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MapReduce
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MapReduce
• Programming model for processing huge 

amounts of data sets over thousands of servers
– Originally proposed by Google in 2004: MapReduce: 

simplified data processing on large clusters

– Based on a shared nothing approach

• Also an associated implementation (framework) 
of the distributed system that runs the 
corresponding programs

• Some examples of applications for Google:
– Web indexing 

– Reverse Web-link graph 

– Distributed sort

– Web access statistics
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MapReduce: programmer view

• MapReduce hides system-level details
– Key idea: separate the what from the how
– MapReduce abstracts away the “distributed” part of 

the system

– Such details are handled by the framework

• Programmers get simple API
– Don’t have to worry about handling

• Parallelization
• Data distribution
• Load balancing
• Fault tolerance
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Typical Big Data problem

• Iterate over a large number of elements (e.g., tuples, 

documents)

• Extract something of interest from each element

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction 

of the two Map and Reduce operations 
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Your first MapReduce example (in Lisp) 

• Example: sum-of-squares (sum the square of 
numbers from 1 to n) in MapReduce fashion

• Map function:
map square [1,2,3,4] 

returns [1,4,9,16]

• Reduce function:
reduce [1,4,9,16]

returns 30 (sum of square elements)

6Valeria Cardellini - SABD 2022/23

MapReduce: model
• Processing occurs in two phases: Map and Reduce

– Functional programming roots (e.g., Lisp)

• Input and output: set of key-value pairs

• Programmers specify two functions: Map and Reduce

map(k1, v1) → [(k2, v2)]

reduce(k2, [v2]) → [(k3, v3)]

– (k, v) denotes a (key, value) pair
– […] denotes a list
– Keys do not have to be unique: different pairs can have the 

same key
– Keys of input elements (k1) are not relevant 
– The output keys of reduce (k2) are often identical to the input 

keys of reduce (k3)
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Map
• Execute a function on a set of key-value pairs 

(input shard) to create a new list of key-value 
pairs

map (input_key, input_value) → 

list(output_key, intermediate_value)
• Map tasks are distributed across machines by 

automatically partitioning input data into shards
– Parallelism is achieved as keys can be 

simultaneously processed by different map tasks 

• MapReduce system groups together all 
intermediate values associated with the same 
intermediate key and passes them to Reduce 
tasks
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Reduce

• Combine values in sets to create a new value
reduce (output_key, list(intermediate_value)) →

list(output_key, output_value)
- Parallelism is achieved as Reduce tasks operating

on different keys can be executed simultaneously
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MapReduce program
• A MapReduce program, referred to as a job, consists of:

– Code for Map and Reduce
– Configuration parameters (where input lies, where output will be 

stored)
– Input data set, stored on underlying distributed file system

• Input does not fit on a single computer’s disk

• Each MapReduce job is divided by system into smaller 

units called tasks
– Map tasks or mappers
– Reduce tasks or reducers
– All mappers need to finish before reducers can begin 

• Output of MapReduce job is also stored on distributed file 

system

• A MapReduce program may consist of many rounds of 

different map and reduce functions 
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MapReduce computation
1. Some number of Map tasks each are given in input one or more 

chunks of data from distributed file system
2. These Map tasks turn the chunk into a sequence of key-value  

pairs
– The way key-value pairs are produced from input data is determined 

by the code written by the programmer for the Map function
3. The key-value pairs from each Map task are collected by the 

master controller and sorted by key 
4. The keys are divided among all the Reduce tasks, so all key-

value pairs with the same key wind up at the same Reduce task
5. The Reduce tasks work on one key at a time, and combine all the 

values associated with that key in some way 
– The manner of combination of values is determined by the code 

written by the programmer for the Reduce function
6. Output key-value pairs from each reducer are written persistently 

back onto the distributed file system
7. Output ends up in r files, where r is the number of reducers

– Such output may be the input to a subsequent MapReduce phase
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Where the magic happens
• Implicit between Map and Reduce phases is a 

distributed “group by” operation on intermediate keys, 

called shuffle and sort
– Transfer data from mappers to reducers, merging and 

sorting mappers’ intermediate output
– Intermediate data arrives at each reducer sorted by key

