fit in memory

– Each mapper is assigned a matrix stripe; it also gets the
corresponding vector stripe

– Map and Reduce functions are as before

• A more efficient solution can be designed by
partitioning A into square blocks rather than stripes

20

y A x

Valeria Cardellini - SABD 2022/23

MapReduce: execution overview

• Master-worker architecture
• The master coordinates map and reduce

tasks controlling the flow of MapReduce job
– Assigns (i.e., schedules) job tasks to workers,

monitoring them and re-executing failed tasks
• Workers execute map and reduce tasks

21Valeria Cardellini - SABD 2022/23

MapReduce: execution overview

22

Read from DFS

Local write

Remote read

Write to DFS

Valeria Cardellini - SABD 2022/23

Coping with failures

• Node hosting the master fails
– The entire MapReduce job must be restarted
– The worst scenario

• Worker node hosting a mapper fails
– All the map tasks that were assigned to this node

will have to be redone on another node, even if
they had completed, because the disk(s) of the
failed node is inaccessible

• Worker node hosting a reducer fails
– Reschedule reducer on another worker node

23Valeria Cardellini - SABD 2022/23

Optimization: combining

• How to improve performance?
• Run a mini reduce phase on local map output, thus

pushing some of what the reducers do to the
preceding mappers

• Let’s apply a combiner to local Map output
combine (k2, [v2]) → [(k3, v3)]

• But Reduce function needs to be associative and
commutative
– Values to be combined can be combined in any order, with

the same result
– E.g., addition in WordCount’s Reduce

24Valeria Cardellini - SABD 2022/23

Optimization: combining

• In many cases the same function can be used for
combining as the final reduction

• But shuffle and sort is still necessary!
• Pros:

– Reduce amount of intermediate data
– Reduce network traffic

25Valeria Cardellini - SABD 2022/23

WordCount with combiners

26Valeria Cardellini - SABD 2022/23

WordCount with combiners
• Problem: count the number of occurrences for each word

in a large collection of documents
• Input: repository of documents, each document is an

element
• Map: read a document and emit a sequence of key-value

pairs where:
– Keys are words of the documents and values are equal to 1:

(w1, 1), (w2, 1), … , (wn, 1)
• Combiner: group by key, add up all the values and emit:

(w1, i), . . . , (wn, j)
• Shuffle and sort: group by key and generate pairs of the

form (w1, [p, … , q]) , . . . , (wn, [r, … , s])
• Reduce: add up all the values and emit (w1, k) ,…, (wn, l)
• Output: (w,m) pairs where:

– w is a word that appears at least once among all the input documents and
m is the total number of occurrences of w among all those documents

27Valeria Cardellini - SABD 2022/23

Shuffle and sort

• Between Map(+combine) and Reduce phases
– Data is shuffled: parallel-sorted and exchanged
– Data is moved to the correct reducer

• Parallel sort: on mapper side
– Key-value pairs must be sorted but dataset too

large to be sorted on one machine
– Solution: perform sorting in stages
– Each mapper partitions its output by reducer,

based on the hash of the key, and writes each
partition to a sorted file on its local disk

28Valeria Cardellini - SABD 2022/23

Shuffle and sort

• Move data from mappers to reducers
– Whenever a mapper finishes writing its sorted

output files, it notifies the master; each reducer
periodically asks the master until it has retrieved
them all

– Each reducer connects to its necessary mapper
and get the files of sorted key-value pairs

• Merge: on reducer side
– Each reducer merges the files from mappers

together, preserving their sort ordering
– Then it starts reducing on the merged input

29Valeria Cardellini - SABD 2022/23

Optimization: partitioning
• How to divide the intermediate key space in a

custom way?
• Through a partitioner
- Assigns intermediate key-value pairs to reducers

30Valeria Cardellini - SABD 2022/23

MapReduce workflows
• Few problems can be solved using a single

MapReduce job
• Example of job pipeline: to find the most

visited URLs in a logfile we need 2
MapReduce jobs chained together
– 1st MR job: count number of visits per URL

• Like WordCount: mappers emit (URL, 1) key-value pairs;
reducers aggregate URL counts

– 2nd MR job: sort URL counts
• Mappers of 2nd job swap keys and values, making

counter as key and URL as value
• Reducers of 2nd job run the identity function (i.e., do

nothing), because they get in input URLs already sorted
by frequency

• We still need the reducers, why?

