
Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP Frameworks

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP frameworks we consider

• Apache Storm

• Apache Flink (with hands-on lesson)

• Apache Spark Streaming (with hands-on

lesson)

• Kafka Streaming (hands-on lesson)

• Cloud-based frameworks

– Google Cloud Dataflow
– Amazon Kinesis

1V. Cardellini - SABD 2023/24

Apache Storm

• Open-source, real-time, scalable streaming system
storm.apache.org

• Provides an abstraction layer to execute DSP
applications

• Many use cases, including real-time analytics, online
ML, continuous computation, distributed RPC, ETL

• Fast: 1M tuples processed per second per node
• Easy to integrate with different sources (e.g.,

messaging systems)
• Initially developed by Twitter
• Current version: 2.6.2

2V. Cardellini - SABD 2023/24

Storm: topology

• Main Storm’s concept: topology

– Where the application logic is packaged into
– Long-running
– DAG of spouts (sources of streams) and bolts

(operators that do processing and data sinks)
– Top-level abstraction submitted to Storm for

execution

3V. Cardellini - SABD 2023/24

Storm: streams and tuples

• Storm uses streams and tuples as its data

model

– Stream: core abstraction in Storm
• Unbounded sequence of tuples that is processed and

created in parallel in a distributed fashion

• Streams are defined with a schema that names the fields
in the stream's tuples

– Tuple: named list of values
• A field in a tuple can be an object of any type

• Storm supports all primitive types, strings, and byte
arrays as tuple field values

• To use a custom data type, you need to define the
corresponding serializer

V. Cardellini - SABD 2023/24 4

Storm: stream grouping
• Stream grouping defines how to send tuples between

two adjacent nodes in the topology
– Remember of data parallelism: spouts and bolts execute in

parallel (multiple threads of execution)

• Shuffle grouping
– Tuples are randomly partitioned

• Field grouping
– Stream is partitioned by the fields specified in the grouping

(e.g., used-id)

V. Cardellini - SABD 2023/24 5

Storm: stream grouping

• All grouping (i.e., broadcast)
– Stream is replicated across all the bolt’s replicas (use with

care)

• Global grouping
– Stream goes to a single one of the bolt’s replicas

(specifically, to the replica with the lowest id)

• Direct grouping
– The producer of the tuple decides which replica of the

consumer will receive this tuple

V. Cardellini - SABD 2023/24 6

Storm: a simple topology

• First example: exclamation
– Spout emits words, each bolt appends "!!!" to its input

github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java

V. Cardellini - SABD 2023/24 7

setSpout and setBolt
methods take as input:

• user-specified id

• object containing the
processing logic of
the operator

• amount of parallelism
for the operator

"words":
TestWordSpout()

"words":
TestWordSpout()

"words":
TestWordSpout()

"words":
TestWordSpout()"words":

TestWordSpout()

10

"exclaim1":
ExclamationBolt()

"exclaim1":
ExclamationBolt()"exclaim1":

ExclamationBolt()

3

"exclaim1":
ExclamationBolt()

"exclaim2":
ExclamationBolt()

2

Shuffle
grouping

Shuffle
grouping

Storm: another topology

• Example: WordCount

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/WordCountTopology.java

• Bolts can be defined in any language
– Bolts written in another language are executed as subprocesses,

and Storm communicates with them using JSON messages over
stdin/stdout

– Communication protocol for Python available in an adapter library
streamparse.readthedocs.io

V. Cardellini - SABD 2023/24 8

Storm: windowing

9

• Storm supports sliding and tumbling windows
• Windows can be based on time duration or event

count
– Count-based windows

• Based on tuples count (no relation to clock time)
– Time-based windows

• Based on time duration

• Bolt that needs windowing support needs to
implement IWindowedBolt interface

V. Cardellini - SABD 2023/24
execute is invoked every time the window activates

Storm: windowing

10

• Different window configurations, including
– Sliding windows

– Tumbling windows

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/SlidingWindowTopology.java

• By default, tuples in the window are stored in memory
until they are processed and expired
✗ Windows need to fit entirely in memory

• Storm also provides stateful windowing support
V. Cardellini - SABD 2023/24

Storm: Stream API

• Alternative interface to Storm: provides a typed API for
expressing streaming computations and supports
functional style operations
– Similarly to Spark and Flink, but still experimental

storm.apache.org/releases/2.6.2/Stream-API.html

• Stream APIs: Stream and PairStream (key-value pair
streams)
– Support a wide range of operations, including

