
Kafka Streams: Hands-on Session
A.A. 2023/24

Matteo Nardelli

Laurea Magistrale in
Ingegneria Informatica - II anno

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Matteo Nardelli - SABD 2023/24
2

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Kafka Streams
Kafka Streams:
• Kafka Streams is a client library for processing and

analyzing data stored in Kafka
• Supports fault-tolerant local state
• Supports exactly-once processing semantics
• Employs one-record-at-a-time processing
• Offers necessary stream processing primitives:

• high-level Streams DSL (Domain Specific Language)
• low-level Processor API

5

Read more
• https://kafka.apache.org/documentation/streams
• https://kafka.apache.org/documentation/streams/core-concepts
• https://kafka.apache.org/documentation/streams/developer-guide/dsl-api.html
• https://kafka.apache.org/documentation/streams/developer-guide/processor-api.html

Matteo Nardelli - SABD 2023/24

Kafka Streams: Main Concepts
Kafka Stream API:
• transforms and enriches data;
• supports per-record stream processing with millisecond

latency (no micro-batching);
• supports stateless processing, stateful processing, windowing

operations
Write standard Java applications to process data in real
time:
• no separate cluster required
• elastic, highly scalable, fault-tolerant
• supports exactly once semantics as of 0.11.0

The Kafka Stream API interacts with a Kafka cluster
The application does not run directly on Kafka brokers

6
Matteo Nardelli - SABD 2023/24

• Kafka Streams uses the concept of partitions and
tasks as logical units of processing based on Kafka
topic partitions.

• Kafka partitions data for storing and transporting it.
Kafka Streams partitions data for processing it.

• Partitioning enables data locality, scalability, high

performance, and fault tolerance.

Data partitioning: Kafka & Kafka Streams

Matteo Nardelli - SABD 2023/24

There is a close link between Kafka Streams and Kafka in the
context of parallelism:

• Each stream partition is a totally ordered sequence of data
records and maps to a Kafka topic partition.

• A data record in the stream maps to a Kafka message from that
topic.

• The keys of data records determine the partitioning of data in
both Kafka and Kafka Streams, i.e., how data is routed to specific
partitions within topics.

Data partitioning: Kafka & Kafka Streams

Matteo Nardelli - SABD 2023/24

Kafka Streams: Topology
• A processor topology is a graph of stream processors

(nodes) that are connected by streams (edges).
• Stream: unbounded, continuously updating data set. A

stream is an ordered, replay-able, and fault-tolerant
sequence of immutable key-value pairs (data records).

• A stream processor is a node in the processor topology:
• Source Processor produces an input stream to its topology from

one or multiple Kafka topics by consuming records from these
topics and forwarding them to its down-stream processors. It
has not upstream processors.

• Sink Processor sends any received records from its up-stream
processors to a Kafka topic. It has no down-stream processors.

7
Matteo Nardelli - SABD 2023/24

Kafka Streams: Topology

8
Matteo Nardelli - SABD 2023/24

• An application's processor topology is scaled by breaking it into
multiple tasks.

• Kafka Streams creates a fixed number of tasks based on the
input stream partitions (i.e., Kafka topics).

• The assignment of partitions to tasks never changes so that each
task is a fixed unit of parallelism of the application.

Kafka Streams: Topology

Matteo Nardelli - SABD 2023/24

Kafka Streams: State
Kafka Streams provides so-called state stores:
• Data stores can be used to store and query data
• A task may embed one or more local state stores that

can be accessed via APIs to store and query data
required for processing.

• These state stores can either be a persistent key-value
store, an in-memory hashmap, or another convenient
data structure

• Kafka Streams offers fault-tolerance and automatic
recovery for such local state stores.

• For each state store, Kafka Streams maintains a
replicated change-log Kafka topic where it tracks any
state updates.

12
Matteo Nardelli - SABD 2023/24

Kafka Streams: Time
Common notions of time in streams are:
• Event time: The point in time when an event occurred;
• Processing time: The point in time when the event is

processed by the stream processing application
• Ingestion time: The point in time when an event is stored in a

topic partition by a Kafka broker.
• Differently from event time, the ingestion timestamp is generated when

the record is appended to the target topic by the Kafka broker, not
when the record is created “at the source”.

