
NoSQL Data Stores

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2022/23 1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Traditional RDBMSs

• Relational DBMSs (RDBMSs)
– Traditional technology for storing structured data

in web and business applications
• SQL is good

– Rich language and toolset
– Easy to use and integrate
– Many vendors

• RDBMSs promise ACID guarantees

Valeria Cardellini - SABD 2022/23 2

ACID properties

• Atomicity
– All statements in a transaction are either executed or the

whole transaction is aborted without affecting the database:
“all or nothing” rule that is, transactions do not occur partially

• Consistency
– A database is in a consistent state before and after a

transaction; it refers to the correctness of a database

• Isolation
– Transactions cannot see uncommitted changes in the

database (i.e., the results of incomplete transactions are not
visible to other transactions)

• Durability
– Changes are written to disk (i.e., non-volatile memory)

before a database commits a transaction so that committed
data cannot be lost if a system failure occurs

Valeria Cardellini - SABD 2022/23 3

RDBMS constraints

• Domain constraints
– Restrict domain or set of possible values for each attribute

• Entity integrity constraints
– No primary key value can be null

• Referential integrity constraints
– To maintain consistency among tuples in two relations: every

value of one attribute of a relation should exist as a value of
another attribute in another relation

• Foreign key
– To cross-reference between multiple relations: it is a key in a

relation that matches the primary key of another relation

Valeria Cardellini - SABD 2022/23 4

Pros and cons of RDBMS

• Well-defined consistency
model

• ACID guarantees
• Relational integrity

maintained through entity
and referential integrity
constraints

• Well suited for OLTP apps
• Sound theoretical foundation
• Stable and standardized

DBMSs available
• Well understood

Valeria Cardellini - SABD 2022/23 5

• Performance as major
constraint, scaling is difficult

• Limited support for complex
data structures

• Complete knowledge of DB
schema required to build
new queries

• Commercial DBMSs are
expensive

• Some DBMSs have field
size limits

• Data integration from
multiple RDBMSs can be
cumbersome

Pros Cons

RDBMS challenges

• Web apps cause spikes
– Internet-scale data size
– High read-write rates
– Frequent schema changes

• Let’s scale RDBMSs
– But they were not designed to be distributed

• How to scale RDBMSs?
– Replication
– Sharding

Valeria Cardellini - SABD 2022/23 6

Replication

• Primary backup with master/worker architecture
✓Replication improves read scalability
✗Write scalability?

Valeria Cardellini - SABD 2022/23 7

Sharding

• Horizontal partitioning of data across many
separate servers

✓Read and write operations scale
✗Cannot execute transactions across shards

(partitions)

Valeria Cardellini - SABD 2022/23 8

• Consistent hashing can be
use to determine which server
any shard is assigned to

⁃ Hash both data and server
using the same hash function in
the same ID space

Scaling RDBMSs is expensive and inefficient

Valeria Cardellini - SABD 2022/23 9

Source: Couchbase technical report

NoSQL data stores

• NoSQL = Not Only SQL
– SQL-style querying is not the crucial objective

Valeria Cardellini - SABD 2022/23 10

NoSQL data stores: main features

• Support flexible schema
– No requirement for fixed rows in a table schema
– Well suited for agile development process

• Support horizontal scaling
– Partitioning of data and processing over multiple nodes

• Provide high availability
– By replicating data in multiple nodes, often geo-distributed

• Mainly utilize shared-nothing architecture
– With exception of graph-based databases

• Avoid unneeded complexity
– E.g., elimination of join operations

• Support weaker consistency models
– BASE rather than ACID: compromising reliability for better

performance
11Valeria Cardellini - SABD 2022/23

ACID vs BASE: ACID

12

• Two design philosophies at opposite ends of
the consistency-availability spectrum
- Keep in mind CAP theorem

• ACID: traditional approach for RDBMSs
– Pessimistic approach: prevents conflicts from

occurring
• Usually implemented with write locks managed by

system
• Leads to performance degradation and deadlocks

(hard to prevent and debug)

– Does not scale well when handling petabytes of
data (remember of latency!)

Valeria Cardellini - SABD 2022/23

Pick two of Consistency, Availability
and Partition tolerance

ACID vs BASE: BASE

13

• BASE: Basically Available, Soft state, Eventual
consistency
– Basically Available: the system is available most of the time

and there could exist a subsystem temporarily unavailable

– Soft state: data is not durable that is, its persistence is in the
hand of the user that must take care of refreshing it

– Eventually consistent: the system eventually converges to a
consistent state

• Optimistic approach
- Lets conflicts occur, but detects them and takes action to sort

them out: how?
• Conditional updates: test the value just before updating

• Save both updates: record that they are in conflict and then
merge them

Valeria Cardellini - SABD 2022/23

NoSQL and consistency

• Biggest change from RDBMS
– RDBMS: strong consistency
– Traditional RDBMS are CA systems (or CP

systems, depending on configuration)
• Majority of NoSQL systems provide eventual

consistency (i.e., AP systems)
• Some NoSQL systems

provide strong consistency
or tunable consistency
– E.g., Cassandra and MongoDB

Valeria Cardellini - SABD 2022/23 14

NoSQL cost and performance

Valeria Cardellini - SABD 2022/23 15

Source: Couchbase technical report

Pros and cons of NoSQL

• Easy to scale-out
• Higher performance for

massive data scale
• Allow data sharing across

multiple servers
• HA and fault tolerance

provided by data replication
• Most are either open-source

or cheaper
• Support complex data

structures and objects
• No fixed schema, support

unstructured data
• Fast retrieval of data,

suitable for real-time apps 16

• Many do not support ACID,
less suitable for OLTP apps

• No common data storage
model -> No well defined
approach for DB design

• Lack of standardization (e.g.,
specific query languages)

• Less support for aggregation
ops (e.g., sum, avg, count,
group by)

• Many do not support join ops
• Lack of reference model can

lead to solution lock-in

Pros Cons

Valeria Cardellini - SABD 2022/23

NoSQL data models

• A number of largely diverse data stores not
based on relational data model

Valeria Cardellini - SABD 2022/23 17

NoSQL data models

• Data model: set of constructs for representing
information
– Relational model: tables, columns and rows

• Storage model: how the data store
management system stores and manipulates
data internally

• A data model is usually independent of the
storage model

• Data models for NoSQL systems:
– Aggregate-oriented models: key-value (KV),

document, and column-family

– Graph-based models
Valeria Cardellini - SABD 2022/23 18

Aggregates

• Data as single unit with a complex structure
– More structure than just a set of tuples
– E.g., complex record with simple fields, arrays,

records nested inside
• Aggregate pattern in Domain-Driven Design

– Cluster of domain objects that we treat as a unit
(e.g., order and its items, playlist and its songs)

– Unit for data manipulation and consistency
management

• Advantages of aggregates
– Easier for application programmers to work with
– Easier for data store systems to handle ops

See thght.works/1XqYKB0
Valeria Cardellini - SABD 2022/23 19

Aggregates: example

• With NoSQL

Valeria Cardellini - SABD 2022/23 20

• With RDBMS

Transactions?