• Transformations, which produce another stream from current one
(e.g., filter, map, flatMap)

• Windowing
• Aggregations (e.g., reduce, aggregate, reduceByKey,
countByKey)

• Joins
• Output, which produce a result (e.g., print, forEach)

V. Cardellini - SABD 2023/24 11

Storm: Stream API example

• The usual WordCount using Stream API

V. Cardellini - SABD 2023/24 12

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/streams/WindowedWordCount.java

Storm: architecture

13V. Cardellini - SABD 2023/24

• Master-worker architecture

Storm components: master and Zookeeper

• Nimbus

– Master node
– Users submit topologies to it
– Responsible for distributing and coordinating the

topology execution

• Zookeeper

– Nimbus uses a combination of local disk(s) and
Zookeeper to store info about application topology

V. Cardellini - SABD 2023/24 14

worker process

executor executor
THREAD THREAD

JAVA PROCESS

task

task

task

task

task

Storm components: worker node

• Worker node: computing resource, a kind of

container for one or more worker processes

• Worker process: Java process running one or

more executors

• Executor: smallest schedulable entity

– Execute one or more tasks related to same operator

15V. Cardellini - SABD 2023/24

• Task: operator instance

– Actual work for bolt or spout
is done by task

Storm components: supervisor

• Each worker node runs a supervisor

• Each supervisor:

– Receives assignments from Nimbus (through
ZooKeeper) and spawns workers based on the
assignment

– Sends to Nimbus (through ZooKeeper) a periodic
heartbeat

– Advertises the topologies that the worker node is
currently running, and any vacancies that are
available to run more topologies

V. Cardellini - SABD 2023/24 16

Storm: running topology

• Application developer can configure the topology
parallelism
– Number of worker processes

– Number of executors (threads)

– Number of tasks

V. Cardellini - SABD 2023/24 17

• Parallelism of running
topology can be
changed manually
using rebalance
command

See
storm.apache.org/releases/current
/Understanding-the-parallelism-of-
a-Storm-topology.html

Storm: reliable message processing

• What happens if a bolt fails to process a tuple?
• Storm provides a mechanism by which the originating

spout can replay the failed tuple
– Storm needs to maintain the link between every spout tuple

and its tree of tuples so to detect when the tree of tuples has
been successfully processed: anchoring

– And needs to ack (or fail) the spout tuple appropriately

• If ack is not received within a specified timeout time period, the
tuple processing is considered as failed and the tuple is
replayed

• Storm provides at-least-once semantics
– Best effort semantics if acking is disabled

storm.apache.org/releases/2.6.2/Guaranteeing-message-processing.html

V. Cardellini - SABD 2023/24 18

Storm: application monitoring

19
See storm.apache.org/releases/current/STORM-UI-REST-API.html

• # of messages executed * average
execute latency / time window

– Latency

• For spouts: completeLatency (total
latency for processing the message)

– Ignore value if acking is disabled
• For bolts: executeLatency (avg time the

• Storm has a built-in monitoring and metrics system
– Built-in and user-defined metrics

• Built-in metrics include:
– Capacity

bolt spends to run the execute method) and processLatency
(avg time from starting execute to ack)

⎼ JVM memory usage and garbage collection

• Metrics can be queried via Storm’s UI REST API or reported to
a registered consumer (e.g., Graphite)

V. Cardellini - SABD 2022/23V. Cardellini - SABD 2023/24

Layers on top of Storm

• Trident

– High-level abstraction on top of Storm to provide
exactly-once processing

• SQL

– To run SQL queries over streaming data
storm.apache.org/releases/2.4.0/storm-sql.html

V. Cardellini - SABD 2023/24 20

Unbounded vs. bounded streams

V. Cardellini - SABD 2023/24 21

• Bounded streams
– Have a defined start and end

– Can be processed by ingesting
all data before performing any
computations

– Ordered ingestion is not
required because bounded
data can always be sorted

• Data can be processed as bounded or

unbounded streams

• Unbounded streams
– Have a start but no defined end

– Provide data as it is generated

– Must be continuously processed

– Not possible to wait for all input
data to arrive

– Processing unbounded data
often requires that events are
ingested in a specific order

Batch processing vs. stream processing

• Batched/stateless: scheduled in batches

– Short-lived tasks (Hadoop, Spark)
– Distributed streaming over batches (Spark

Streaming)