MR
job 1

MR
job 2

31

Va
le

ria
 C

ar
de

llin
i-

SA
BD

 2
02

2/
23

MapReduce workflows

• MapReduce jobs can be chained together
into workflows
– Output of one job becomes input to next job

• Not only job pipeline (i.e., linear chain) but
jobs can be also organized in more complex
directed acyclic graph (DAG)

• Each job generates intermediate files on DFS
(written to and read from)
– Performance drops

• Apache Oozie: tool to manage Hadoop jobs
as DAGs

32Valeria Cardellini - SABD 2022/23

Example: k-means in MapReduce
• Clustering is the process of

examining a collection of “points,”
and grouping the points into
“clusters” according to some
distance measure

• Examples of cluster analysis
– Customer segmentation: look for

similarity between groups of customers
– Stock market clustering: group stock

based on performances
– Reduce dimensionality of a dataset by

grouping observations with similar
values

33Valeria Cardellini - SABD 2022/23

Distance between points

• We first need to define distance between data points
• Most popular is Euclidean distance

– Distance between points p and q is given by:

where n is the number of independent variables in the space

• How to define the distance between clusters?
• Which are the most representative data points for the

clusters between which we can calculate the
distance?

34Valeria Cardellini - SABD 2022/23

Distance between clusters

• Centroid distance
– Distance between centroids of clusters

• Centroid is the point that has the mean
position of all data points in each coordinate
– Example: for points (-1, 10, 3), (0, 5, 2), and (1, 20, 10), the

centroid is located at
((-1+0+1)/3, (10+5+20)/3, (3+2+10)/3) = (0, 35/3, 5)

• Note: the centroid does not have to be - and rarely is
- one of the original data points

35Valeria Cardellini - SABD 2022/23

k-means clustering

• k-means is a well-known clustering algorithm
belonging to point assignment class of
clustering algorithms
– Points are considered in some order, and each

one is assigned to the cluster into which it best fits
– k-means assumes Euclidian space

36Valeria Cardellini - SABD 2022/23

k-means clustering

• A variety of heuristic algorithms for k-means exist
• We consider Lloyd's algorithm, the first and simplest

• It tries to minimize the within-cluster sum of squares

Specify desired number of clusters k;
Initially choose k data points that are likely to be in different
clusters;
Make these data points the centroids of their clusters;
Repeat

For each remaining data point p do
Find the centroid to which p is nearest;
Add p to the cluster of that centroid;

Re-compute cluster centroids;
Until no improvement is made;

37Valeria Cardellini - SABD 2022/23

MapReducing 1 iteration of k-means

• Classify: assign each point to nearest cluster centroid

• Re-center: update cluster centroids as mean of
assigned points

38Valeria Cardellini - SABD 2022/23

MapReducing 1 iteration of k-means

• Classify: assign each point to nearest cluster centroid

• Re-center: update cluster centroids as mean of
assigned points

39

Map: given ({μj}, xi), for each point xi emit (zi, xi)
Parallel over data points

Reduce: average over all points in cluster j (zi=j)
Parallel over cluster centroids

Valeria Cardellini - SABD 2022/23

Classification step as Map

• Classify: assign each point to nearest cluster centroid

40

Emit zi (the cluster label) as key
and data point xi as value

map([μ1, μ2, …, μk], xi)

emit (zi, xi)

Valeria Cardellini - SABD 2022/23

Map on data point and
cluster centroids

Re-center step as Reduce

• Re-center: update cluster centroids as mean of
assigned points

41

reduce(j, x_in_clusterj: [xi, …])
sum = 0
count = 0
for x in x_in_clusterj

sum += x
count += 1

emit (j, sum/count)

Reduce on data points
assigned to cluster j
(having the cluster label
j as key)

Emit cluster label j as key
and new centroid for
cluster j as value

Valeria Cardellini - SABD 2022/23

Multiple iterations for k-means

• k-means is an iterative algorithm: needs an iterative
version of MapReduce

• Our implementation so far: each mapper gets a data
point and all cluster centroids
✗ Too many mappers!