• Intermediate keys are transient

– Not stored on distributed file system, rather “spilled” to local 
disk of each machine

(k, v) 
Pairs

Map 
Function

(k’, v’) 
Pairs

Reduce 
Function

(k’’, 
v’’) 
Pairs

Input Splits Intermediate Outputs Final Outputs
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MapReduce computation: 
the complete picture
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Simplified view of MapReduce: example

• Mappers are applied to input key-value pairs and generate an 
arbitrary number of intermediate key-value pairs

• Reducers are applied to all intermediate values associated with the 
same intermediate key

• Between Map and Reduce lies a barrier (Shuffle and Sort) that 
involves a large distributed sort and group by
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“Hello World” in MapReduce: WordCount

• Problem: count the number of occurrences for each word 

in a large collection of documents

• Input: repository of documents, each document is an 

element

• Map: read a document and emit a sequence of key-value 

pairs where:

– Keys are words of the documents and values are equal to 1: 
(w1, 1), (w2, 1), … , (wn, 1)

• Shuffle and sort: group by key and generate pairs of the 

form (w1, [1, 1, … , 1]) , … , (wn, [1, 1, … , 1])

• Reduce: add up all the values and emit (w1, k) ,…, (wn, l)

• Output: (w, m) pairs where:

– w is a word that appears at least once among all the input documents and 
m is the total number of occurrences of w among all those documents
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WordCount in practice

Map Shuffle Reduce
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Example: WordLengthCount
• Problem: count how many words of certain lengths exist in a 

collection of documents
• Input: a repository of documents, each document is an 

element
• Map: read a document and emit a sequence of key-value 

pairs where the key is the word length and the value is the 
word itself:

(i, w1), … , (j, wn)
• Shuffle and sort: group by key and generate pairs of the 

form
(1, [w1, … , wk]) , … , (n, [wr, … , ws])

• Reduce: count the number of words in each list and emit:
(1, l) , … , (p, m)

• Output: (l,n) pairs, where l is a length and n is the total 
number of words of length l in the input documents
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Example: matrix-vector multiplication

• Sparse matrix A = [aij] size n x n
• Vector x = [xj] size n x 1
• Problem: matrix-vector multiplication y = Ax where             

yi = Σj=1…n aijxj
– Used in many algorithms, e.g., PageRank
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Example: matrix-vector multiplication

• Let’s assume that x can fit into main memory of each 
mapper

• Map: apply to ((i, j), aij) and produce key-value pair   
(i, aijxj)

• Reduce: receive (i, [ai1x1, ..., ainxn]) as input and sum 
all values of the list associated with a given key i, i.e., 
yi = Σj=1…n aijxj. The result will be a pair (i, yi)
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Example: matrix-vector multiplication
• What happens if x cannot fit in mapper’s memory?
• Solution: 

- Split x in horizontal stripes fitting in memory 
- Split A accordingly in vertical stripes, stripes of A do not 

need to fit in memory 

– Each mapper is assigned a matrix stripe; it also gets the 
corresponding vector stripe 

– Map and Reduce functions are as before 

• A more efficient solution can be designed by 
partitioning A into square blocks rather than stripes

20

y A x
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MapReduce: execution overview

• Master-worker architecture
• The master coordinates map and reduce 

tasks controlling the flow of MapReduce job
– Assigns (i.e., schedules) job tasks to workers, 

monitoring them and re-executing failed tasks
• Workers execute map and reduce tasks
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MapReduce: execution overview

22

Read from DFS

Local write

Remote read

Write to DFS
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Coping with failures

• Node hosting the master fails
– The entire MapReduce job must be restarted
– The worst scenario

• Worker node hosting a mapper fails
– All the map tasks that were assigned to this node 

will have to be redone on another node, even if 
they had completed, because the disk(s) of the 
failed node is inaccessible

• Worker node hosting a reducer fails
– Reschedule reducer on another worker node
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Optimization: combining