• Dataflow/stateful: continuously processed,

typically scheduled once (Storm, Flink)

– Long-lived task execution
– State is kept inside tasks

V. Cardellini - SABD 2023/24 22

Apache Flink

• Distributed processing system for stateful computation
over bounded and bounded data streams flink.apache.org

– One common runtime for data streaming and batch processing

• Integrated with many other projects in Big data open-
source ecosystem

• Originated from Stratosphere project by TU Berlin,
Humboldt Univ. and Hasso Plattner Institute

• Current version: 1.19

V. Cardellini - SABD 2023/24 23

Flink: Stateful computation

• Flink’s operations can be stateful
– E.g., counting events per minute to display on

dashboard, computing features for fraud detection model

• State is optimized for local access
– Stored in memory or in access-efficient data structures on

disk

– Goals: high throughput and low latency

V. Cardellini - SABD 2023/24 24

• State is partitioned: the set of parallel
instances of a stateful operator is a
sharded key-value store

Flink: fault tolerance
• Flink can guarantee exactly-once state consistency in

case of failures by periodically and asynchronously
checkpointing local state to durable storage (state
snapshot)
– State of operators can be restored from checkpoint to an

earlier point in time and records are reset to the point of the
state snapshot

Flink docs: nightlies.apache.org/flink/flink-docs-stable/
V. Cardellini - SABD 2023/24 25

DSP and time
• Different notions of time in a DSP application:

– Processing time: time at which an event is observed in the
system (wall-clock time of the machine executing the
operator)

– Event time: time at which an event actually occurred on its
producing device

• Typically embedded within the event before it enters Flink and
represented by a timestamp

V. Cardellini - SABD 2023/24 26

Flink: time

• Flink supports both processing time and event time
• Event time makes it easy to compute over streams

where events arrive out-of-order and are late
• To support event time, the DSP needs a way to

measure the progress of event time; how to measure
it?

• Flink uses watermarks

V. Cardellini - SABD 2023/24 27

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/

Flink: back pressure

• Continuous streaming with back pressure

– Flink runtime provides flow control: slow
downstream operators backpressure faster
upstream operators

– Flink UI allows us to monitor back pressure
behavior of running applications

• Back pressure warning (e.g., High) for an upstream
operator means it it is producing data faster than the
downstream operators can consume

V. Cardellini - SABD 2023/24 28

Flink: windows

• Highly flexible streaming windows

– Including user-defined windows

• Supported window types

– Tumbling: no overlap
– Sliding: with overlap
– Session
– Global

V. Cardellini - SABD 2023/24 29

Flink: windows
• Session window

– To group elements by
sessions of activity

– Differently from tumbling and
sliding windows, no overlap
and no fixed start and end
time

– Closes when a gap of
inactivity occurs

• Global window
– To assign all elements with

the same key to the same
single global window

– Only useful if you also
specify a custom trigger

V. Cardellini - SABD 2023/24 30

Flink: APIs

V. Cardellini - SABD 2023/24 31

• Different levels of abstraction to develop streaming
applications
– SQL & Table API

– DataStream API

– ProcessFunctions

• APIs in Java, Scala and Python

Flink: APIs
• ProcessFunction: low-level stream processing

operation, giving access to basic building blocks of
(acyclic) streaming applications
– events (stream elements)

– state (fault-tolerant, consistent, only on keyed stream)

– timers (event time and processing time, only on keyed
stream)

nightlies.apache.org/flink/flink-docs-release-
1.19/docs/dev/datastream/operators/process_function/

V. Cardellini - SABD 2023/24 32

Flink: APIs
• DataStream API: streaming (and batch) applications

– Supports transformations on data streams (e.g., filter, update
state, define windows, aggregate), with user-defined state
and flexible windows

– Provides fine-grained control over state and time

– Supports different runtime execution modes

• STREAMING: classic one for unbounded streams
• BATCH: reminiscent of batch processing frameworks

nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/

V. Cardellini - SABD 2023/24 33

Flink: APIs

• Table API & SQL
– Relational APIs for unified stream and batch processing

nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/overview/

• Python API
– Python API for Apache Flink: PyFlink DataStream API and

PyFlink Table API
nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/python/overview/