• Better implementation: each mapper gets many data
points
– Anyway, at each iteration we must broadcast the new

centroids across the MapReduce cluster and repeat multiple
phases of Map and Reduce until convergence (or maximum
number of steps)

• Any other optimization?

42Valeria Cardellini - SABD 2022/23

Optimizing k-means for MapReduce

• Combiners can be used to optimize the distributed
algorithm
– Compute for each centroid local sums of points
– Send to reducer: <centroid, partial sums>

• Can use a single reducer
✓ Data to reducers is small
✓ Single reducer can tell immediately if computation converges
✓ One output file

Valeria Cardellini - SABD 2022/23 43

Apache Hadoop

44Valeria Cardellini - SABD 2022/23

What is Apache Hadoop?

• Open-source software framework for reliable, scalable,
distributed data-intensive computing
– Originally developed by Yahoo!

• Goal: storage and processing of data-sets at massive
scale

• Infrastructure: cluster of commodity hardware
• Core components:

– HDFS: Hadoop Distributed File System
– Hadoop YARN
– Hadoop MapReduce

• Plus many related projects
– Apache Pig, Apache Hive, Apache Hbase, …

45Valeria Cardellini - SABD 2022/23

Hadoop runs on clusters

• Compute nodes are stored on racks
– 8-64 compute nodes on a rack

• Cluster composed by many racks of compute nodes
• How to assign tasks to compute nodes?

– Take into account interconnection topology
• Nodes on same rack are typically connected by 10 Gbit/s Ethernet

• Racks are interconnected by another level of network or a switch

• Bandwidth of intra-rack communication is greater than that of inter-
rack communication

• How to deal with failures of compute nodes?
– Files are stored redundantly

– Computation is divided into tasks

46Valeria Cardellini - SABD 2022/23

Hadoop core
• HDFS✓

– Distributed file system
– Data is replicated across the cluster
– Fault-tolerant

• Hadoop YARN
– Cluster resource management

• Hadoop MapReduce
– Distributed framework to run applications which

process large data sets on large clusters (> 1000
nodes) of commodity hardware in a reliable, fault-
tolerant manner

47Valeria Cardellini - SABD 2022/23

48Valeria Cardellini - SABD 2022/23

Hadoop core: MapReduce

49Valeria Cardellini - SABD 2022/23

• We have already examined the MapReduce
programming paradigm

• Also used in other MPP environments and NoSQL
databases (e.g., Vertica and MongoDB)

Basic flow of how to use Hadoop

• Load data in HDFS
• Use MapReduce to analyze data
• Store results in HDFS
• Read results from HDFS

50Valeria Cardellini - SABD 2022/23

MapReduce data flow:
single Reduce task

51Valeria Cardellini - SABD 2022/23

MapReduce data flow:
multiple Reduce tasks

52

• When there are multiple reducers, map tasks
partition their output

Valeria Cardellini - SABD 2022/23

MapReduce data flow:
no Reduce task

53Valeria Cardellini - SABD 2022/23

Optional Combiner

• Many MapReduce jobs are limited by cluster
bandwidth
– How to minimize amount of data transferred between map and

reduce tasks?