• How to improve performance?
• Run a mini reduce phase on local map output, thus 

pushing some of what the reducers do to the 
preceding mappers

• Let’s apply a combiner to local Map output
combine (k2, [v2]) → [(k3, v3)]

• But Reduce function needs to be associative and 
commutative
– Values to be combined can be combined in any order, with 

the same result
– E.g., addition in WordCount’s Reduce 
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Optimization: combining

• In many cases the same function can be used for 
combining as the final reduction 

• But shuffle and sort is still necessary!
• Pros:

– Reduce amount of intermediate data
– Reduce network traffic 
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WordCount with combiners
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WordCount with combiners
• Problem: count the number of occurrences for each word 

in a large collection of documents
• Input: repository of documents, each document is an 

element
• Map: read a document and emit a sequence of key-value 

pairs where:
– Keys are words of the documents and values are equal to 1: 

(w1, 1), (w2, 1), … , (wn, 1)
• Combiner: group by key, add up all the values and emit:

(w1, i), . . . , (wn, j)
• Shuffle and sort: group by key and generate pairs of the 

form (w1, [p, … , q]) , . . . , (wn, [r, … , s])
• Reduce: add up all the values and emit (w1, k) ,…, (wn, l)
• Output: (w,m) pairs where:

– w is a word that appears at least once among all the input documents and 
m is the total number of occurrences of w among all those documents
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Shuffle and sort

• Between Map(+combine) and Reduce phases
– Data is shuffled: parallel-sorted and exchanged
– Data is moved to the correct reducer

• Parallel sort: on mapper side
– Key-value pairs must be sorted but dataset too 

large to be sorted on one machine
– Solution: perform sorting in stages
– Each mapper partitions its output by reducer, 

based on the hash of the key, and writes each 
partition to a sorted file on its local disk
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Shuffle and sort

• Move data from mappers to reducers
– Whenever a mapper finishes writing its sorted 

output files, it notifies the master; each reducer 
periodically asks the master until it has retrieved 
them all

– Each reducer connects to its necessary mapper 
and get the files of sorted key-value pairs

• Merge: on reducer side
– Each reducer merges the files from mappers 

together, preserving their sort ordering
– Then it starts reducing on the merged input
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Optimization: partitioning
• How to divide the intermediate key space in a 

custom way?
• Through a partitioner
- Assigns intermediate key-value pairs to reducers

30Valeria Cardellini - SABD 2022/23

MapReduce workflows
• Few problems can be solved using a single 

MapReduce job
• Example of job pipeline: to find the most 

visited URLs in a logfile we need 2 
MapReduce jobs chained together
– 1st MR job: count number of visits per URL

• Like WordCount: mappers emit (URL, 1) key-value pairs; 
reducers aggregate URL counts

– 2nd MR job: sort URL counts
• Mappers of 2nd job swap keys and values, making 

counter as key and URL as value
• Reducers of 2nd job run the identity function (i.e., do 

nothing), because they get in input URLs already sorted 
by frequency

• We still need the reducers, why?

MR 
job 1

MR 
job 2

31
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MapReduce workflows

• MapReduce jobs can be chained together 
into workflows
– Output of one job becomes input to next job

• Not only job pipeline (i.e., linear chain) but 
jobs can be also organized in more complex 
directed acyclic graph (DAG)

• Each job generates intermediate files on DFS 
(written to and read from)
– Performance drops

• Apache Oozie: tool to manage Hadoop jobs
as DAGs
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Example: k-means in MapReduce
• Clustering is the process of 

examining a collection of “points,” 
and grouping the points into 
“clusters” according to some 
distance measure

• Examples of cluster analysis
– Customer segmentation: look for 

similarity between groups of customers
– Stock market clustering: group stock 

based on performances
– Reduce dimensionality of a dataset by 

grouping observations with similar 
values
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Distance between points

• We first need to define distance between data points
• Most popular is Euclidean distance

– Distance between points p and q is given by:

where n is the number of independent variables in the space

• How to define the distance between clusters?
• Which are the most representative data points for the 

clusters between which we can calculate the 
distance?
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Distance between clusters