• Relational databases have ACID transactions
• Aggregate-oriented data stores

– Support atomic transactions, but only within single
aggregate

– Most data stores don’t have ACID transactions
that span multiple aggregates

• In case of update over multiple aggregates: possible
inconsistent reads

☞Take it into account when deciding how to
aggregate data

• Graph databases tend to support ACID
transactions

Valeria Cardellini - SABD 2022/23 21

Key-value (KV): data model

• Simple data model: data is represented as a schema-
less collection of key-value pairs
– Associative array (map or dictionary) as fundamental data

model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Data model:
– Set of <key, value> pairs
– Value: aggregate instance

• Aggregate is opaque to data store
– Just a big blob of mostly meaningless bits

• Access to aggregate: lookup based on its key
• Richer data models can be implemented on top

Valeria Cardellini - SABD 2022/23 22

KV: data model example

Valeria Cardellini - SABD 2022/23 23

KV: types of data stores

Valeria Cardellini - SABD 2022/23 24

• Some data stores support key ordering
– Data is stored sorted by key in a particular order (e.g.,

lexicographic) to handle keys more easily

• Some maintain data in RAM, while others employ
HDDs, SSDs or even flash memory

• Some let developers implement user-defined
functions (UDFs) to extend the data store processing
capabilities

• Wide range of consistency models

KV: consistency

Valeria Cardellini - SABD 2022/23 25

• Consistency ranges from weak (e.g., eventual)
to strong (e.g., serializability)
– Serializability: guarantee about transactions over

multiple items
• It guarantees that the execution of a set of transactions

(with read and write operations) over multiple items is
equivalent to some serial execution (total ordering) of the
transactions

• Gold standard in DB community: serializability is the
traditional Isolation in ACID

– Examples:
• AP: Dynamo, Riak KV
• CP: Redis, Berkeley DB

KV: query features

• Only query by the key!
– There is a key and there is the rest of the data (the value)

• Basic ops: put(key,value), get(key), delete(key)
• Most KV data stores provide access operations on

groups of related key-value pairs
• Cannot lookup for some attribute of the value

– E.g., KV stores usually do not have a WHERE clause such
as RDBMSs or if they do, it requires a slow scan of all values

• The key needs to be suitably chosen
– E.g., session ID for storing session data

• What if we don’t know the key?
– Some KV system allows to search inside the value using a

full-text search (e.g., using Apache Solr)

Valeria Cardellini - SABD 2022/23 26

KV: suitable use cases

• Session info in web app
– Each user session has a unique id: session id as key
– Store session data using a single put, retrieve using get

• User profile and preferences
– Almost every user has a unique user id, username, …, as

well as preferences such as language, list of searched and
recommended, …

– Put preferences of a user into the value, so getting takes a
single operation

• Shopping cart data
– Put shopping information into the value, whose key is the

user id

• Product recommendations

Valeria Cardellini - SABD 2022/23 27

KV: products

• Amazon’s Dynamo is the most notable example
– Riak KV: open-source implementation

• Other KV data stores include:
– Amazon DynamoDB: data model and name from Dynamo,

but different implementation
– Berkeley DB: open-source embedded library (not

distributed!), key ordering (based on Btree+)
– Oracle NoSQL Database
– upscaledb
– LevelDB: by Google, a KV storage library with key ordering
– RocksDB: by Facebook, evolution of LevelDB
– Memcached, Redis, Hazelcast: distributed in-memory KV

data stores
– Ehcache: Java-based cache
– Aerospike: tunable consistency (AP or CP)

Valeria Cardellini - SABD 2022/23 28

Document: data model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Document: collection of named fields and data
– Encapsulates and encodes data in some standard formats

or encodings: JSON, BSON, XML, YAML, …

• Similar to key-value store (unique key), but API or
query/update language to query or update based on
document’s internal structure
– Document content is no longer opaque

• Similar to column-family store, but values can have
complex documents, instead of fixed format

Valeria Cardellini - SABD 2022/23 29

Document: data model

• Data model
– A set of <key, document> pairs
– Document: an aggregate instance

• Aggregate structure is visible
– Limits on what we can place in it

• Access to aggregate
– Queries based on the fields in the aggregate

• Flexible schema
– Documents do not need to have same structure
– Better flexibility: apps can store different data in documents

as business requirements change
• No need of schema migration efforts

Valeria Cardellini - SABD 2022/23 30

Document: data model example

Valeria Cardellini - SABD 2022/23 31

• JSON format

Document: data store API

• Usual CRUD operations (not standardized)
– Create (or insert)
– Retrieve (or get, query, search, find)

• Not only simple key-to-document lookup
• Query language allows the user to retrieve documents based

on the values of one or more fields
– Update (or edit)

• Not only the entire document but also individual fields of the
document

– Delete (or remove)

• Read and write operations over multiple fields in a
single document are usually atomic

• Some document data stores support indexing to
facilitate fast lookup of documents

Valeria Cardellini - SABD 2022/23 32

KV vs. document data stores

• KV data store
– A key plus a big blob of mostly meaningless bits
– Can store whatever you like in the aggregate
– Can only access an aggregate by lookup based on its key

• Document data store
– A key plus a structured aggregate
– More flexibility in accessing and updating data

• Can query based on aggregate fields
• Can retrieve/update part of the aggregate rather than the whole

aggregate
– Can create indexes based on aggregate content

• In general, indexes speed up read accesses but slow down
write accesses, thus should be designed carefully

Valeria Cardellini - SABD 2022/23 33

KV vs. document data stores

• The line between KV and document gets a bit blurry
– People often use document store to do a simple KV style

lookup

• Data stores classified as KV may allow you to
structure data beyond just an opaque, e.g.,
– Redis allows you to break down the aggregate into lists or

sets
– Riak KV allows you to put aggregates into buckets
– Others support querying by search tools

Valeria Cardellini - SABD 2022/23 34

Some data model design choices

• Be careful: no universal rule
– It depends on how your app tends to manipulate

data!

• How to model 1:N relationship
– Simple rule of thumb: how large is N?