• Use Combine task
– Combiner: optional localized reducer that applies a user-

provided method to combine mapper output
– Performs data aggregation on intermediate data of the same

key for the Map task’s output before transmitting the result to
the Reduce task

• Takes each key-value pair from the Map task, processes it, and
produces the output as key-value collection pairs

• Reduce task is still needed to process records with the
same key from different Map tasks

54Valeria Cardellini - SABD 2022/23

Optional Partitioner
• When there are multiple reducers, map tasks

partition their output
– One partition for each Reduce task

• Goal: to determine which reducer will receive which
intermediate keys and values
– Records for any given key are all in a single partition

• Default partitioner uses a hash function on the key to
determine which bucket (i.e., reducer)

• Partitioning can be also controlled by a user-defined
function
– Requires to implement a custom partitioner

55Valeria Cardellini - SABD 2022/23

Programming languages for Hadoop

• Default programming language: Java
• Java program with at least 3 parts:

1. Main method which configures the job, and launches it
• Set number of reducers
• Set mapper and reducer classes
• Set optional partitioner
• Set other Hadoop configurations

2. Mapper class
• Takes (k,v) inputs, writes (k,v) outputs

3. Reducer class
• Takes k, Iterator[v] inputs, and writes (k,v) outputs

56Valeria Cardellini - SABD 2022/23

WordCount in Java

• Let’s analyze WordCount code in Java

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

57Valeria Cardellini - SABD 2022/23

WordCount in Java

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}

} 58

map method processes one line at a time, splits the line into tokens
separated by white spaces, via StringTokenizer, and emits a key-
value pair <word, 1>

Valeria Cardellini - SABD 2022/23

WordCount in Java

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
result.set(sum);
context.write(key, result);

}
}

59

reduce method sums up the values, which are the occurrence counts
for each key

Valeria Cardellini - SABD 2022/23

WordCount in Java

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

60

main method specifies various facets of the job

Output of each map is
passed through local
combiner (same as
Reducer) for local
aggregation, after being
sorted on keys

Valeria Cardellini - SABD 2022/23

Other programming languages

• Use Hadoop Streaming utility to code Map and
Reduce in programming languages different from
Java (e.g., Python)
– Uses Unix standard streams as interface between the

mapper/reducer and MapReduce framework

• Allows to use any language that can read standard
input (stdin) and write to standard output (stdout)
– See example in Python: use Hadoop Streaming for passing

data between Map and Reduce code via stdin and stdout
– Observe that reducer interface is different from Java:

instead of receiving reduce(k, Iterator[v]), the script is sent
one line per value, including the key

61Valeria Cardellini - SABD 2022/23

YARN
• YARN: Yet Another Resource Negotiator

– Distributed framework for cluster resource management and
job scheduling

• Turns out Hadoop into an analytics platform in which
resource management functions are separated from
programming model
– Can support not only MapReduce, but also other frameworks

(e.g., Spark)

62Valeria Cardellini - SABD 2022/23

YARN: architecture
• Global ResourceManager (RM)
• A set of per-application ApplicationMasters (AMs)
• A set of NodeManagers (NMs)

63Valeria Cardellini - SABD 2022/23

YARN: data locality optimization

• Scheduling the job, YARN tries to run the
mapper on a data-local node (data locality
optimization)
– So to not use cluster bandwidth
– Otherwise rack-local
– Off-rack as last choice

64Valeria Cardellini - SABD 2022/23

Hadoop installation

• Some straightforward alternatives:
1. Our Docker environment
2. Single-node installation https://bit.ly/3c92ZPZ

3. Cloudera CDH and MapR distributions
– Integrated Hadoop-based stack containing all the

components needed for production, tested and packaged to
work together

– Include at least Hadoop, HDFS (not in MapR), HBase, Hive,
Pig, Sqoop, Flume, Kafka, Spark

– Include also security frameworks (e.g., Sentri) to handle
access control, security policies, …

– MapR distribution: own distributed Posix file system (MapR-
FS) rather than HDFS

65Valeria Cardellini - SABD 2022/23

Hadoop configuration

• Tuning Hadoop clusters for good performance is
somehow magic
– Disk I/O is usually the performance bottleneck

• Tuning hw and sw parameters, e.g.:
– Find optimal number of disks so to maximize I/O bandwidth
– Increase open file limit
– Find optimal HDFS block size (number of mappers)
– JVM settings for Java heap usage and garbage collection