• Centroid distance 
– Distance between centroids of clusters 

• Centroid is the point that has the mean 
position of all data points in each coordinate
– Example: for points (-1, 10, 3), (0, 5, 2), and (1, 20, 10), the 

centroid is located at
((-1+0+1)/3, (10+5+20)/3, (3+2+10)/3) = (0, 35/3, 5)

• Note: the centroid does not have to be - and rarely is 
- one of the original data points
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k-means clustering

• k-means is a well-known clustering algorithm 
belonging to point assignment class of 
clustering algorithms
– Points are considered in some order, and each 

one is assigned to the cluster into which it best fits
– k-means assumes Euclidian space
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k-means clustering

• A variety of heuristic algorithms for k-means exist
• We consider Lloyd's algorithm, the first and simplest

• It tries to minimize the within-cluster sum of squares 

Specify desired number of clusters k;
Initially choose k data points that are likely to be in different 
clusters;
Make these data points the centroids of their clusters;
Repeat

For each remaining data point p do
Find the centroid to which p is nearest;
Add p to the cluster of that centroid;

Re-compute cluster centroids;
Until no improvement is made;

37Valeria Cardellini - SABD 2022/23



MapReducing 1 iteration of k-means

• Classify: assign each point to nearest cluster centroid 

• Re-center: update cluster centroids as mean of 
assigned points
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MapReducing 1 iteration of k-means

• Classify: assign each point to nearest cluster centroid 

• Re-center: update cluster centroids as mean of 
assigned points

39

Map: given ({μj}, xi), for each point xi emit (zi, xi)
Parallel over data points   

Reduce: average over all points in cluster j (zi=j) 
Parallel over cluster centroids
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Classification step as Map

• Classify: assign each point to nearest cluster centroid 

40

Emit zi (the cluster label) as key 
and data point xi as value

map([μ1, μ2, …, μk], xi)

emit (zi, xi)   
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Map on data point and 
cluster centroids

Re-center step as Reduce

• Re-center: update cluster centroids as mean of 
assigned points

41

reduce(j, x_in_clusterj: [xi, …])
sum = 0
count = 0
for x in x_in_clusterj

sum += x
count += 1

emit (j, sum/count)   

Reduce on data points 
assigned to cluster j 
(having the cluster label 
j as key)

Emit cluster label j as key 
and new centroid for 
cluster j as value 
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Multiple iterations for k-means

• k-means is an iterative algorithm: needs an iterative 
version of MapReduce

• Our implementation so far: each mapper gets a data 
point and all cluster centroids 
✗ Too many mappers!

• Better implementation: each mapper gets many data 
points
– Anyway, at each iteration we must broadcast the new 

centroids across the MapReduce cluster and repeat multiple 
phases of Map and Reduce until convergence (or maximum 
number of steps)

• Any other optimization?
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Optimizing k-means for MapReduce 

• Combiners can be used to optimize the distributed 
algorithm 
– Compute for each centroid local sums of points 
– Send to reducer: <centroid, partial sums> 

• Can use a single reducer
✓ Data to reducers is small 
✓ Single reducer can tell immediately if computation converges 
✓ One output file 
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Apache Hadoop
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What is Apache Hadoop?

• Open-source software framework for reliable, scalable, 
distributed data-intensive computing
– Originally developed by Yahoo!

• Goal: storage and processing of data-sets at massive 
scale

• Infrastructure: cluster of commodity hardware
• Core components:

– HDFS: Hadoop Distributed File System
– Hadoop YARN
– Hadoop MapReduce

• Plus many related projects
– Apache Pig, Apache Hive, Apache Hbase, …
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Hadoop runs on clusters

• Compute nodes are stored on racks
– 8-64 compute nodes on a rack

• Cluster composed by many racks of compute nodes
• How to assign tasks to compute nodes? 