• One-to-few: embedding
• One-to-many: referencing
• One-to-squillions: parent-referencing

– See some example www.mongodb.com/blog/post/6-rules-of-
thumb-for-mongodb-schema-design-part-1

Valeria Cardellini - SABD 2022/23 35

Some data model design choices

• Denormalization
– Denormalized data models embed related data in

a single document

– See docs.mongodb.com/manual/core/data-modeling-introduction

Valeria Cardellini - SABD 2022/23 36

Some data model design choices

• Denormalization
– Pros:

✓Store related pieces of information in same document:
fewer queries and updates

✓Update data within same document in a single atomic
write operation

– Cons:
✗Document size limit (e.g., 16MB in MongoDB)

docs.mongodb.com/manual/core/document
✗Cannot perform atomic update on multiple documents
✗Only makes sense when high read to write ratio

Valeria Cardellini - SABD 2022/23 37

Some data model design choices

Valeria Cardellini - SABD 2022/23 38

• Normalization
– Normalized data models describe relationships

using references between documents
• Another example: see slide 31

– In general, use normalized data models
• When embedding would result in duplication of data but

would not provide sufficient read performance gains
• To represent complex many-to-many relationships
• To model large hierarchical datasets

Document: suitable use cases

• Good for storing and managing big data collections of
semi-structured data with a varying number of fields
– Textual documents, email messages, …
– Conceptual documents like denormalized representations of

DB entities (e.g., product, customer)
– Sparse data in general, i.e., irregular (semi-structured) data

that would require an extensive use of nulls in RDBMS
• Nulls being placeholders for missing or nonexistent values

• Examples of use cases
- Log data
- Product data management (e.g., catalogue)
- Content personalization
- User comments (e.g., blog posts)

Valeria Cardellini - SABD 2022/23 39

Document: when not to use

• Complex transactions spanning multiple documents
– MongoDB 4.x supports distributed transactions but they

incur greater performance cost over single-document writes
– Consider embedding rather than referencing

• Queries against varying aggregate structure
– Since data is saved as an aggregate, if aggregate structure

constantly changes, the aggregate is saved at the lowest
level of granularity. In this scenario, document data stores
may not perform well

Valeria Cardellini - SABD 2022/23 40

Document: products

• MongoDB: the most popular
• Aerospike: both KV and document models
• ArangoDB
• Couchbase
• Apache CouchDB
• RavenDB: open source, student licence available

– ACID, multi-master replication using Raft

• Cloud services
– Amazon DocumentDB (with MongoDB compatibility)
– Microsoft Azure CosmosDB

• Some of them (e.g., Aerospike, ArangoDB) are multi-
model data stores

Valeria Cardellini - SABD 2022/23 41

Column-family: data model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Data model: two-level map structure
– A set of <row-key, aggregate> pairs
– Each aggregate is a group of pairs <column-key, value>
– Column: a set of data values of a particular type

• Similar to key-value store, but value can have
multiple attributes (columns)

• Similar to document store because aggregate
structure is visible

• Columns can be organized in families
– Data usually accessed together

Valeria Cardellini - SABD 2022/23 42

Column-family: data model example

Valeria Cardellini - SABD 2022/23 43

• Representing customer information as column-family

Row-store vs. column-store organization

Valeria Cardellini - SABD 2022/23 44

• Row-store systems: store and process data by rows
– However, RDBMSs support indexes to improve performance of

set-wide operations on whole tables

• Column-store systems: store and process data by
columns
– Can access data faster rather than scanning and discarding

unwanted data in row, e.g., for aggregate queries (avg, max, …)
– Examples: C-Store (pre-NoSQL), Vertica, MariaDB ColumnStore
– Do not confuse them with column-family data stores

Column-family: features

Valeria Cardellini - SABD 2022/23 45

• Column-family data stores: no column stores in the
original sense of the term, because they have a two-
level structure with column families

• Table’s rows and columns can be split over multiple
servers by means of sharding to achieve scalability

• In addition, column families are located on the same
partition to facilitate query performance

• Column-family stores are suitable for read-mostly,
read-intensive, large data repositories

Column-family: features

• Each column:
– Has to be part of a single column family
– Acts as unit for access

• Can get a particular column
– See slide 43: get('1234', 'name')

• Can add any column to any row, and rows can have
different columns

• Two ways to think about how data is structured:
– Row-oriented

• Each row is an aggregate (e.g., customer with id 1234)
• Column families represent useful chunks of data within that

aggregate (e.g., profile, order history)
– Column-oriented

• Each column family defines a record type (e.g., customer
profiles)

• A row is the join of records in all column families
Valeria Cardellini - SABD 2022/23 46

Column-family: suitable use cases

• Queries that involve only a few columns
• Aggregation queries against vast amounts of data

- E.g., average, maximum

• Apps with truly large volumes of data, such as PBs
• Apps that are geographically distributed over multiple

data centers
⎻ See Cassandra geo-distribution

Valeria Cardellini - SABD 2022/23 47

Column-family: products

• Google’s Bigtable is the most notable, uses GFS for
distributed data storage

• Apache HBase: open-source implementation of
Bigtable on top of HDFS
– Apache Phoenix: SQL query engine on top of HBase

• Other popular column-family data stores
– Apache Accumulo: based on Bigtable design, uses HDFS to

store data and Zookeeper for consensus
• Different APIs and different nomenclature from HBase, but

same in operational and architectural standpoint
• Better security

– Apache Cassandra

• Cloud services
– Google Cloud Bigtable
– HBase through Amazon EMR or Azure HDInsight

Valeria Cardellini - SABD 2022/23 48

Graph: data model

• Uses graph structure with nodes, edges, and
properties to represent stored data
– Nodes are the entities

• E.g., users, posts

– Edges are the relationships between the entities
• E.g., a user posts a comment

– Edges can be directed or undirected
– Nodes and edges also have a set of properties (attributes)

consisting of key-value pairs

• Replaces relational tables with structured relational
graphs of interconnected key-value pairs

Valeria Cardellini - SABD 2022/23 49

Graph: data model example

Valeria Cardellini - SABD 2022/23 50

github.com/neo4j-graph-examples/movies

Graph: data model

• Powerful data model
– Differently from other types of NoSQL stores, it concerns

itself with relationships
– Focus on visual representation of information: more human-

friendly than other NoSQL stores
– Other types of NoSQL stores are poor for interconnected

data

• Ad-hoc languages to query and manipulate data in
graphs, e.g.,
– Cypher: declarative language, see slides on Neo4j
– Gremlin: functional, data-flow language

Valeria Cardellini - SABD 2022/23 51

Graph databases: pros and cons

• Pros:
– Explicit graph structure
– Each node knows its adjacent nodes: as number

of nodes increases, cost of local hop is the same
– Can define indexes to make lookups more efficient