• There are also Hadoop-specific parameters that can
be tuned for performance
– Number of mappers
– Number of reducers
– Plus other map-side and reduce-side tuning parameters

66Valeria Cardellini - SABD 2022/23

How many mappers

• Number of mappers
– Driven by number of blocks in input files
– You can adjust the HDFS block size to adjust the

number of mappers
– Good level of parallelism: 10-100 mappers per-node,

but up to 300 mappers for very CPU-light map tasks
– Task setup takes a while, so it is best if mappers take

at least a minute to execute

67Valeria Cardellini - SABD 2022/23

How many reducers

• Number of reducers
– Can be user-defined (default is 1)
– Use Job.setNumReduceTasks(int)
– The right number of reduces seems to be 0.95 or 1.75

multiplied by (<no. of nodes> * <no. of maximum
containers per node>)

• 0.95: all of the reduces can launch immediately and start
transferring map outputs as the maps finish

• 1.75: the faster nodes will finish their first round of reduces
and launch a second wave of reduces doing a much better
job of load balancing

– Can be set to zero if no reduction is desired
• No sorting of map-outputs before writing them to output file

See http://bit.ly/2oK0D5A

68Valeria Cardellini - SABD 2022/23

Some tips for performance

• To handle massive I/O and save bandwidth
- Compress input data, map output data, reduce output data

• To address massive I/O in partition and sort phases
– Each mapper has a circular buffer memory to which it writes

the output; when the buffer is full, its content is written
(“spilled”) to disk. Avoid that records are spilled more than
once

– How? Adjust spill records and sorting buffer

• To address massive network traffic caused by large
map output
- Compress map output
- Implement a combiner to reduce the amount of data passing

through the shuffle

69Valeria Cardellini - SABD 2022/23

Hadoop in the Cloud

• Pros:
– Gain cloud scalability and elasticity
– Do not need to manage and provision the

infrastructure and platform
• Main challenges:

– Move data to cloud
• Latency is not zero

(because of speed of light)!
• Minor issue: network bandwidth

– Data security and privacy

70Valeria Cardellini - SABD 2022/23

Amazon Elastic MapReduce (EMR)

• Distribute computational work across a cluster of virtual
servers running in AWS cloud (EC2 instances)

• Not only Hadoop: also Hbase, Spark, Flink
– Usually not the latest released version

• Input and output: Amazon S3, HDFS, DynamoDB …
• Access through AWS Console, command line

71Valeria Cardellini - SABD 2022/23

Create EMR cluster
Steps:

1. Provide cluster name

2. Select EMR release and
applications to install

3. Select instance type
(including spot
instances)

4. Select number of
instances

5. Select EC2 key-pair to
connect securely to the
cluster

See AWS tutorial

Running cluster can be
automatically scaled or
manually resized

72Valeria Cardellini - SABD 2022/23

EMR cluster details

73

• You can only tune some parameters for performance
- Some EC2 parameters (heap size used by Hadoop and Yarn)

- Hadoop parameters (e.g., memory for map and reduce JVMs)

Valeria Cardellini - SABD 2022/23

Google Cloud Dataproc

• Distribute the computational work across a cluster of
virtual servers running in Google Cloud Platform

• Not only Hadoop, also Spark and Flink
• Input and output from other Google services,

including Cloud Storage, Bigtable
• Access through REST API, Cloud SDK, and Cloud

Dataproc UI
• Fine-grain pay-per-use (seconds)

74Valeria Cardellini - SABD 2022/23

Create Cloud Dataproc cluster

75Valeria Cardellini - SABD 2022/23

References

• Dean and Ghemawat, MapReduce: simplified data
processing on large clusters, OSDI 2004

• Leskovec, Rajaraman, and Ullman, Mining of
Massive Datasets, 3rd edition, chapter 2, 2020
– See also chapter 7 on clustering

• White, Hadoop: The Definitive Guide, 4th edition,
O’Reilly, 2015

• Miner and Shook, MapReduce Design Patterns,
O’Reilly, 2012

76Valeria Cardellini - SABD 2022/23