– Take into account interconnection topology
• Nodes on same rack are typically connected by 10 Gbit/s Ethernet

• Racks are interconnected by another level of network or a switch

• Bandwidth of intra-rack communication is greater than that of inter-
rack communication

• How to deal with failures of compute nodes?
– Files are stored redundantly

– Computation is divided into tasks
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Hadoop core
• HDFS✓

– Distributed file system
– Data is replicated across the cluster
– Fault-tolerant

• Hadoop YARN
– Cluster resource management

• Hadoop MapReduce
– Distributed framework to run applications which

process large data sets on large clusters (> 1000 
nodes) of commodity hardware in a reliable, fault-
tolerant manner
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Hadoop core: MapReduce
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• We have already examined the MapReduce 
programming paradigm

• Also used in other MPP environments and NoSQL 
databases (e.g., Vertica and MongoDB)



Basic flow of how to use Hadoop

• Load data in HDFS
• Use MapReduce to analyze data
• Store results in HDFS
• Read results from HDFS
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MapReduce data flow: 
single Reduce task
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MapReduce data flow: 
multiple Reduce tasks

52

• When there are multiple reducers, map tasks 
partition their output
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MapReduce data flow: 
no Reduce task
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Optional Combiner

• Many MapReduce jobs are limited by cluster 
bandwidth
– How to minimize amount of data transferred between map and 

reduce tasks?

• Use Combine task 
– Combiner: optional localized reducer that applies a user-

provided method to combine mapper output
– Performs data aggregation on intermediate data of the same 

key for the Map task’s output before transmitting the result to 
the Reduce task 

• Takes each key-value pair from the Map task, processes it, and 
produces the output as key-value collection pairs

• Reduce task is still needed to process records with the 
same key from different Map tasks
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Optional Partitioner
• When there are multiple reducers, map tasks 

partition their output
– One partition for each Reduce task

• Goal: to determine which reducer will receive which 
intermediate keys and values
– Records for any given key are all in a single partition

• Default partitioner uses a hash function on the key to 
determine which bucket (i.e., reducer)

• Partitioning can be also controlled by a user-defined 
function
– Requires to implement a custom partitioner
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Programming languages for Hadoop

• Default programming language: Java
• Java program with at least 3 parts:

1. Main method which configures the job, and launches it
• Set number of reducers
• Set mapper and reducer classes
• Set optional partitioner
• Set other Hadoop configurations

2. Mapper class
• Takes (k,v) inputs, writes (k,v) outputs

3. Reducer class
• Takes k, Iterator[v] inputs, and writes (k,v) outputs
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WordCount in Java

• Let’s analyze WordCount code in Java

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
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WordCount in Java

public class WordCount {

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}

} 58

map method processes one line at a time, splits the line into tokens 
separated by white spaces, via StringTokenizer, and emits a key-
value pair <word, 1>
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WordCount in Java

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {
sum += val.get();

}
result.set(sum);
context.write(key, result);

}
}

59

reduce method sums up the values, which are the occurrence counts 
for each key 
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WordCount in Java

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

60

main method specifies various facets of the job

Output of each map is 
passed through local 
combiner (same as   
Reducer) for local 
aggregation, after being 
sorted on keys
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Other programming languages

• Use Hadoop Streaming utility to code Map and 
Reduce in programming languages different from 
Java (e.g., Python) 
– Uses Unix standard streams as interface between the 

mapper/reducer and MapReduce framework

• Allows to use any language that can read standard 
input (stdin) and write to standard output (stdout)
– See example in Python: use Hadoop Streaming for passing

data between Map and Reduce code via stdin and stdout
– Observe that reducer interface is different from Java: 

instead of receiving reduce(k, Iterator[v]), the script is sent 
one line per value, including the key
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YARN
• YARN: Yet Another Resource Negotiator 

– Distributed framework for cluster resource management and 
job scheduling

• Turns out Hadoop into an analytics platform in which 
resource management functions are separated from 
programming model
– Can support not only MapReduce, but also other frameworks 

(e.g., Spark)
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YARN: architecture
• Global ResourceManager (RM)
• A set of per-application ApplicationMasters (AMs)
• A set of NodeManagers (NMs)
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YARN: data locality optimization

• Scheduling the job, YARN tries to run the 
mapper on a data-local node (data locality 
optimization)
– So to not use cluster bandwidth
– Otherwise rack-local
– Off-rack as last choice
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Hadoop installation