• Cons:
– Sharding data by distributing it on multiple servers

to achieve horizontal scalability
• More difficult than for other types of NoSQL data stores
• If graph data is stored on different servers, traversing

multiple servers is not performance-efficient

– Require a design effort with respect to SQL

Valeria Cardellini - SABD 2022/23 52

Graph databases vs. aggregate-oriented stores

• Very different data models

• Aggregate-oriented data stores
– Distributed on multiple servers, also geographically
– Simple query languages
– No ACID guarantees

• Graph databases
– More likely to run on single server (but distributed

architectures exist, e.g., OrientDB)
– Graph-based query languages
– ACID guarantees: transactions maintain consistency over

multiple graph nodes and edges

Valeria Cardellini - SABD 2022/23 53

Graph databases: suitable use cases

• Good for apps where you need to model entities and
relationships between them, e.g.,
– Social networking
– Dependency analysis
– Recommender systems
– Fraud detection
– Drug discovery
– Network security

• Good for apps in which focus is on querying for
relationships between entities and analyzing
relationships
– Computing relationships and querying related entities is

simpler and faster than in RDBMS

Valeria Cardellini - SABD 2022/23 54

Graph databases: products

• Neo4j
• InfiniteGraph: proprietary, distributed
• MemGraph: open source, in-memory
• NebulaGraph: open source, distributed
• OrientDB: open source, distributed, multi-model
• Apache Tinkerpop

– Not properly a DB but rather a computing framework for graph
databases (OLTP) and graph analytic systems (OLAP)

– Gremlin as graph traversal language

• Cloud services:
– Amazon Neptune
– Azure Cosmos DB (multi-model)

Valeria Cardellini - SABD 2022/23 55

Case studies

• Key-value data stores
– Amazon’s Dynamo (and Riak KV)
– Redis

• Document-oriented data stores
– MongoDB

• Column-family data stores
– Google’s Bigtable and Hbase
– Cassandra

• Graph databases
– Neo4j

In blue: Hands-on lessons

Valeria Cardellini - SABD 2022/23 56

Case study: Amazon’s Dynamo

• Highly available and scalable distributed key-
value data store built for Amazon’s platform
– A very diverse set of Amazon applications with

different storage requirements
– Need for storage technologies that are always

available on a commodity hardware infrastructure
• E.g., shopping cart service: “Customers should be able to view

and add items to their shopping cart even if disks are failing,
network routes are flapping, or data centers are being
destroyed by tornados”

– Meet stringent Service Level Agreements (SLAs)
• E.g., “service guaranteeing that it will provide a response within

300ms for 99.9% of its requests for a peak client load of 500
requests per second.”

Valeria Cardellini - SABD 2022/23 57

G. DeCandia et al., Dynamo: Amazon's highly available key-value store,
Proc. of ACM SOSP ‘07

Dynamo: Features

• Simple key-value API
– Simple operations to read (get) and write (put) objects uniquely

identified by a key
– Each operation involves only one object at time

• Focus on eventually consistent store
– Sacrifice consistency for availability
– BASE rather than ACID

• Efficient usage of resources
• Scale-out to manage increasing data or request rates
• Internal use

– Security is not an issue since operation environment is
assumed to be non-hostile

Valeria Cardellini - SABD 2022/23 58

Dynamo: Design principles

• Sacrifice consistency for availability: AP system
• Use optimistic replication techniques
• Possible conflicting changes must be detected and

resolved: when to resolve them and who resolves
them?
– When: execute conflict resolution during reads rather than

writes, i.e., “always writeable” data store
– Who: data store or application; if data store, use simple

policy (e.g., “last write wins”)

• Other key principles:
– Incremental scalability

• Scale-out with minimal impact on the system
– Symmetry and decentralization

• P2P techniques
– Heterogeneity

Valeria Cardellini - SABD 2022/23 59

Dynamo: API

• Each stored object has an associated key
• Simple API including get and put operations to read

and write objects
get(key)

• Returns single object or list of objects with conflicting versions
and context

• Conflicts are handled on reads, never reject a write
put(key, context, object)

• Determines where the replicas of the object should be placed
based on the associated key, and writes the replicas to disk

• Context encodes system metadata, e.g., version number
– Both key and object treated as opaque array of bytes
– Key: 128-bit MD5 hash applied to client supplied key

Valeria Cardellini - SABD 2022/23 60

Dynamo: Used techniques

Valeria Cardellini - SABD 2022/23 61

Problem Technique Advantage

Partitioning Consistent hashing Incremental scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background

Membership and failure
detection

Gossip-based
membership protocol and

failure detection

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information

Dynamo: Data partitioning

• Consistent hashing: server nodes and data are both
mapped on the same ring using MD5 hashing
algorithm (similar to Chord)
– MD5(key) -> node (position on ring)
– Differently from Chord: zero-hop DHT, i.e., all nodes know

about all nodes; complete routing table
– The node handling the client request is known as coordinator

Valeria Cardellini - SABD 2022/23 62

Dynamo: Data partitioning

• To address load balance and heterogeneous servers,
Dynamo introduces virtual nodes
– Each physical node can be responsible for multiple virtual

nodes
– Powerful physical nodes can host more virtual nodes

(# virtual nodes ∝ capacity)

Valeria Cardellini - SABD 2022/23 63

Source: How to Use Consistent Hashing in a System Design Interview?

Dynamo: Replication

• Each object is replicated on N nodes
– N is a configurable replication factor, set per application
– The coordinator plus N-1 clockwise successor nodes

• Preference list: list of nodes that are responsible for
storing a particular key
– More than N nodes to account for node failures
– See figure: object identified by key K is replicated on nodes

B, C and D

Valeria Cardellini - SABD 2022/23 64

• Node D will store keys in
ranges (A, B], (B, C], and
(C, D]

Dynamo: Used techniques

Valeria Cardellini - SABD 2022/23 65

Problem Technique Advantage

Partitioning Consistent hashing Incremental scalability

High availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background

Membership and failure
detection

Gossip-based
membership protocol and

failure detection

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information

Dynamo: Data versioning

• put() may return to client before update has been
applied to all replicas

• get() may return an object version that does not
have the latest update

• Version branching can also happen due to
node/network failures

• Problem: multiple conflicting versions of same object,
that Dynamo needs to reconcile

• Solution: use vector clocks to capture causality
among conflicting versions
– If causality: older versions can be forgotten (last write wins)
– If concurrent: conflict exists, requiring reconciliation

Valeria Cardellini - SABD 2022/23 66

Dynamo: Data versioning

Valeria Cardellini - SABD 2022/23 67

• Example: 2 conflicting versions of object x (x=a and
x=b)

