TOR VERGATA Macroarea di Ingegneria

Dipartimento di Ingegneria Civile e Ingegneria Informatica

UNIVERSITA DEGLI STUDI DI RO MA

DSP Frameworks

Corso di Sistemi e Architetture per Big Data
A.A. 2023/24
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP frameworks we consider

* Apache Storm
» Apache Flink (with hands-on lesson)

* Apache Spark Streaming (with hands-on
lesson)

» Kafka Streaming (hands-on lesson)

e Cloud-based frameworks
— Google Cloud Dataflow
— Amazon Kinesis

V. Cardellini - SABD 2023/24 1

Apache Storm 2 sToRw

Open-source, real-time, scalable streaming system
storm.apache.org

Provides an abstraction layer to execute DSP
applications

Many use cases, including real-time analytics, online
ML, continuous computation, distributed RPC, ETL

Fast: 1M tuples processed per second per node

Easy to integrate with different sources (e.g.,
messaging systems)

Initially developed by Twitter
Current version: 2.6.2

V. Cardellini - SABD 2023/24

Storm: topology

« Main Storm’s concept: topology
— Where the application logic is packaged into
— Long-running
— DAG of spouts (sources of streams) and bolts
(operators that do processing and data sinks)

— Top-level abstraction submitted to Storm for

execution

Spout ——b

Spout —\,

V. Cardellini - SABD 2023/24

Storm: streams and tuples

« Storm uses streams and tuples as its data
model

— Stream: core abstraction in Storm

* Unbounded sequence of tuples that is processed and
created in parallel in a distributed fashion

» Streams are defined with a schema that names the fields
in the stream's tuples
— Tuple: named list of values
» Afield in a tuple can be an object of any type

« Storm supports all primitive types, strings, and byte
arrays as tuple field values

» To use a custom data type, you need to define the
corresponding serializer

V. Cardellini - SABD 2023/24 4

Storm: stream grouping

» Stream grouping defines how to send tuples between
two adjacent nodes in the topology
— Remember of data parallelism: spouts and bolts execute in

parallel (multiple threads of execution)

» Shuffle grouping

— Tuples are randomly partitioned

s0eoguy—=+—H
1}
* Field grouping

— Stream is partitioned by the fields specified in the grouping
(e.g., used-id)

secogm T

V. Cardellini - SABD 2023/24 5

Storm: stream grouping

» All grouping (i.e., broadcast)

— Stream is replicated across all the bolt’s replicas (use with

care)
cocogue > UE
-

» Global grouping
— Stream goes to a single one of the bolt’s replicas
(specifically, to the replica with the lowest id)

 Direct grouping
— The producer of the tuple decides which replica of the
consumer will receive this tuple

V. Cardellini - SABD 2023/24 6

Storm: a simple topology

« First example: exclamation

— Spout emits words, each bolt appends "!!!" to its input

qgithub.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java

setSpout and setBolt TopologyBuilder builder = new TopologyBuilder();
methods take as input: builder.setSpout("words", new TestWordSpout(), 10);

* user-specified id builder.setBolt("exclaiml", new ExclamationBolt(), 3)
- object containing the .shuffleGrouping("words");
processing logic of builder.setBolt("exclaim2", new ExclamationBolt(), 2)
the operator .shuffleGrouping(“exclaiml");

» amount of parallelism
for the operator

10 3 2
‘ A A~ . -
“words™: N, "exclaiml": a "exclaim2":
TestWordSpout() ExclamationBolt() ExclamationBolt()
Shuffle Shuffle
grouping grouping

V. Cardellini - SABD 2023/24 7

Storm: another topology

« Example: WordCount

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentences", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8)
.shuffleGrouping("sentences");

builder.setBolt("count", new WordCount(), 12)
.fieldsGrouping("split", new Fields("word"));

See github.com/apache/storm/blob/master/examples/storm-
starter/src/ivm/org/apache/storm/starter/WWordCountTopology.java

» Bolts can be defined in any language

— Bolts written in another language are executed as subprocesses,
and Storm communicates with them using JSON messages over
stdin/stdout

— Communication protocol for Python available in an adapter library
streamparse.readthedocs.io

V. Cardellini - SABD 2023/24

Storm: windowing

» Storm supports sliding and tumbling windows

» Windows can be based on time duration or event
count
— Count-based windows
» Based on tuples count (no relation to clock time)
— Time-based windows
* Based on time duration

« Bolt that needs windowing support needs to
implement IWindowedBolt interface

public interface IWindowedBolt extends IComponent {
void prepare(Map stormConf, TopologyContext context, OutputCollector collector);
VESS
% Process tuples falling within the window and optionally emit
* new tuples based on the tuples in the input window.