• See lab lesson

V. Cardellini - SABD 2023/24 34

Flink: programming model
• Applications are composed of streaming dataflows

that are transformed by user-defined operators
– Streams: unbounded, partitioned, immutable sequence of

events

• Streaming dataflows form directed graphs (usually
DAGs) that start with one or more sources, and end
in one or more sinks
– DAGs basic building blocks: streams and transformation

operators

V. Cardellini - SABD 2023/24 35

Flink: programming model
• Stream operators

– Stream transformations that take one or more streams as
input, and produce one or more output streams as a result

V. Cardellini - SABD 2023/24 36

Flink: programming model

• Parallel dataflows: operator parallelism
– Same solution as in Storm

V. Cardellini - SABD 2023/24 37

Flink: programming model

• Stateful operators: require to remember information
across multiple events
– E.g., counting events per minute to display on a dashboard,

or computing features for a fraud detection model

– State is maintained in a sort of embedded key/value store

– Access to key/value state is only possible on keyed streams
after keyBy(), which re-partitions by hashing the key

V. Cardellini - SABD 2023/24 38

Flink: sources and sinks

• Sources ingest input data from external systems,
while sinks send result data to external systems

• Basic data sources and sinks are built into Flink
– predefined data sources include reading from files,

directories, and sockets, and ingesting data from collections
and iterators

– predefined data sinks support writing to files, to stdout and
stderr, and to sockets

• Connectors provide code for interfacing with various
third-party systems
– Apache Kafka, Rabbit MQ, Apache Pulsar, etc.

V. Cardellini - SABD 2023/24 39

Flink: control events

• Control events: special events injected in the

data stream by operators

• Two types of control events in Flink

⎼ Watermarks
⎼ Checkpoint barriers

V. Cardellini - SABD 2023/24 40

Flink: watermarks

• Watermarks (W) mark the progress of event time
within a data stream

• Generated at, or directly after, source functions
• Flow as part of data stream and carry a timestamp t

V. Cardellini - SABD 2023/24 41

– W(t) declares that event time
has reached time t in that
stream, meaning that there
should be no more elements
with timestamp t’ <= t

– Crucial for out-of-order
streams, where events are
not ordered by their
timestamps

Flink: watermarks

• By default, late elements are dropped when the
watermark is past the end of the window

• However, Flink allows to specify a maximum allowed
lateness for window operator
– By how much time elements can be late before they are

dropped (0 by default)

– Late elements that arrive after the watermark has passed the
end of the window but before it passes the end of the
window plus the allowed lateness, are still added to the
window

V. Cardellini - SABD 2023/24 42

Flink: watermarks

V. Cardellini - SABD 2023/24 43

• Flink does not provide ordering guarantees after any
form of stream partitioning or broadcasting
– In such case, dealing with out-of-order tuples is left to the

operator implementation

Flink: checkpoint barriers

• To provide fault tolerance special barrier markers
(called checkpoint barriers) are periodically injected
at streams sources and then pushed downstream up
to sinks

V. Cardellini - SABD 2023/24 44

Fault tolerance

• To provide consistent results, DSP systems need to
be resilient to failures

• How? By periodically capturing a snapshot of
execution graph which can be used later to restart in
case of failures (checkpointing)
Snapshot: global state of execution graph, capturing all
necessary information to restart computation from that specific
execution state

• Common approach is to rely on periodic global state
snapshots, but has drawbacks:

V. Cardellini - SABD 2023/24 45

– Stalls overall computation

– Eagerly persists all tuples in
transit along with states,
which results in larger
snapshots than required

Flink: snapshot algorithm

V. Cardellini - SABD 2023/24 46

• Flink implements a lightweight snapshot algorithm
– Allows to maintain high throughput while providing

strong consistency guarantees
• Snapshot algorithm properties:

– Draws consistent snapshots of stream flows and operators’
state

– Even in presence of failures, application state reflects every
record from data stream exactly once

– State can be stored at JobManager’s heap or HDFS

– Disabled by default

• Inspired by Chandy-Lamport algorithm for distributed
snapshot and tailored to Flink’s execution model

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/stateful-
stream-processing/
arxiv.org/abs/1506.08603

Chandy-Lamport algorithm

• The observer process (process initiating the snapshot):

– Saves its own local state
– Sends a snapshot request message bearing a snapshot token to all

other processes
• If a process receives the token for the first time:

– Sends the observer process its own saved state
– Attaches the snapshot token to all subsequent messages (to help

propagate the snapshot token)
• When a process that has already received the token receives a

message not bearing the token, it will forward that message to
the observer process