Dynamo: Data versioning

Valeria Cardellini - SABD 2022/23 68

• Example: conflict resolution
– A is the coordinator node for object x
– Before 3rd write, A crashes and write is handled by B and C,

but network partition between B and C occurs
– When A resumes from crash, the two versions are

reconciled

Dynamo: Used techniques

Valeria Cardellini - SABD 2022/23 69

Problem Technique Advantage

Partitioning Consistent hashing Incremental scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background

Membership and failure
detection

Gossip-based
membership protocol and

failure detection

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information

Dynamo: put and get ops

• R (W): minimum number of nodes that must
participate in a successful read (write) op

• put op
– The coordinator generates new vector clock and writes new

version locally
– Sends it to N-1 nodes
– Waits for response from W nodes

• get op
– The coordinator sends read requests to N-1 nodes
– Waits for response from R nodes
– If multiple conflicting versions, returns to client all versions

that are causally unrelated (i.e., concurrent)
– Conflicting versions are reconciled and winning version is

written back

Valeria Cardellini - SABD 2022/23 70

Dynamo: Sloppy quorum

• Setting R + W > N yields a quorum-like protocol
– get (or put) latency depends on the slowest replica
– R and W are usually configured to be less than N to reduce

latency
– Typical configuration in Dynamo: (N, R, W) = (3, 2, 2)

• To balance performance, durability, and availability

• Sloppy quorum
– Due to network partitions, quorum might not exist
– Sloppy quorum: create transient replicas (called hinted

replicas)
• N healthy nodes from the preference list (may not always

be the first N nodes encountered while walking the ring)

Valeria Cardellini - SABD 2022/23 71

Dynamo: Hinted handoff

• Consider N = 3; if A is
temporarily down or
unreachable, put will use D

• D knows that the replica
belongs to A (since failure is
transient)

• Later, D detects A is alive
– Sends replica to A
– Removes replica

Valeria Cardellini - SABD 2022/23 72

• Hinted handoff for transient failures

• Again, “always writeable” principle

Dynamo: Used techniques

Valeria Cardellini - SABD 2022/23 73

Problem Technique Advantage

Partitioning Consistent hashing Incremental scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background

Membership and failure
detection

Gossip-based
membership protocol and

failure detection

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information

Dynamo: Membership management, failure
detection and management

• Dynamo administrator explicitly adds and removes
nodes

• Gossiping is used to propagate membership changes
– Eventually consistent view
– O(1) hop overlay

• Passive failure detection
– Use pings only for detection from failed to alive
– In the absence of client requests, node A doesn’t need to

know if node B is alive

• To recover after permanent failures or partitions and
keep replicas synchronized, Dynamo uses an anti-
entropy mechanism based on Merkle trees

Valeria Cardellini - SABD 2022/23 74

Merkel tree

• Hash-based data structure that generalizes a hash list
• Tree structure in which every leaf node is a hash of a

block of actual data and every non-leaf node is a hash
of its child nodes

• Tree root summarizes all the data in one hash value
• Merkle trees are used in distributed systems for

efficient data verification

Valeria Cardellini - SABD 2022/23 75

– Efficient because can
transmit hashes instead
of data blocks

• Used by Dynamo, Git,
Cassandra, Bitcoin

en.wikipedia.org/wiki/Merkle_tree

Dynamo: Permanent failure management

• When a node fails and recovers, it needs to quickly
determine whether it needs to resynchronize or not
- Transferring entire (key, value) pairs for comparison is not

viable

• Use Merkle trees to rapidly detect inconsistency and
limit amount of transferred data
- Nodes maintain Merkle tree of each key range
- Exchange root of Merkle tree to check if the key ranges they

store are updated
- Tree branches can be checked without having to traverse

the entire tree: a branch is traversed only when the hash
values at the top of the branch differ

- Amount of data transferred for synchronization is thus
minimized

Valeria Cardellini - SABD 2022/23 76

Riak KV

• Distributed NoSQL key-value data store inspired by
Dynamo
– Open-source version docs.riak.com/riak/kv/latest

• Like Dynamo
– Consistent hashing to partition and replicate data in a ring
– Gossiping to propagate membership changes
– Vector clocks to resolve conflicts
– Nodes can be added and removed from Riak cluster as

needed
– Update conflicts can be solved in two ways:

• Last write wins
• Conflicting values are returned to client for resolution

• Search within aggregate by using Solr

Valeria Cardellini - SABD 2022/23 77

Case study: Google’s Bigtable

Valeria Cardellini - SABD 2022/23 78

• Built on GFS, Chubby, SSTable
– Data storage organized in tables, whose rows are distributed

over GFS

• Available as Cloud service: Google Cloud Bigtable
• Underlies Google Cloud Datastore (NoSQL)
• Used by a number of Google apps, including:

– Web indexing, MapReduce, Google Maps, Google Earth,
YouTube and Gmail

• LevelDB is based on concepts from Bigtable, but not
distributed
– Stores entries lexicographically sorted by keys

Chang et al., Bigtable: A Distributed Storage System for Structured Data,
Proc. OSDI ‘06

Bigtable: Motivation

• Lots of semi-structured data at Google
– URLs, geographical locations, ...

• Big data
– Billions of URLs, hundreds of millions of users,

100+TB of satellite image data, …

Valeria Cardellini - SABD 2022/23 79

Bigtable: Main features

• Distributed storage structured as a large table
– Distributed, multi-dimensional, sparse, sorted and

time-based map

• Fault-tolerant

• Scalable and self-managing

• CP system: strong consistency and tolerance
to network partition

Valeria Cardellini - SABD 2022/23 80

Bigtable: Data model

• Table
– Distributed, multi-dimensional, sparse, sorted and time-

based map
– Indexed by rows

• Rows
– Sorted in lexicographical order by row key
– Every read or write in a row is atomic: no concurrent ops on

same row

• Columns
– Basic unit of data access
– Sparse table: different rows may have different columns
– Column family: group of columns

• Data within the column family are usually of same type
– Column family allows for specific optimization for better

access control, storage and data indexing
– Column naming: column-family:column Valeria Cardellini - SABD 2022/23 81

Bigtable: Data model

• Multi-dimensional: rows, column families and
columns provide a three-level naming hierarchy in
identifying data

Valeria Cardellini - SABD 2022/23 82

Bigtable: Data model

• Time-based
– Multiple versions in each cell, each one having a timestamp

• Bigtable data model vs. relational data model

Valeria Cardellini - SABD 2022/23 83

Bigtable: Tablet

• Tablet: group of consecutive rows of a table stored
together
– Basic unit for data storing and distribution
– Table sorted by row keys: select row keys properly to

improve data locality

• Each tablet is served by exactly one tablet server
• Auto-sharding: tablets split by Bigtable when they

become too large

Valeria Cardellini - SABD 2022/23 84

Bigtable: API

• Metadata ops
– Create/delete tables and column families, change

metadata
• Write ops: single-row, atomic

– Write/delete cells in a row, delete all cells in a row
• Read ops: read arbitrary cells in a table

– Each row read is atomic
– One row, all or specific columns, certain

timestamps, ...