*/

void execute(TupleWindow inputWindow);

void cleanup(); ‘\
}

execute isinvoked every time the window activates
V. Cardellini - SABD 2023/24

Storm: windowing

 Different window configurations, including
— Sliding windows

withWindow(Count windowLength, Count slidingInterval)
Tuple count based sliding window that slides after “slidingInterval’ number of tuples.

withWindow(Duration windowLength, Duration slidingInterval)
Time duration based sliding window that slides after “slidingInterval® time duration.

— Tumbling windows

withTumblingWindow(BaseWindowedBolt.Count count)
Count based tumbling window that tumbles after the specified count of tuples.

withTumblingWindow(BaseWindowedBolt.Duration duration)
Time duration based tumbling window that tumbles after the specified time duration.

See qithub.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/SlidingWindowTopology.java

» By default, tuples in the window are stored in memory
until they are processed and expired
X Windows need to fit entirely in memory

» Storm also provides stateful windowing support

V. Cardellini - SABD 2023/24

Storm: Stream API

 Alternative interface to Storm: provides a typed API for
expressing streaming computations and supports
functional style operations
— Similarly to Spark and Flink, but still experimental
storm.apache.org/releases/2.6.2/Stream-API.html

« Stream APIs: Stream and PairStream (key-value pair
streams)

— Support a wide range of operations, including

» Transformations, which produce another stream from current one
(e.g., filter, map, flatMap)

+ Windowing

* Aggregations (e.g., reduce, aggregate, reduceByKey,
countByKey)

* Joins
* Output, which produce a result (e.g., print, forEach)

V. Cardellini - SABD 2023/24

Storm: Stream API example

* The usual WordCount using Stream API

StreamBuilder builder = new StreamBuilder();

builder
// A stream of random sentences with two partitions
.newStream(new RandomSentenceSpout(), new ValueMapper<String>(0), 2)
// a two seconds tumbling window
.window(TumblingWindows.of (Duration.seconds(2)))
// split the sentences to words
.flatMap(s -> Arrays.asList(s.split(" ")))
// create a stream of (word, 1) pairs
.mapToPair(w -> Pair.of(w, 1))
// compute the word counts in the last two second window
.countByKey ()
// print the results to stdout
.print();

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/streams/WindowedWordCount.java

V. Cardellini - SABD 2023/24 12

Storm: architecture

 Master-worker architecture

spout bolt bolt bolt bolt

/ LAN \
e

V. Cardellini - SABD 2023/24 13

Storm components: master and Zookeeper

* Nimbus
— Master node
— Users submit topologies to it

— Responsible for distributing and coordinating the
topology execution

« Zookeeper

— Nimbus uses a combination of local disk(s) and
Zookeeper to store info about application topology

V. Cardellini - SABD 2023/24 14

Storm components: worker node

» Worker node: computing resource, a kind of
container for one or more worker processes

« Worker process: Java process running one or
more executors

« Executor: smallest schedulable entity
— Execute one or more tasks related to same operator

» Task: operator instance worker process
JAVA PROCESS
— Actual work for bolt or spout oxecutor) (executor
S done by taSk THREAD THREAD

task task

task

V. Cardellini - SABD 2023/24 15

Storm components: supervisor

« Each worker node runs a supervisor

e Each supervisor:

— Receives assignments from Nimbus (through
ZooKeeper) and spawns workers based on the
assignment

— Sends to Nimbus (through ZooKeeper) a periodic
heartbeat

— Advertises the topologies that the worker node is
currently running, and any vacancies that are
available to run more topologies

V. Cardellini - SABD 2023/24

Storm: running topology

16

» Application developer can configure the topology
parallelism
— Number of worker processes
— Number of executors (threads)

— Number of tasks
TOPOLOGY
« Parallelism of running gac @ W \O
topology can be e Geen) Uees
changed manually -y
1 avallelism hint = SOy
using rebalance il
command \
e Each of the 2 worker
Worker Process protesses will spawn
10/ 2 = 5 threads
storm.apache.org/releases/current —) | o ot et - - e
/Understanding-the-parallelism-of- cach exeeutor vuns two tasks for s bolt
a-Storm-topology.html

V. Cardellini - SABD 2023/24

17

Storm: reliable message processing

« What happens if a bolt fails to process a tuple?

