TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

.

Systems for Resource Management

Corso di Sistemi e Architetture per Big Data
A.A. 2022/23
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Interfaces

Data Processing

Data Storage

uonjeibajuj / poddng

Valeria Cardellini - SABD 2022/23 1

Outline

« Cluster management system
— Apache Mesos

« Resource management policy
— DRF

Valeria Cardellini - SABD 2022/23

Why cluster resource management?

* Need to run multiple Big Data frameworks on
same computing and storage infrastructure

« But running each framework on its dedicated
cluster:
X Expensive
X Hard to share data

 |ldea: share cluster resources among multiple
Big Data frameworks

Valeria Cardellini - SABD 2022/23

How to share: static partitioning

* How to share (virtual) cluster resources among
multiple and heterogeneous Big Data
frameworks?

* The simplest solution: static partitioning

 Efficient? No way

MysQL Cassandra Rails Hadoop memcached
Valeria Cardellini - SABD 2022/23 4

What we need

« “The datacenter is the computer” (D. Patterson)
— Share resources to maximize their utilization
— Share data among frameworks
— Provide unified API to outside
— Hide internal complexity of infrastructure from

applications

« Solution: a cluster-scale resource manager that

employs dynamic partitioning

Dynamic partitioning

©

VY T~ NN-A R - R |

Valeria Cardellini - SABD 2022/23 5

>

pache

MESOS

VAVAVY

Apache Mesos

AVAVA
AVAVAVA
'VAVAVAV

» Cluster manager that provides a common
resource sharing layer over which diverse
frameworks can run

“Program against your datacenter like it's a single pool
of resources” mesos.apache.orqg

— Abstracts CPU, memory, storage, and other
compute resources away from machines (physical
or virtual), enabling fault-tolerant and elastic
distributed systems to easily be built and run
effectively

Valeria Cardellini - SABD 2022/23 6

Apache Mesos

* Initially designed and developed at Berkeley Univ.
« Then Apache open-source project

« Used by many organizations (Airbnb, Twitter, Uber,
Apple (Siri) among the others)

» Cluster as dynamically shared pool of resources
Static partitioning Dynamic partitioning

- 33%
r‘m'ﬁﬂ ol

- o% 100% ﬁ"’\!lﬁ"
hmmf ij;': so% BRER
 Pregel Ol -
N Ui

h|ﬁ|ﬁ| % Shared cluster

Valeria Cardellini - SABD 2022/23

Mesos goals

High utilization of resources
Scalability to 10,000's of nodes
High availability

Support for many frameworks

— But frameworks must be aware of running on
Mesos
— Which frameworks:
mesos.apache.org/documentation/latest/frameworks/
» Big Data processing: Hadoop, Flink, Spark, Storm
+ Data storage: Alluxio, Cassandra
* Machine learning: TFMesos

Valeria Cardellini - SABD 2022/23

Mesos in the data center

« Where does Mesos fit as an abstraction layer
in the datacenter?

deploy and manage
applications/services
build and run

using resources

machines

Valeria Cardellini - SABD 2022/23

Mesos computation model

« A framework (e.g., Spark, Flink) manages
and runs one or more jobs

« A job consists of one or more tasks

« Atask (e.g., map, filter) consists of one or
more processes running on same machine

’ Executor Executor
(e.g., task tracker) (e.g., task tracker)
I = ~..

.= : - Framework
R ——— Scheduler
! e ---- Executor (e.g., job tracker)
; (e.q., task tracker) (e.g., task tracker)),/‘ :
: == | Task3 | = :
B

Valeria Cardellini - SABD 2022/23

What Mesos does

10

* Enables fine-grained resource sharing (at the
level of tasks within an application job) of
resources (CPU, RAM, ...) across frameworks

* Provides common functionalities:
- Failure detection
- Task distribution
- Task starting
- Task monitoring
- Task killing

- Task cleanup

Valeria Cardellini - SABD 2022/23

1

Fine-grained sharing

 Allocation at the level of tasks within a job
« Improves utilization, latency, and data locality

Framework 1 %%m
Grfoe W

Coarse-grain sharing Fine-grain sharing

Valeria Cardellini - SABD 2022/23 12

Mesos: architecture

 Master-worker

architecture Hadoop MPI ZooKeeper
Workers publish scheduler scheduler quorum
available \ \
resources to P, e
master Mesos + Standby 1 Standby
master . _master . _master