Valeria Cardellini - SABD 2022/23 85

• Main components:
– Master server
– Tablet servers
– Client library

Bigtable: Architecture

Valeria Cardellini - SABD 2022/23 86

Bigtable: Master server

• Single master server
• Detects addition/deletion of tablet servers
• Assigns tablets to tablet servers
• Balances load among tablet servers
• Garbage collection of unneeded files in GFS
• Handles schema changes

– e.g., table and column family
creation

Valeria Cardellini - SABD 2022/23 87

Bigtable: Tablet server

• Many tablet servers
• Can be added or removed dynamically
• Each tablet server:

– Manages a set of tablets (typically 10-1000
tablets/server)

– Handles read/write requests to tablets
– Splits tablets when too large

Valeria Cardellini - SABD 2022/23 88

Bigtable: Client library

• Library that is linked into every client
• Client data does not go through master

– Only metadata goes
– Clients communicate directly with tablet servers

for reads/writes

Valeria Cardellini - SABD 2022/23 89

Bigtable: Building blocks

• External building blocks of Bigtable:
– Google File System (GFS): data storage
– Chubby: distributed lock service
– Cluster scheduler: schedules jobs onto cluster

servers

Valeria Cardellini - SABD 2022/23 90

Bigtable: Chubby lock service

• Chubby: distributed and highly available lock service
used in many Google’s products
– File system {directory/file} for locking
– Paxos for consensus to keep replicas consistent

• Bigtable uses Chubby to:
– Ensure there is only one active master (i.e., master lock)
– Store bootstrap location of Bigtable data (i.e., root tablet)
– Store Bigtable schema information
– Discover tablet servers
– Store access control lists (ACL)

Valeria Cardellini - SABD 2022/23 91

Bigtable: Locating rows

• Three-level indexing hierarchy
• Chubby stores the location of root tablet
• Root tablet stores the location of all METADATA

tablets in a special METADATA tablet
• Each METADATA tablet stores location of a set of

user data tablets
• Client-side caching of tablet locations: efficiency!

– Empty cache: 3 round-trips
– Also prefetching, why?

Valeria Cardellini - SABD 2022/23 92

Bigtable: Master startup

• At startup, master executes the following
steps:
– Grabs a unique master lock in Chubby (leader

election)
– Scans tablet servers directory in Chubby to find

live servers
– Communicates with live tablet servers to find

which tablets are assigned to them
– Scans METADATA tablets to learn the set of

tablets that exist and determines the tablets not
yet assigned to tablet servers

Valeria Cardellini - SABD 2022/23 93

Bigtable: Tablet assignment

• Each tablet assigned to one tablet server at a time
• Master uses Chubby to keep tracks of live tablet

serves and unassigned tablets
• When a tablet server starts, it creates and acquires

an exclusive lock in Chubby
• Master detects the lock status of each tablet server

by checking Chubby periodically
• Master is responsible for finding when tablet server is

no longer serving its tablets and reassigning those
tablets as soon as possible to other servers

Valeria Cardellini - SABD 2022/23 94

Bigtable: SSTable

• Data is never stored in tablet servers; each server has
pointers to a set of tablets that are stored on GFS

• Sorted Strings Table (SSTable): file format used to
store Bigtable data durably
– Persistent and immutable key-value map, sorted by keys
– Stored as a series of 64KB blocks plus a block index
– Block index is used to locate blocks
– Index is loaded into memory when SSTable

is opened
– Each SSTable is stored in a GFS file

Valeria Cardellini - SABD 2022/23 95

Bigtable: SSTable

• To speed-up reads, in-memory Bloom filter per
SSTable to test if row data exists before accessing
SSTables on disk

• Bloom filter: space and time-efficient probabilistic
data structure used to know whether an element is
present in a set
– Probabilistic: the element either definitely is not in the set or

may be in the set (i.e., false positives are possible but false
negatives are not)

Valeria Cardellini - SABD 2022/23 96

Bigtable: writing tablets and reading from tablets

• How to support fast writes with SSTables?
– Write in memory!

• Updates committed to a separate commit log
• Recently committed writes are cached in memory in a

memtable
• To serve reads, the tablet server merges SSTables

and memtable into a single view

Valeria Cardellini - SABD 2022/23 97

Write ops are logged

Recent updates kept
sorted in memory

memtable and SSTables
are merged to serve a
read request

Bigtable: Loading tablets

• To load a tablet, a tablet server:
– Finds tablet location through its METADATA tablet

• Metadata for a tablet contains list of SSTables

– Read SSTables index blocks into memory
– Read the commit log since the redo point and

reconstructs the memtable

Valeria Cardellini - SABD 2022/23 98

Bigtable: Consistency and availability

• Strong consistency: CP system
– Only one tablet server is responsible for a given

piece of data
– Replication is handled by GFS

• Tradeoff with availability
– If a tablet server fails, its portion of data is

temporarily unavailable until a new tablet server is
assigned

Valeria Cardellini - SABD 2022/23 99

Comparing Dynamo and Bigtable

Valeria Cardellini - SABD 2022/23 100

Dynamo Bigtable
Data model Key-value Column-family
API Single value Single value and range
Data partition Random Ordered
Optimized for Writes Reads
Consistency Eventual Atomic
Multiple versions Version number Timestamp
Replication Quorum GFS
Persistency Local and replicated Replicated and

distributed file system
Architecture Decentralized Hierarchical

(master/worker)

Cloud Bigtable

• Bigtable as Cloud service: same concepts!
• Sparsely populated table that can scale to

billions of rows and thousands of columns
– Table: sorted key-value map
– Table composed of rows and columns

• Each row describes a single entity
• Each column contains individual values for each row
• Each row/column intersection can contain multiple cells at

different timestamps
• Row indexed by a single row key
• Columns that are related to one another are grouped

together into a column family
– Column identified by column family and column qualifier

– Support of multi-region replication, but by default
eventually consistent Valeria Cardellini - SABD 2022/23 101

Cloud Bigtable: use cases

• When to use
– To store large amounts of single-keyed data with

low latency for apps that need high throughput
and scalability for non-structured key-value data