» Storm provides a mechanism by which the originating
spout can replay the failed tuple

— Storm needs to maintain the link between every spout tuple
and its tree of tuples so to detect when the tree of tuples has
been successfully processed: anchoring

— And needs to ack (or fail) the spout tuple appropriately

+ If ack is not received within a specified timeout time period, the
tuple processing is considered as failed and the tuple is
replayed

» Storm provides at-least-once semantics
— Best effort semantics if acking is disabled

storm.apache.org/releases/2.6.2/Guaranteeing-message-processing.html

V. Cardellini - SABD 2023/24 18

Storm: application monitoring

« Storm has a built-in monitoring and metrics system

— Built-in and user-defined metrics "bolts": [
vy . . {
* Built-in metrics include: nexecutors": 12,
. "emitted": 184580,
- CapaCIty “transferred": 0,
"acked": 184640,
« # of messages executed * average “executelatency": "0.048",
execute latency / time window tasks™: 12,
"executed": 184620,
—_ Latency "processLatency": "0.043",
"boltId": "count",
» For spouts: completeLatency (total “lastError": ""
H "errorLapsedSecs": null,
latency for processing the message) e T CTEm,
— Ignore value if acking is disabled "failed": 0

» For bolts: executeLatency (avg time the
bolt spends to run the execute method) and processLatency
(avg time from starting execute to ack)
— JVM memory usage and garbage collection

* Metrics can be queried via Storm’s Ul REST API or reported to
a registered consumer (e.g., Graphite)

See storm.apache.org/releases/current/STORM-UI-REST-API.html
V. Cardellini - SABD 2022/23 19

Layers on top of Storm

 Trident

— High-level abstraction on top of Storm to provide
exactly-once processing
« SQL

— To run SQL queries over streaming data
storm.apache.org/releases/2.4.0/storm-sql.html

V. Cardellini - SABD 2023/24 20

Unbounded vs. bounded streams

« Data can be processed as bounded or
unbognded streams

: <+— bounded stream —» :4— bounded stream —»:
| L

();IIIIIIIIIIEIIIIIII:III

| <«—— unbounded stream

| <—— unbounded stream

* Unbounded streams « Bounded streams
— Have a start but no defined end — Have a defined start and end
— Provide data as it is generated — Can be processed by ingesting
— Must be continuously processed all data before performing any
— Not possible to wait for all input computations
data to arrive — Ordered ingestion is not

required because bounded

— Processing unbounded data
data can always be sorted

often requires that events are
ingested in a specific order
V. Cardellini - SABD 2023/24 21

Batch processing vs. stream processing

 Batched/stateless: scheduled in batches

— Short-lived tasks (Hadoop, Spark)

— Distributed streaming over batches (Spark

Streaming)

« Dataflow/stateful: continuously processed,

typically scheduled once (Storm, Flink)

— Long-lived task execution
— State is kept inside tasks

V. Cardellini - SABD 2023/24

Apache Flink @

22

 Distributed processing system for stateful computation
over bounded and bounded data streams flink.apache.org
— One common runtime for data streaming and batch processing

 Integrated with many other projects in Big data open-
source ecosystem

» Originated from Stratosphere project by TU Berlin,

Humboldt Univ. and Hasso Plattner Institute

e Current version: 1.19

(Real-time)

eee > (HEDEDD—
10T
Clicks % -

Database,
File System,
KV-Store

V. Cardellini - SABD 2023/24

Event-driven Streaming Stream & Batch
Applications Pipelines Analytics

Resources | Storage
(K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)

Application

Event Log

Database,
File System,
KV-Store

23

Flink: Stateful computation

« Flink’s operations can be stateful —HHig e
— E.g., counting events per minute to display on
dashboard, computing features for fraud detection model
» State is partitioned: the set of parallel =
instances of a stateful operator is a
sharded key-value store
» State is optimized for local access =
— Stored in memory or in access-efficient data structures on
disk

— Goals: high throughput and low latency

In-Memory or Local State
On-Disk State Access
mput -
— Y 3 /
—

Output

V. Cardellini - SABD 2023/24

Flink: fault tolerance

* Flink can guarantee exactly-once state consistency in
case of failures by periodically and asynchronously
checkpointing local state to durable storage (state
snapshot)

— State of operators can be restored from checkpoint to an
earlier point in time and records are reset to the point of the

state snapshot

In-Memory or Local State Periodic, Asynchronous,
On-Disk State Access Incremental Snapshots
Input
Tasks .
+ | + Durable
Output 1 i 3 Storage

Flink docs: nightlies.apache.org/flink/flink-docs-stable/
V. Cardellini - SABD 2023/24

25

DSP and time

» Different notions of time in a DSP application:

— Processing time: time at which an event is observed in the
system (wall-clock time of the machine executing the
operator)

— Event time: time at which an event actually occurred on its
producing device
» Typically embedded within the event before it enters Flink and
represented by a timestamp

Flink Flink

Event Producer Message Queue Data Source Window Operator

c—
c—

%’%% ®§<E]

(((e)) /

L s @0 — B Ly

@ Event @ Window

Time Processing
Time

V. Cardellini - SABD 2023/24

Flink: time

26

* Flink supports both processing time and event time

* Event time makes it easy to compute over streams
where events arrive out-of-order and are late

» To support event time, the DSP needs a way to

measure the progress of event time; how to measure
it?

