
NewSQL Database:
Cockroach DB

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Matteo Nardelli

Laurea Magistrale in Ingegneria Informatica

Matteo Nardelli - SABD 2023/24

The reference Big Data stack

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

2

Matteo Nardelli - SABD 2023/24

Relational database systems

• RDBMS pros:
– ACID transactions
– Relational schemas (and schema changes without

downtime)
– SQL queries
– Strong consistency

• RDBMS cons:
– Lack of horizontal scalability (to 100s or 1000s of

servers)

3

Matteo Nardelli - SABD 2023/24

NewSQL databases

• NewSQL: a class of modern RDBMS
• Goals

– Provide scalability of NoSQL systems for OLTP workloads,
while maintaining ACID support of traditional RDBMS

– Support SQL
• Examples (mostly closed source)

• Google’s Spanner
• CockroachDB (Open-source, born as Spanner

clone, then evolved differently)
• VoltDB
• MariaDB Xpand
• NuoDB

4

https://www.cockroachlabs.com/

• Hot to scale? Multi-master (or master-less) schemes
– Any node can receive data update statements

Matteo Nardelli - SABD 2023/24

Replication in NewSQL

5

Worker Worker

Primary-based replication Multi-master replication

Matteo Nardelli - SABD 2023/24

Cockroach DB: Overview

• NewSQL a.k.a. distributed SQL database
– Scalability
– Strong consistency
– Survivability: tolerate disk, machine, rack, datacenter failures with

minimal latency disruption and no manual intervention

• Multi-master architecture
– Each node acts as SQL gateway:

– Transforms and executes SQL statements to key-value (KV)
operations;

– Distributes KV operations across the cluster and returns
results to the client

• CockroachDB is considered a CP system under the
CAP theorem.

6

Read more: https://rcs.uwaterloo.ca/~ali/cs854-f23/papers/cockroachdb.pdf

Matteo Nardelli - SABD 2023/24

Cockroach DB: Overview

• Internal data model
– Single, sorted map from key to value;
– Map is divided into ranges;
– Range is stored in a local KV storage engine (Pebble) and

replicated to additional nodes;
– Pebble is an embedded KV inspired by RocksDB and

developed by Cockroach Labs
– Ranges are merged and split to maintain target size (e.g., 64MB)

• Horizontal Scalability
– Ranges of the same key can be stored on different nodes;
– Adding nodes increases storage capacity and overall throughput

of queries;

7

Matteo Nardelli - SABD 2023/24

Cockroach DB: Overview

• Strong consistency
– Distributed consensus (Raft) for synchronous replication in

each KV range;
– Mutations across multiple ranges employ distributed

transactions
– Raft and distributed transactions guarantee ACID properties

• Fault-tolerance
– Range replicas can be:

– co-located within a single data center for low latency;
– distributed across racks (survive to (some) network

failures);
– Distributed across different data centers.

8

Matteo Nardelli - SABD 2023/24

Cockroach DB: Overview

• CockroachDB’s architecture is organized into layers:
– SQL: translates SQL queries to KV operations;
– Transactional: Allow atomic changes to multiple KV

entries;
– Distribution: Present replicated KV ranges as a single

entity;
– Replication: Consistently and synchronously replicate

KV ranges across nodes;
– Storage: read and write KV data on disk.

9

Read more: https://www.cockroachlabs.com/docs/stable/architecture/overview/

Matteo Nardelli - SABD 2023/24

Cockroach DB: Architecture

10

• LLRB: Left-Leaning Red-Black tree, a special kind of self-balancing binary search tree

Matteo Nardelli - SABD 2023/24

Cockroach DB: Architecture

11

Recall:
Raft is a consensus fault-
tolerant protocol.

To tolerate F failures,
we need at least N = 2F + 1
nodes

Matteo Nardelli - SABD 2023/24

Storage Layer: Versioned Data
• CockroachDB maintains multi-version data

- Historical versions of values are stored with associated
commit timestamps

- Reads can specify a snapshot time to return data at a specific
time;

- Expiration interval: enables to garbage collect older versions
of data;

• CockroachDB relies on multi-version concurrency
control (MVCC)
- To process concurrent requests and guarantee consistency
- Further details later in this lesson

12

Matteo Nardelli - SABD 2023/24

Storage and Self-repair
• CockroachDB nodes contains one or more stores

- Each store should be placed on a unique disk;
- Each store internally contains an instance of RockDB;
- All stores of the same node share a block cache;
- The concept of node’s zone enable to control the range’s

replication factor, adding constraints as to where the replicas
can be located.

- Stores gossip their descriptors periodically;
- If a store appears to be failed, affected replicas will

autonomously up-replicate themselves to other available
stores to meet the replication factor.