• Single value no larger than 10 MB
• At least 1 TB of data

– Examples
• Marketing data (e.g., purchase histories, customer

preferences)
• Financial data (e.g., transaction histories, stock prices)
• IoT data (e.g., usage reports from energy meters and

home appliances)
• Time-series data (e.g., CPU and memory usage over

time for multiple servers)
cloud.google.com/bigtable/docs/overview

Valeria Cardellini - SABD 2022/23 102

Cloud Bigtable: architecture

Valeria Cardellini - SABD 2022/23 103

Cloud Bigtable: usage

• Through command-line tools
– Using cbt (native CLI in Go)

cloud.google.com/bigtable/docs/cbt-overview

– Using HBase shell

• Through Cloud Client Libraries for the Cloud
Bigtable API

Valeria Cardellini - SABD 2022/23 104

Cloud Bigtable: schema design example

• Dataset on Kaggle about New York City buses
www.kaggle.com/stoney71/new-york-city-transport-statistics

• More than 300 bus routes and 5,800 vehicles following those
routes
– Timestamp, origin, destination, vehicle id, vehicle latitude

and longitude, expected and scheduled arrival times

• Keep in mind
– A table has only one index (row key), no secondary indexes
– Rows are automatically sorted lexicographically by row key
– Cloud Bigtable allows for queries using point lookups by row

key or row-range scans
• Try to avoid slow operations, i.e., multiple row lookups or full

table scans
– Keep all information for an entity in a single row

Valeria Cardellini - SABD 2022/23 105

Cloud Bigtable: schema design example

• Queries about NYC buses
– Get locations of a specific bus over an hour
– Get locations of an entire bus line over an hour
– Get locations of all buses in Manhattan in an hour
– Get most recent locations of all buses in Manhattan in an

hour
– Get locations of an entire bus line over the month
– Get locations of an entire bus line with a certain destination

over an hour

Valeria Cardellini - SABD 2022/23 106

Java code: codelabs.developers.google.com/codelabs/cloud-bigtable-intro-java

Cloud Bigtable: schema design example

• Row key design is crucial for Bigtable performance
• How to design the row key?

– Consider how you will use the stored data
– Keep row key reasonably short
– Use human-readable values instead of hashing
– Include multiple identifiers in row key

• Common mistake: make time the first value in row
key
– Can cause hotspots and result in poor performance: most

queries would be managed by a single tablet server

Valeria Cardellini - SABD 2022/23 107

Cloud Bigtable: schema design example

• How to design the row key for the NYC buses?
[Bus company/Bus line/Timestamp rounded down to the
hour/Vehicle ID]

Valeria Cardellini - SABD 2022/23 108

Case study: Cassandra

Valeria Cardellini - SABD 2022/23 109

• Some large production deployments:
- Apple: over 75,000, over 10 PB of data
- Netflix: 2,500 nodes, 420 TB, over 1 trillion requests per day

• Initially developed at Facebook
• A mixture of Amazon’s Dynamo and Google’s

BigTable

Dynamo BigTable
P2P architecture
(replication & partitioning),
gossip-based discovery
and error detection

Sparse column-oriented data
model, storage architecture
(SSTables, memtable, …)

Cassandra

Cassandra: Features

• High availability and incremental scalability
• Robust support for systems spanning geo-distributed

data centers
– Asynchronous master-less replication allowing low latency

operations

• Data model: structured key-value store where columns
are added only to specified rows
– Distributed multi-dimensional map indexed by row key
– Different rows can have different number of columns and

columns are grouped into column families
– Emphasis on denormalization instead of normalization and joins

• Write-oriented system
– On the contrary, Bigtable designed for intensive read workloads

Valeria Cardellini - SABD 2022/23 110

Cassandra Query Language (CQL)

• SQL-like language http://cassandra.apache.org/doc/latest/cql/

• See music service example https://docs.datastax.com/en/cql-
oss/3.1/cql/ddl/ddl_music_service_c.html

Valeria Cardellini - SABD 2022/23 111

Cassandra Query Language (CQL)

• Use SELECT to display table data

• To use artist as a filter, first create an index (because artist is
not a partition key or clustering column) on artist and then query

Valeria Cardellini - SABD 2022/23 112

Cassandra: Consistency

• Managed in decentralized fashion
– No master node to coordinate reads and writes

• Based on quorum-based protocol
– If R+W > N and W >= N/2 +1 you have strong consistency
– Some available consistency levels http://bit.ly/2n26EdE

• ONE: only a single replica must respond
• QUORUM: a majority of the replicas must respond
• ALL: all of the replicas must respond
• LOCAL_QUORUM: a majority of the replicas in the local datacenter must

respond

– Tunable tradeoff between consistency and latency

• Per-operation tunable consistency (example in CQL)
SELECT points

FROM fantasyfootball.playerpoints USING CONSISTENCY QUORUM

WHERE playername = ‘Tom Brady’;

Valeria Cardellini - SABD 2022/23 113

Case study: Neo4j

Valeria Cardellini - SABD 2022/23 114

• Native graph database https://neo4j.com/
• Schema-less
• Supports ACID-compliant transactions
• Graph concepts

– Nodes, relationships, labels, properties

• Examples of graph

Neo4j: architecture

• Data replication managed via standard master-
worker architecture
– Single read/write master and multiple read-only workers

• Data sharding on multiple servers by means of server
federation

• Improve data throughput via multi-level caching
scheme

• However, community edition is only single-instance
deployment

Valeria Cardellini - SABD 2022/23 115

Neo4j: graphs

Valeria Cardellini - SABD 2022/23 116

• Nodes can be tagged with labels
– To shape the domain by grouping nodes into sets, so that all

nodes with given label belongs to same set (e.g., Actor,
Director)

• Properties are name-value pairs that are used to add
qualities to nodes and relationships

• Relationships provide directed, named, connections
between two node entities

Neo4j: Cypher

• Cypher: declarative SQL-like query language
– Designed to be human-readable
– Nodes are between ()
– Edges are an arrow -> between

two nodes

• Let’s consider some queries related to movie database
– See built-in example in Neo4j Desktop on movie database (169

nodes and 250 relationships)
– Graph model on slide 114

• See neo4j.com/sandbox for more examples, including
fraud detection and contact tracing

Valeria Cardellini - SABD 2022/23 117

Cypher: create nodes and edges

• Create nodes with labels and properties
CREATE (TheMatrixReloaded:Movie {title:'The Matrix
Reloaded', released:2003, tagline:'Free your mind'})
CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})

• Create edges with properties
CREATE (Keanu)-[:ACTED_IN {roles:['Neo']}]->

(TheMatrixReloaded)