– This message was sent before the snapshot “cut off” (as it does not
bear a snapshot token) and needs to be included in the snapshot

• The observer builds up a complete snapshot: a saved state for
each process and all messages “in the ether” are saved

V. Cardellini - SABD 2023/24 47

Flink: snapshot algorithm
• Based on checkpoint barriers injected by

checkpoint coordinator

– When an operator receives a barrier for
snapshot n from all of its input streams, it
emits a barrier for snapshot n into all of its
outgoing streams. Once a sink operator
has received barrier n from all of its input
streams, it acknowledges snapshot n to the
checkpoint coordinator (master). After all
sinks have acknowledged a snapshot, it is
considered completed

V. Cardellini - SABD 2023/24 48
nightlies.apache.org/flink/flink-docs-release-1.19/docs/learn-flink/fault_tolerance

Flink: performance and memory management

• High throughput and low latency

• Memory management
– Flink implements its own memory management inside JVM

V. Cardellini - SABD 2023/24 49

Flink: architecture

V. Cardellini - SABD 2023/24 50

• The usual master-worker architecture

– A JobManager and one or more TaskManagers

Flink: architecture

V. Cardellini - SABD 2023/24 51

• JobManager (master): responsible to coordinate
distributed execution of Flink applications
– Schedules tasks, coordinates checkpoints, coordinates

recovery on failures, etc.

• Composed by:
– ResourceManager: responsible for resource de-/allocation

and provisioning, manages task slots (unit of resource
scheduling in Flink cluster)

– Dispatcher: provides a REST interface to submit Flink
applications for execution and starts a new JobMaster for
each submitted job; also runs Flink Web UI

– JobMaster: responsible for managing the execution of a
single JobGraph

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/flink-architecture/

Flink: architecture

V. Cardellini - SABD 2023/24 52

• TaskManagers (workers): JVM processes that
execute tasks of a dataflow, and buffer and exchange
data streams
– Workers use task slots to control the number of tasks they

accept (at least 1)

– Each task slot represents a fixed subset of worker resources

– By adjusting the number of task slots, users can define how
tasks are isolated from each other

• Tasks in same JVM share TCP connections, heartbeat
messages, data sets and data structures

Flink: from logical to physical graph

• Optimizer takes user-specified logical plan and
creates an optimized plan

V. Cardellini - SABD 2023/24 53

Flink: application execution

• JobManager receives JobGraph (or Logical Graph)
– Representation of dataflow consisting of operators (JobVertex)

and intermediate results (IntermediateDataSet)

V. Cardellini - SABD 2023/24 54

– Each operator has
properties, like parallelism
and code that it executes

• JobManager transforms
JobGraph into
ExecutionGraph (or
physical graph)
– Parallel version of JobGraph

– Graph nodes are tasks and
graph edges indicate
input/output relationships or
partitions of data streams

Flink: application execution

• Data parallelism
– Different operators of same application may have different

levels of parallelism

– Parallelism of individual operator, data source, or data sink
can be defined by calling its setParallelism() method

V. Cardellini - SABD 2023/24 55

Flink: application execution

• Flink provides a Web UI to monitor the status of the
cluster and running job

V. Cardellini - SABD 2023/24 56

Flink: monitoring

• Built-in monitoring and metrics system
• Allows gathering and exposing metrics to external

systems
• Built-in metrics include

– Throughput

– Latency: delay between event creation and time at which
results based on this event become visible

– Used JVM heap/non-heap/direct memory

– CPU

– Availability

– Backpressure

– Checkpointing

V. Cardellini - SABD 2023/24 57

Flink: application monitoring
• Throughput

– In terms of rate of outgoing number of records (per
operator/task), e.g.,

• numRecordsOutPerSecond: number of records operator/task
sends per second

• Latency
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/#end-to-end-
latency-tracking

– Flink supports end-to-end latency tracking: special markers
(called LatencyMarker) are periodically inserted at all
sources in order to obtain a distribution of latency between
sources and each downstream operator

• But does not account for time spent in operator processing (or
in window buffers)

• Assume that all machines clocks are sync
• Disabled by default (can significantly impact performance, use

for debugging): to enable, set latencyTrackingInterval > 0
V. Cardellini - SABD 2023/24 58