» Master sends
resource offers to v
frameworks Mesos Agent | | Mesos Agent Mesos Agent

e Master election Hadoop MPI Hadoop || MPI
and service executor executor executor||executor
discovery via | task | || [task |
ZooKeeper

mesos.apache.org/documentation/latest/architecture/

Mesos: a platform for fine-grained resource sharing in the data center, NSDI’11

Valeria Cardellini - SABD 2022/23 13

Mesos and framework components

* Mesos components

- Master

- Workers (or agents)
* Framework components

- Scheduler: registers with
Mesos master to accept

Cluster

,I Mesos Slave 1 |

| Mesos Slave 2 |

resource offers O | L Framevork1 || ==3]| E |
-
- Executors: launched on ISR N e
agents to run framework’s .- Bl e
tasks // Executor 1 — EI
/, Executor 2 3
————————— L] ST : = EoEEoE
::F i‘a ? ?i‘oi'k :1 :r -:: ::- Mesos Master " : ExecutorM ||| = @ - "
Framework 2 ’lk’ ,’l """"" "
IITLTT S pymemeees [- N
Framework N I ~ !_ _lVleio_slVIfs_te_r e " task
[ommer], P} o0 [3 =
1 y Mesos Master <o il o1 n

Valeria Cardellini - SABD 2022/23

Scheduling in Mesos
» Scheduling based on resource offers

— Mesos offers available resources to frameworks

« Each resource offer contains a list of <agent ID,
resourcel: amountl, resource2: amount2, ...>

- Each framework chooses which resources to use and
which tasks to launch

 Two-level scheduler architecture

- Mesos delegates the actual scheduling of tasks to
frameworks

- Why? To improve scalability

* Master does not have to know the scheduling intricacies of
every type of supported application

Valeria Cardellini - SABD 2022/23

Mesos: resource offers

Framework 1 Framework 2
Job1 [Job2 Job1 | Job?2
FW Scheduler FW Scheduler
ERETEE 6), @ e
< M ‘
Allocation Mesos
module master
[<s1, 4cpu, 4gb, ... > (1 f@“"‘”' task1, 2cpu, 1gb, ... >]
<fw1, task2, 1cpu, 2gb, ... >
\ Agent 2
Executor
| Task H Task |

 We will see that resource allocation is based on
Dominant Resource Fairness (DRF) algorithm

Valeria Cardellini - SABD 2022/23

Mesos fault tolerance

16

Task failure

Worker failure

Host or network failure
Master failure

Framework scheduler failure

Valeria Cardellini - SABD 2022/23

17

Cluster resource allocation

1. How to assign cluster resources to tasks?

— Main design alternatives

» Centralized scheduler
— Global (monolithic) scheduler
— Two-level scheduler

 Decentralized scheduler
— Let’s focus on centralized scheduler

2. How to allocate resources of different types?

Valeria Cardellini - SABD 2022/23 18

Global (monolithic) scheduler

Organization policies ‘
Resource availability ‘

Job requirements - Sc?\t)c?jller -Task schedule
Job execution plan ‘
Estimates -
« Job requirements * Pros
— Response time’ - Can aCh|eve Opt|ma|
throughput, availability schedule (global knowledge)
« Job execution plan » Cons:
— Task DAG, inputs/outputs — Complexity: hard to scale

and ensure resilience

— Hard to anticipate future
frameworks requirements

— Need to refactor existing
frameworks

» Estimates

— Task duration, input sizes,
transfer sizes

Valeria Cardellini - SABD 2022/23 19

Two-level scheduler in Mesos

Organization) ,
policies ‘ : A
eSS iy Task
Resource LB ‘ schedule
- Framework Framework

availability schedule scheduler

» Idea: push task placement to

frameworks . Pros:
* Resource offer — Simple: easier to scale
— Vector of available resources on a and make resilient
node — Easy to port existing
~ E.g., node1: <1CPU, 1GB>, frameworks and

support new ones

« Cons:
— Two-level decision

node2: <4CPU, 16GB>
 Master sends resource offers to

frameworks made by different
* Frameworks select which offers entities: can be
suboptimal

to accept and which tasks to run
Valeria Cardellini - SABD 2022/23

Mesos: resource allocation

« How to determine which frameworks to make
resource offers?

« Dominant Resource Fairness (DRF)
algorithm
— Implemented by allocation module

_________ 1 e
: Framework 1 : r
{[Scheduter |1 resource offer i | MesosMaster
e —— ' ! [1

: . Resource Availability - 1
————————— 1 I .llllllllllllll’
1

Framework 2 1 I R

: I Allocation Module 4 S]
1| Scheduler f« : 1 olicies]
) Y

1

Framework 3 I
Scheduler

Valeria Cardellini - SABD 2022/23

DRF: background on fair sharing

- Consider a single resource: fair sharing .o 22—

— n users want to share a resource, e.g., CPU

— Solution: allocate each 1/n of the shared
resource 0%
» Generalized by max-min fairness

— Handles if a user wants less than its fair
share

— E.g., user 1 wants no more than 20% 0%

« Generalized by weighted max-min
fairness

— Gives weights to users according to
importance

— E.g., user 1 gets weight 1, user 2 weight 2

Valeria Cardellini - SABD 2022/23 22

50%

Max-min fairness: example

1 resource type: CPU

Total resources: 20 CPU

User 1 has x tasks and wants <7 CPU> per task
User 2 has y tasks and wants <2 CPU> per task

max(x, y) (maximize allocation)
subject to
x + 2y < 20 (CPU constraint)
X = 2y (fairness)

Solution:
x=10
y=>5

Valeria Cardellini - SABD 2022/23 23

Why is fair sharing useful?

