# Sistemi e Architetture per Big Data 

A.A. 2022/23

## Valeria Cardellini, Matteo Nardelli

## Laurea Magistrale in <br> Ingegneria Informatica

## Teaching staff

- Valeria Cardellini
- 4 CFU
- Tel: 06 72597388, office: Ing. Informazione, room D1-17
- Email: cardellini@ing.uniroma2.it
- www.ce.uniroma2.it/~valeria
- Matteo Nardelli
- 2 CFU
- Email: nardelli@ing.uniroma2.it
- www.matteonardelli.it
- Email: use [SABD] in the subject line
- Office hours:
- When: after lesson (in presence) or by appointment (either in presence or on Teams)


## General information

- Course web site
www.ce.uniroma2.it/courses/sabd2223/
- Virtual class on Teams
- Number of credits: 6 CFU
- 60 hours of lessons (each lesson of 105 minutes)
- Class period: 2nd semester
- From 6/3/2023 to 15/6/2023
- Class schedule
- Monday 11:30-13:15, room C5
- Thursday 11:30-13:15, room B8

Please register on Delphi to join the course

## Educational objectives

- Principles, paradigms, tools and technologies to design and manage distributed systems and architectures for big data analytics services and applications


## The Big Data stack we will consider

## High-level Frameworks

## Data Processing

Data Storage

Resource Management

## uо!џелбәృu / みoddns

## Course program at-a-glance

- Frameworks for resource management
- Systems and frameworks for storing data either temporary or permanently, including distributed file systems and non-relational (NoSQL) databases for data storage
- Frameworks and tools for collecting and ingesting data from various sources into the big data analytics infrastructure
- Processing frameworks for batch and real-time analytics, including their architectural and programming aspects
- High-level frameworks and tools for large scale analytics, including distributed ML


## Course program in details

- Introduction to Big Data: issues and challenges
- Data storage: distributed file systems and NoSQL data stores
- Case studies: HDFS, Cassandra, Dynamo, HBase, MongoDB, Neo4j
- Hands-on: HDFS and NoSQL databases (Redis, MongoDB, HBase and Neo4j)
- Systems for batch processing
- Case studies: Hadoop, Spark
- Hands-on: Hadoop, Spark and Spark SQL
- Systems for data acquisition: pub/sub, message queues, collection systems
- Case studies: Kafka, Nifi, Flume
- Hands-on: Kafka


## Course program in details (2)

- Systems for stream processing
- Case studies: Storm, Flink, Spark Streaming
- Hands-on: Flink, Kafka Streams and Spark Streaming
- Frameworks for distributed machine learning and federated learning
- Case study: Spark MLlib
- Frameworks for cluster resource management
- Case study: Mesos
- Where data processing occurs?
- In the Cloud
- At the network edges


## Teaching material

- Your notes
- Lesson slides on web site and Teams
- Scientific papers, articles, etc. on web site
- Suggested textbooks:

- A. Bahga, V. Madisetti, Cloud Computing Solutions Architect - A Hands-On Approach, 2019.

Designing
Data-Intensive
Applications

- M. Kleppman, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems, O'Reilly, 2017.


## Exam

a) 2 programming projects assigned during the course

- Programming project \#1: assigned at the end of April 2023, due at the end of May 2023
- Programming project \#2: assigned at the end of May 2023, due at the end of June 2023
- Possibly in groups of 2
b) Final oral exam on the course program
- When:
- 2 dates in each exam period (June-July 2023, September 2023 and January-February 2024)


## Grading

- Programming project \#1: $35 \%$
- Programming project \#2: 35\%
- Final oral exam: 30\%
- Participation during class will also be taken into account