Flink: application monitoring
• Back pressure: to monitor back pressure behavior of

running jobs
– E.g., High warning for a task means that it is producing data

faster than downstream operators can consume
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/monitoring/back_pressure

• Checkpointing: to monitor the checkpoints of jobs
• Application-specific metrics can be added

– E.g., counters for number of invalid records

• Metrics can be
– Queried via Flink’s Monitoring REST-ful API, that accepts

HTTP requests and responds with JSON data

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/rest_api/
– Visualized in Flink dashboard (use Metrics tab)

– Sent to external systems (e.g., Graphite and InfluxDB)

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/

V. Cardellini - SABD 2023/24 59

Flink: deployment

• Designed to run on large-scale clusters with
thousands of nodes

• Can be run in a fully distributed fashion on a static
(possibly heterogeneous) standalone cluster

• For a dynamically shared cluster, can be deployed on
YARN, Mesos or Kubernetes

• Docker images for Apache Flink available on Docker
Hub
– Docker official image: https://hub.docker.com/_/flink
– By Flink developers: https://hub.docker.com/r/apache/flink
See nightlies.apache.org/flink/flink-docs-
master/docs/deployment/resource-providers/standalone/docker/

V. Cardellini - SABD 2023/24 60

Delivery guarantees
• Some frameworks provide at-least-once delivery

guarantees (e.g., Storm)
– Each tuple is guaranteed to be processed, but it may get

processed more than once

• Nothing is lost, but might be duplicated
– How? Deliveries are retried until they are acked (recall RR1

mechanism)

• To avoid data loss, also the source should be
replayable
– If the DSP system fails before the tuple could be persisted or

processed, the source must provide the same tuple again

– E.g., Kafka is a replayable source

• For stateful non-idempotent operators (e.g.,
counting), at-least-once delivery guarantees can give
incorrect results

V. Cardellini - SABD 2023/24 61

Towards strict delivery guarantees
• Flink, Storm plus Trident, Spark Structured

Streaming, and Google’s MillWheel offer stronger
delivery guarantees (i.e., exactly-once) from the
user’s perspective
– In strict sense: each tuple is guaranteed to be processed

once and only once

– What is needed?

• Replayable sources
• Reliable operators, where each operator keeps track of its

progress and persists its state into fault-tolerant storage
– Write-ahead log to provide atomicity and durability
– Checkpointing

• Idempotent (or transactional) sinks, so that every tuple affects
the sinks exactly once

V. Cardellini - SABD 2023/24 62

Towards strict delivery guarantees
• Exactly-once in MillWheel works as follows:

– Upon receipt of an input tuple for a computation

• The tuple is checked against de-duplication data from previous
deliveries; duplicates are discarded

• User code is run for the tuple, possibly resulting in pending
changes to timers, state, and productions

• Pending changes are committed to backing store
• Senders are acked
• Pending downstream productions are sent

– As an optimization, these operations may be coalesced into
a single checkpoint for multiple tuples

V. Cardellini - SABD 2023/24 63

Akidau et al., MillWheel: Fault-Tolerant Stream Processing at Internet Scale, VLDB 2013

Comparing DSP frameworks

• Let’s compare open source DSP frameworks
according to some features

V. Cardellini - SABD 2023/24 64

API Windows Delivery
semantics

Fault tol. State
mgmt.

Flow
control

Operator
elasticity

Storm Low-level

High-level

SQL

No batch

Yes At-least-once

Exactly-once

with Trident

Acking

Checkpoint.

(similar to

Flink)

Limited

Yes with

Trident

Back

pressure

No

Flink High-level

SQL

Also batch

Yes, also

used-def.

At-least-once

Exactly-once

Checkpoint. Yes Back

pressure

No

A recent need

• A common need for many companies

– Run both batch and stream processing

• Alternative solutions

1. Lambda architecture
2. Unified frameworks
3. Unified programming model

V. Cardellini - SABD 2023/24 65

Lambda architecture
• Data-processing design pattern to integrate batch and

real-time stream processing
• Composed of 3 layers

– Batch and speed (stream) layers: batch framework to process
the entire dataset and, in parallel, streaming framework used to
process real-time events

– Results from the two layers are then merged

66Source: https://voltdb.com/products/alternatives/lambda-architecture

V. Cardellini - SABD 2023/24

Lambda architecture: example

V. Cardellini - SABD 2023/24 67

• LinkedIn’s lambda architecture
– Before Samza development

Lambda architecture: pros and cons

• Pros:

– Flexibility in frameworks’ choice
• Cons:

– Implementing and maintaining two separate
frameworks for batch and stream processing can
be hard and error-prone

– Overhead of developing and managing multiple
source codes

• The logic in each fork evolves over time, and keeping
them in sync involves duplicated and complex manual
effort, often with different languages

V. Cardellini - SABD 2023/24 68

Unified frameworks

• Use a unified (Lambda-less) design for

processing both real-time as well as batch

data using the same data structure

• Spark and Flink follow this trend

V. Cardellini - SABD 2023/24 69

Unified programming model: Apache Beam

• A layer of abstraction on top of processing

frameworks

• Provides a unified programming model

– Allows to define batch and streaming data processing
pipelines that run on supported execution engines,
including Flink, Spark, Google Cloud Dataflow

• Write once, run anywhere

– Programming languages: Java, Python, Go
• Engine-specific runners translate Beam code to

target runtime

• Initially developed by Google, now open-source

top-level Apache project

V. Cardellini - SABD 2023/24 70

Using Beam: key concepts

• PCollection: represents a collection of data, which
could be bounded or unbounded in size

• PTransform: represents a computation that
transforms input PCollections into output
PCollections.

• Pipeline: manages a DAG of PTransforms and
PCollections that is ready for execution

• PipelineRunner: specifies where and how the pipeline
should execute

V. Cardellini - SABD 2023/24 71

Using Beam: key concepts

• Create the Pipeline

– PipelineOptions object
• Read data input

– E.g., text files
• Apply pipeline transformations

• Write output

– E.g., to text file
• Run the Pipeline

V. Cardellini - SABD 2023/24 72

Using Beam: WordCount in Python

V. Cardellini - SABD 2023/24 73

See github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount.py

Beam: pros and cons

• Pros

– Single, unified programming model
– Flexibility to switch underlying processing system

with low effort

• Con:

– Impact on performance
• Dated evaluation (2019): slowdown >= 3x with respect to

same programs developed using native system APIs
Quantitative Impact Evaluation of an Abstraction Layer for Data
Stream Processing Systems, ICDCS ‘19

V. Cardellini - SABD 2023/24 74

DSP in the Cloud

• Data streaming systems also as Cloud services
– Amazon Kinesis Data Streams

– Google Cloud Dataflow

– IBM Streaming Analytics

– Microsoft Azure Stream Analytics

• Abstract underlying service infrastructure and support
dynamic scaling of computing resources

• Appear to execute in a single data center (i.e., no
geo-distribution)

V. Cardellini - SABD 2023/24 75

Google Cloud Dataflow

• Fully-managed data processing service, supporting
both stream and batch data processing
– Automated resource management

– Dynamic work rebalancing

– Horizontal auto-scaling

• Provides a unified programming model based on
Apache Beam
– Apache Beam SDK in Java and Python

– Enable developers to implement custom extensions and
choose other execution engines

• Provides exactly-once processing
– MillWheel is Google’s internal version of Cloud Dataflow

V. Cardellini - SABD 2023/24 76

Google Cloud Dataflow

• Can be seamlessly integrated with GCP services for
streaming events ingestion (Cloud Pub/Sub), data
warehousing (BigQuery), machine learning (Cloud
Machine Learning)

V. Cardellini - SABD 2023/24 77

Amazon Kinesis Data Streams

• Allows to collect and ingest streaming data at scale for
real-time analytics

V. Cardellini - SABD 2023/24 78

Amazon Kinesis Data Streams
• Serverless, fully managed Apache Flink: allows to

process data streams in real time
– Based on Flink: same operators to filter, aggregate and

transform streaming data

– Per-hour pricing based on number of Kinesis Processing
Units (KPUs) used to run application

• Horizontal auto-scaling of KPUs

V. Cardellini - SABD 2023/24 79

References

• Akidau, Streaming 101: The world beyond batch, 2015

• Carbone et al., Apache Flink: Stream and batch processing in a
single engine, Bulletin IEEE Comp. Soc. Tech. Comm. on Data
Eng., 2015

• Carbone et al., State management in Apache Flink®: consistent
stateful distributed stream processing, Proc. VLDB Endowment,
2017

• Carbone et al., A survey on the evolution of stream processing
systems, VLDB Journal, 2023

V. Cardellini - SABD 2023/24 80