Proportional allocation

— User 1 gets weight 2, user 2 weight 1
Priorities

— Give user 1 weight 1000, user 2 weight 1
Reservations

— Ensure user 1 gets 10% of a resource, so give
user 1 weight 10, sum weights 100

Isolation policy
— Users cannot affect others beyond their fair share

Valeria Cardellini - SABD 2022/23

Why is fair sharing useful?

24

Share guarantee

— Each user can get at least 1/n of the resource
— But will get less if its demand is less
Strategy-proof

— Users are not better off by asking for more than
they need

— Users have no reason to lie

Max-min fairness is the only reasonable
mechanism with these two properties

Many schedulers use max-min fairness
— OS, networking, data centers (e.g., YARN)

Valeria Cardellini - SABD 2022/23

25

Max-min fairness drawback

* When is max-min fairness not enough?

» Need to schedule multiple, heterogeneous resources
(CPU, memory, disk, I/O)

« Single resource example oo
— 1 resource: CPU
— User 1 wants <1CPU> per task
— User 2 wants <2CPU> per task

50%- f

0%/ K

» Multi-resource example
— 2 resources: CPUs and memory N Y
— User 1 wants <1CPU, 4GB> per task s0%l- -1
— User 2 wants <3CPU, 1GB> per task I N

* |n the latter case which is a fair allocation? °“ v Tem

100%t

Valeria Cardellini - SABD 2022/23

What Mesos needs

« A fair sharing policy that provides:
— Share guarantee
— Strategy-proofness

« Challenge: can we generalize max-min
fairness to multiple resources?

 Solution: Dominant Resource Fairness (DRF)

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types, NSDI'11

Valeria Cardellini - SABD 2022/23

DRF

Dominant resource of a user: the resource that user
has the biggest share of

— Example:
» Total resources: <8CPU, 5GB>
* User 1 allocation: <2CPU, 1GB>
. 2/8 = 25% CPU and 1/5 = 20% RAM
* Dominant resource of user 1 is CPU (25% > 20%)
Dominant share of a user: the fraction of the
dominant resource allocated to the user

— Example: User 1 dominant share is 25%

DRF applies max-min fairness to dominant shares:
give every user an equal share of its dominant
resource

Goal: equalize the dominant share of the users

Valeria Cardellini - SABD 2022/23

DRF: example

28

Goal: equalize the dominant share of the users
— Total resources: <9CPU, 18GB>

— User 1 wants <1CPU, 4GB>

— Dominant resource for user 1: RAM (1/9 < 4/18)

— User 2 wants <3CPU, 1GB>

— Dominant resource for user 2: CPU (3/9 > 1/18)

max(x, y)

Xx+3y<9 100%
4x +y <18

(4/18)x = (3/9)y 50%
* User 1: x =3 <33%CPU, 66%GB>

USGF 2: y = 2 <66()/OCPU, 16%GB> o% CPU mem

(9 total) (18 total)

Valeria Cardellini - SABD 2022/23

O user1

B User2

29

Online DRF

* \Whenever there are available
resources and tasks to run:

Choose the framework with
the lowest dominant share
among all frameworks

Algorithm 1 DRF pseudo-code

R={ry,-,Tm) &> total resource capacities

C = {c1,--+,¢,) P consumed resources, initially 0

s; (i =1..m) © useri’s dominant shares, initially (

U; = (w1, i m) (i = 1..n) > resources given to
user i, initially 0

pick user i with lowest dominant share s;

D; « demand of user 7’s next task

if C + D; < R then

— Online DRF tracks the total resources C=C+D; & update consumed vector
allocated to each user as well as the U; =U; + D; & update i’s allocation vector
user's dominant share e maxZ, {ui;/7;}

— At each step, DRF picks the user with return & the cluster is full
the lowest dominant share among those _ endif
with task ready to run

Schedule User A User B CPU RAM

res. shares dom. share res. shares dom. share | total alloc. | total alloc.

User B (0, 0) 0 (3/9, 1/18) 173 3/9 1/18

User A (1/9, 4/18) 2/9 (3/9, 1/18) 173 419 5/18

User A (2/9, 8/18) 4/9 (3/9, 1/18) 1/3 5/9 9/18

User B (2/9, 8/18) 4/9 (6/9, 2/18) 2/3 8/9 10/18

User A | (3/9, 12/18) 2/3 (6/9, 2/18) 2/3 1 14/18

Valeria Cardellini - SABD 2022/23 30
DRF: efficiency-fairness trade-off
100% }
o " O user1
 DRF causes under-utilized resources =

User 2

« DRF schedules at the level of tasks
(leads to sub-optimal job completion
time)

« Fairness is fundamentally at odds

0%

CPU
(9 total)

mem
(18 total)

with overall efficiency (how to trade-

off?)

Valeria Cardellini -

SABD 2022/23

31