13

Matteo Nardelli - SABD 2023/24

Replication Layer
• CockroachDB uses a Raft instance at replica level

- Recently, to provide better support for multi-region clusters, a
new type of replica was introduced: the non-voting replica.

- Non-voting replicas follow the Raft log (and are thus able
to serve follower reads), but do not participate in
quorum;

- However, performing all operations through Raft consensus is
an expensive operation;

- Hence, they also introduced the concept of Replica Lease;
- A single node in the Raft group acts as the leaseholder,

which is the only node that can serve reads or propose writes
to the Raft group leader

14

Matteo Nardelli - SABD 2023/24

Replication Layer
• Replica Lease

- A lease held for a slice of time;
- A replica establishes itself as owning the lease on a range by

committing a special lease acquisition log entry through Raft;
- The replica becomes the lease holder as soon as it applies

the lease acquisition command,
- This guarantees that the replica has already applied all prior

writes and can see them locally.
- The replica holding the lease may satisfy reads locally (with

no Raft consensus);
- The replica with the lease is in charge of handling Range-

specific maintenance (splitting, merging, rebalancing)
- Raft leadership and the range lease might not be held by the

same replica
- Making the same node both Raft leader and the leaseholder

optimizes query performance

15

Matteo Nardelli - SABD 2023/24

Distribution Layer
• CockroachDB stores data in a monolithic sorted map

of key-value pairs; this enables:
- Simple lookups: to identify nodes responsible for ranges;
- Efficient scans: leveraging the order of data.

16

This meta range structure enables addressing up to 4EiB of user data by default

Matteo Nardelli - SABD 2023/24

Transaction Layer: Hybrid Logical Clock (HLC)
• Each cockroach node maintains a hybrid logical clock (HLC);
• HLC time uses timestamps which are composed of a

physical component and a logical component
- The logical component is used to distinguish between events with the

same physical component

• HLC allows us to track causality for related events (similar to
vector clocks, but with less overhead)
- When events are received by a node, it informs the local HLC about

the timestamp supplied with the event by the sender;
- When events are sent a timestamp generated by the local HLC is

attached.

• The HLC is updated by every read/write event on the node,
and the HLC time >= wall time;

• HLC is used to track versions of values (MVCC) and provide
transactional isolation guarantees.

17

Matteo Nardelli - SABD 2023/24

Distributed Transaction
• Physical actors involved in executing a query:

1. SQL Client sends a query to the CockroachDB cluster;
2. Load Balancing routes the request to node in the cluster;
3. Gateway: node that processes the SQL request and

responds to the client;
4. Leaseholder: node responsible for serving reads and

coordinating writes of a specific range of keys in your query.
5. Raft leader: node responsible for maintaining consensus

among your CockroachDB replicas.

18

Matteo Nardelli - SABD 2023/24

Transaction Layer
• CockroachDB provides:

- Stale reads: read from local replica (using the clause AS OF
SYSTEM TIME)

- Strongly-consistent reads: go through the leaseholder; see all
committed writes; default.

19

Matteo Nardelli - SABD 2023/24

Transaction Layer
• Read scenario

20

• There are 3 nodes in the cluster.
• There are 3 small tables, each fitting in a single range.
• Ranges are replicated 3 times (the default).
• A query is executed against node 2 to read from table 3

https://www.cockroachlabs.com/docs/v23.2/architecture/reads-and-writes-overview

Matteo Nardelli - SABD 2023/24

Transaction Layer
• Write scenario

21

• There are 3 nodes in the cluster.
• There are 3 small tables, each fitting in a single range.
• Ranges are replicated 3 times (the default).
• A query is executed against node 3 to write to table 1.

https://www.cockroachlabs.com/docs/v23.2/architecture/reads-and-writes-overview

Matteo Nardelli - SABD 2023/24

Transaction Layer
• All transactions operate on a read snapshot

- Select a new MVCC timestamp from HLC and capture all
writers previously committed

• Isolation level:
- Serializable transactions maintain per-transaction read

snapshot (default)
- Read committed transactions use per-statement read

snapshot
- Writes in concurrent READ COMMITTED transactions

can interleave without aborting transactions;
- Each subsequent statement uses a new read snapshot, reads

in a READ COMMITTED transaction can return different
results.

22

Read more on isolation levels: https://www.cs.umb.edu/cs734/CritiqueANSI_Iso.pdf

Matteo Nardelli - SABD 2023/24

Transaction Layer
• To reduce the occurrence of concurrency anomalies in

read committed isolation, you can use locking reads;

• Locking reads:
- A locking read in a transaction will always have the latest

version of a row when the transaction commits;
- It guarantees that the accessed data will not be changed

by intermediate writes.
- Exclusive locks block concurrent writes and locking reads

on a row;
- SELECT … FOR UPDATE

- Shared locks block concurrent writes and exclusive locking
reads on a row.
- SELECT … FOR SHARE

23