Valeria Cardellini - SABD 2022/23 118

Cypher: search

• Use MATCH to search for a specified pattern
(corresponds to SELECT in SQL)

• Find who directed Cloud Atlas movie
MATCH (m:Movie {title: 'Cloud Atlas'})<-[d:DIRECTED]-
(p:Person) return p.name

• Find all people who have co-acted with Tom Hanks in
any movie
MATCH (tom:Person {name: "Tom Hanks"})-[:ACTED_IN]-
>(:Movie)<-[:ACTED_IN]-(p:Person) return p.name

Valeria Cardellini - SABD 2022/23 119

Cypher: search

• Retrieve all movies that Gene Hackman has acted
it, along with the directors of the movies. In addition,
retrieve the actors that acted in the same movies
as Gene Hackman. Return the name of the movie,
the name of the director, and the names of actors
that worked with Gene Hackman
MATCH (a:Person)-[:ACTED_IN]->(m:Movie)<-
[:DIRECTED]-(d:Person), (a2:Person)-[:ACTED_IN]-
>(m) WHERE a.name = 'Gene Hackman' RETURN m.title
as movie, d.name AS director, a2.name AS `co-
actors`
– Query result in tabular view on next slide

Valeria Cardellini - SABD 2022/23 120

Cypher: search

Valeria Cardellini - SABD 2022/23 121

Cypher: search for variable length paths

• Use MATCH to search for variable length paths
– Nodes that are a variable number of relationship->node hops

away can be found using
-[:TYPE*minHops..maxHops]->

• Find movies and actors that are at most 3 hops away
from Kevin Bacon
MATCH (p:Person {name: 'Kevin Bacon'})-[*1..3]-
(hollywood) return DISTINCT p, hollywood
– hollywood refers to any node in the database (Person and

Movie nodes)
– We omit the arrow head because we don’t care about the

direction of the relationship
– Query result as graph on next slide

Valeria Cardellini - SABD 2022/23 122

Cypher: search for variable length paths

Valeria Cardellini - SABD 2022/23 123

Kevin Bacon

Cypher: search for shortest path

• Built-in support for shortest path queries
• Example: find shortest path between Kevin Bacon

and Al Pacino
MATCH (KevinB:Person {name: 'Kevin Bacon'}),

(Al:Person {name: 'Al Pacino'}),
p = shortestPath((KevinB)-[:ACTED_IN*]-(Al))

RETURN p
– Query result as graph on next slide
– shortestPath returns a single shortest path between two

nodes
– allShortestPath returns all the shortest paths between

two nodes

Valeria Cardellini - SABD 2022/23 124

Cypher: search for shortest path

Valeria Cardellini - SABD 2022/23 125

Neo4j: graph algorithms

• Neo4j Graph Data Science (GDS) library contains
many graph algorithms

• A portion of Twitter graph

• How to find influencers?
– We can use centrality algorithms, for example degree

centrality, betweenness centrality, and PageRank

• How to find communities?
– We can use Louvain community detection algorithm

Valeria Cardellini - SABD 2022/23 126

How to choose the right data store

• Bad news: no one type that fits all
• Main factors to take into account

– Data model, access pattern and data-related
features

• Access pattern: distribution of reads vs writes and
random vs sequential access

• Data-related features: volume, complexity, schema
flexibility, durability

– Query requirements
– Non-functional properties

• Performance, (auto-)scalability, consistency, partitioning,
replication, load balancing, concurrency mechanisms,
CAP tradeoffs, security, license model and cost, support

Valeria Cardellini - SABD 2022/23 127

Performance comparison of NoSQL data stores

• Performance: important factor in choosing the right
NoSQL data store solution
– Throughput and latency as main metrics

• Bad news: many studies (both academic and industrial),
no single “winner takes all” among NoSQL data stores

• Unsolved issue: no standard benchmark
– Some studies use YCSB, others real datasets
– Yahoo Cloud Serving Benchmark (YCSB): open-source

workload generation tool github.com/brianfrankcooper/YCSB

• Be careful
– Consider workload features: NoSQL data stores are mostly

divided into read and write optimized
– Parameters may be tuned for performance optimization
– In some studies bias in data store setting (e.g., custom

hardware, software setting)
Valeria Cardellini - SABD 2022/23 128

Which data model/store to use?

• Different data models and data stores are designed
to solve different problems

• Using a single data store engine for all of the
requirements…
– storing transactional data
– caching session information
– traversing graph of customers
– performing OLAP operations

• … usually leads to non-performing solutions
• Also different needs for availability, consistency, etc.

Valeria Cardellini - SABD 2022/23 129

Multi-model data management

• How to manage Variety of Big Data 3V
model?
1. Polyglot persistence

2. Multi-model databases

Valeria Cardellini - SABD 2022/23 130

Polyglot persistence

• Use multiple data storage technologies: polyglot
persistence
– Choose multiple data stores based upon the way data are

used by apps or their components
– Different kinds of data are best dealt with different data stores:

pick the right tool for the right use case

Valeria Cardellini - SABD 2022/23 131

Multi-model databases

• Second-generation of NoSQL products support
multiple data models

• How?
1. Tightly-integrated polystore: uses jointly multiple data

storage technologies, chosen based upon the way data is
being used by apps

2. Single-store multi-model database: using one single,
integrated backend

Valeria Cardellini - SABD 2022/23 132

DBMS Query language Primary model Secondary model Storage strategy

ArangoDB AQL Document Graph, KV One engine

OrientDB SQL-like Graph Document, KV One engine

Redis API KV Graph, Document One engine

DynamoDB API, PartiQL
(SQL compatible)

Document, KV Graph Multiple engines

Cosmos DB API, SQL - All Multiple engines

Oracle 21c SQL Relational All Both

Multi-model databases

• With respect to polyglot persistence
✓Decrease in operational complexity and cost
✓No need to maintain data consistency across

separate data stores
✗Performance not optimized for specific data model
✗ Increased risk of vendor lock-in

Valeria Cardellini - SABD 2022/23 133

References

• Sadalage and Fowler, NoSQL Distilled, Addison-Wesley, 2012
• Fowler, NoSQL Guide
• Golinger at al., Data management in cloud environments:

NoSQL and NewSQL data stores, J. Cloud Comp., 2013
• DeCandia et al., Dynamo: Amazon's highly available key-value

store, ACM SOSP 2007
• Chang et al., Bigtable: a distributed storage system for

structured data, OSDI 2006
• Lakshman and Malik, Cassandra - a decentralized structured

storage system, LADIS 2009
• Database ranking according to popularity

db-engines.com/en/ranking

Valeria Cardellini - SABD 2022/23 134