• Kafka Streams assigns a timestamp to every data record via
the TimestampExtractor interface:
• It represents either the event or ingestion time, according to the Kafka

configuration
• This time will only advance when a new record arrives at the processor.

12
Matteo Nardelli - SABD 2023/24

Kafka Streams: KStreams and KTables
• KStream: an abstraction of a record stream, where each data record

represents a self-contained datum in the unbounded data set. It
contains data from a single partition.

• KTable: an abstraction of a changelog stream (i.e., evolving facts),
where each value represents an update of the key value; if the key
does not exists, it is created. It contains data from a single partition.

• GlobalKTable: like a KTable, but populated with data from all
partitions of the topic.

Reference stream:

13

("alice", 1) --> ("alice", 3)

Sum the values per user:
• with KStream, it would return 4 for alice.
• with KTable, it would return 3 for alice, because the second data

record would be considered an update of the previous record.

Matteo Nardelli - SABD 2023/24

• The stream-table duality describes the close relationship between streams
and tables.

• Stream as Table: A stream can be considered a changelog of a table, where
each data record in the stream captures a state change of the table.

• Table as Stream: A table can be considered a snapshot, at a point in time, of
the latest value for each key in a stream (a stream’s data records are key-value
pairs).

Kafka Streams: KStreams and KTables

Matteo Nardelli - SABD 2023/24

Streams DSL (Domain Specific Language)
• A KStream represents a partitioned record stream.
• The local KStream instance of every application instance will be

populated with data from only a subset of the partitions of the input
topic.

• Collectively, across all application instances, all input topic partitions
are read and processed.

15

KStream<String, Long> wordCounts = builder.stream(
 "kafka-topic", /* input topic */
 Consumed.with(Serdes.String(), /* key serdes */

 Serdes.Long() /* value serdes */
);

SerDes:
• specifies how to serialize/deserialize the key and value data

store in a Kafka topic

Matteo Nardelli - SABD 2023/24

Stateless Transformations
• branch(): Branch (or split) a KStream based on the supplied

predicates into one or more KStream instances
• filter(): Evaluates a boolean function for each element and retains

those for which the function returns true. filterNot() drops data for
which the function returns true.

• flatMap(): Takes one record and produces zero, one, or more
records. You can modify the record keys and values, including their
types.

• foreach(): Terminal operation. Performs a stateless action on each
record.

• groupByKey(): Groups the records by the existing key
• groupBy(): Groups the records by a new key, which may be of a

different key type. When grouping a table, you may also specify a
new value and value type

• map(): Takes one record and produces one record. You can modify
the record key and value, including their types.

16
Matteo Nardelli - SABD 2023/24

Stateless Transformations
Table To Stream:
• (Ktable).toStream(): Get the changelog stream of this table

Writing back to Kafka:
• to(): it sends data to a Kafka topic (the data key determines the topic

partition). It requires to explicitly provide serdes when the key and/or
value types of the KStream do not match the configured default
SerDes. To specify the SerDes explicity, we can use the Produced
class.

17
Matteo Nardelli - SABD 2023/24

Stateful Transformations
Stateful transformations include: Aggregating, Joining, Windowing, and
Custom transformation

Aggregating data
After records are grouped by key via groupByKey or groupBy, they can
be aggregated via an operation such as reduce.
Aggregations are key-based operations, i.e., they always operate over
records of the same key.
• aggregate(): Aggregates the values of records by the grouped key.

Aggregating is a generalization of reduce and allows, e.g., the
aggregate value to have a different type than the input values

• count(): counts the number of records by the grouped key

• reduce(): Combines the values of records by the grouped key

18
Matteo Nardelli - SABD 2023/24

Stateful Transformations
Windowing
Windowing lets you control how to group records that have the same
key for stateful operations such as aggregations or joins into so-called
windows. Windows are tracked per record key.
• Tumbling window (window size = slide interval)

TimeWindows.of(windowSizeMs);
• Sliding and hopping time window:

TimeWindows.of(windowSizeMs).advanceBy(advanceMs);
• Session window, that is created after an inactivity gap:

SessionWindows.with(TimeUnit.MINUTES.toMillis(5));

19
Matteo Nardelli - SABD 2023/24