• Some straightforward alternatives:
1. Our Docker environment
2. Single-node installation https://bit.ly/3c92ZPZ

3. Cloudera CDH and MapR distributions
– Integrated Hadoop-based stack containing all the 

components needed for production, tested and packaged to 
work together

– Include at least Hadoop, HDFS (not in MapR), HBase, Hive, 
Pig, Sqoop, Flume, Kafka, Spark

– Include also security frameworks (e.g., Sentri) to handle 
access control, security policies, …

– MapR distribution: own distributed Posix file system (MapR-
FS) rather than HDFS
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Hadoop configuration

• Tuning Hadoop clusters for good performance is 
somehow magic
– Disk I/O is usually the performance bottleneck

• Tuning hw and sw parameters, e.g.: 
– Find optimal number of disks so to maximize I/O bandwidth 
– Increase open file limit
– Find optimal HDFS block size (number of mappers)
– JVM settings for Java heap usage and garbage collection 

• There are also Hadoop-specific parameters that can 
be tuned for performance
– Number of mappers
– Number of reducers
– Plus other map-side and reduce-side tuning parameters
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How many mappers

• Number of mappers
– Driven by number of blocks in input files
– You can adjust the HDFS block size to adjust the 

number of mappers
– Good level of parallelism: 10-100 mappers per-node, 

but up to 300 mappers for very CPU-light map tasks
– Task setup takes a while, so it is best if mappers take 

at least a minute to execute
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How many reducers

• Number of reducers
– Can be user-defined (default is 1) 
– Use Job.setNumReduceTasks(int)
– The right number of reduces seems to be 0.95 or 1.75 

multiplied by (<no. of nodes> * <no. of maximum 
containers per node>)

• 0.95: all of the reduces can launch immediately and start 
transferring map outputs as the maps finish

• 1.75: the faster nodes will finish their first round of reduces 
and launch a second wave of reduces doing a much better 
job of load balancing

– Can be set to zero if no reduction is desired
• No sorting of map-outputs before writing them to output file

See http://bit.ly/2oK0D5A
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Some tips for performance

• To handle massive I/O and save bandwidth 
- Compress input data, map output data, reduce output data

• To address massive I/O in partition and sort phases
– Each mapper has a circular buffer memory to which it writes 

the output; when the buffer is full, its content is written 
(“spilled”) to disk. Avoid that records are spilled more than 
once

– How? Adjust spill records and sorting buffer

• To address massive network traffic caused by large 
map output
- Compress map output
- Implement a combiner to reduce the amount of data passing 

through the shuffle
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Hadoop in the Cloud

• Pros:
– Gain cloud scalability and elasticity
– Do not need to manage and provision the 

infrastructure and platform
• Main challenges:

– Move data to cloud
• Latency is not zero 

(because of speed of light)! 
• Minor issue: network bandwidth  

– Data security and privacy
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Amazon Elastic MapReduce (EMR)

• Distribute computational work across a cluster of virtual 
servers running in AWS cloud (EC2 instances)

• Not only Hadoop: also Hbase, Spark, Flink
– Usually not the latest released version

• Input and output: Amazon S3, HDFS, DynamoDB …
• Access through AWS Console, command line
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Create EMR cluster
Steps:

1. Provide cluster name

2. Select EMR release and 
applications to install

3. Select instance type 
(including spot 
instances)

4. Select number of 
instances

5. Select EC2 key-pair to 
connect securely to the 
cluster

See AWS tutorial

Running cluster can be 
automatically scaled or 
manually resized
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EMR cluster details
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• You can only tune some parameters for performance
- Some EC2 parameters (heap size used by Hadoop and Yarn )

- Hadoop parameters (e.g., memory for map and reduce JVMs)
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Google Cloud Dataproc

• Distribute the computational work across a cluster of 
virtual servers running in Google Cloud Platform

• Not only Hadoop, also Spark and Flink
• Input and output from other Google services, 

including Cloud Storage, Bigtable
• Access through REST API, Cloud SDK, and Cloud 

Dataproc UI
• Fine-grain pay-per-use (seconds)
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Create Cloud Dataproc cluster
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