* Flink uses watermarks

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/

V. Cardellini - SABD 2023/24

27

Flink: back pressure

« Continuous streaming with back pressure

— Flink runtime provides flow control: slow
downstream operators backpressure faster
upstream operators

— Flink Ul allows us to monitor back pressure
behavior of running applications

» Back pressure warning (e.g., High) for an upstream
operator means it it is producing data faster than the
downstream operators can consume

Dataflow / - - e g

| sackpressured (max): 0%
/ a7

\ ’/
« -

~

-

V. Cardellini - SABD 2023/24 Flow Control o8

Flink: windows

 Highly flexible streaming windows
— Including user-defined windows

Time windows
Event

A A A A A
2% \ N N

~ Y] i N o U\ _ v 4 Event stream

Count(3) Windows

« Supported window types
— Tumbling: no overlap
— Sliding: with overlap
— Session
— Global

V. Cardellini - SABD 2023/24 29

Flink: windows

* Session window

window 1 window 2 window 3 window 4
— To group elements by wert | 0@ 0 000 00060 0
SeSS|OnS Of aCth'ty window 1 window 2 window 3 window 4
. . user 2 ®000—00: @ 000
— Differently from tumbling and A\ '
sliding windows, no overlap wer3 | @ @@@) 00 O
and no fixed start and end session gap
time
— Closes when a gap of time

inactivity occurs
» Global window

— To assign all elements with srl | 00 © 000 0000 O
the same key to the same
. . user 2 o 000 (X J o 000
single global window
. user 3 [J 000 o0 ©
— Only useful if you also
specify a custom trigger
time
V. Cardellini - SABD 2023/24 30

Flink: APls

 Different levels of abstraction to develop streaming
applications
— SQL & Table API
— DataStream API
— ProcessFunctions

* APIs in Java, Scala and Python

High-level ‘
Analytics API SQL / Table API (dynamic tables)

Stream- & Batch

. DataStream API (streams, windows)
Data Processing

Stateful Event-
Driven Applications

— Conciseness +
+ Expressiveness —

ProcessFunction (events, state, time)

V. Cardellini - SABD 2023/24 31

Flink: APls

* ProcessFunction: low-level stream processing
operation, giving access to basic building blocks of
(acyclic) streaming applications

— events (stream elements)
— state (fault-tolerant, consistent, only on keyed stream)

— timers (event time and processing time, only on keyed
stream)

nightlies.apache.org/flink/flink-docs-release-
1.19/docs/dev/datastream/operators/process function/

V. Cardellini - SABD 2023/24 32

Flink: APls

» DataStream API: streaming (and batch) applications

— Supports transformations on data streams (e.g., filter, update
state, define windows, aggregate), with user-defined state
and flexible windows

— Provides fine-grained control over state and time
— Supports different runtime execution modes
+ STREAMING: classic one for unbounded streams

* BATCH: reminiscent of batch processing frameworks
nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/

V. Cardellini - SABD 2023/24 33

Flink: APls

« Table APl & SQL

— Relational APIs for unified stream and batch processing
nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/overview/

« Python API

— Python API for Apache Flink: PyFlink DataStream API and
PyFlink Table API

nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/python/overview/

 See lab lesson

V. Cardellini - SABD 2023/24

Flink: programming model

34

» Applications are composed of streaming dataflows
that are transformed by user-defined operators

— Streams: unbounded, partitioned, immutable sequence of
events

« Streaming dataflows form directed graphs (usually
DAGSs) that start with one or more sources, and end
in one or more sinks

— DAGs basic building blocks: streams and transformation

operators
Source Transformation Sink
Operator Operators Operator
/ / . \

keyBy()/
Source map() window()/ Sink

Stream

!

Streaming Dataflow

V. Cardellini - SABD 2023/24

35

Flink: programming model

» Stream operators

— Stream transformations that take one or more streams as
input, and produce one or more output streams as a result

DataStream<String> lines = env.addSource (}

. S
new FlinkKafkaConsumer<> (..)); ource
DataStream<tvent> events = lines.map((line) -> parse(line)); } Transformation
DataStream< cs> stats = events
.keyBy("id"
By () Transformation

.timeWindow(Time.seconds(10))
.apply (new MyWindowAggregationFunction());

stats.addSink (new BucketingSifgrath)) ; } Sink
Source Transformation Sink
Operator Operators Operator
N
keyBy()/
Source map() window()/ Sink
\ ‘ y
Stream
(J
Y

Streaming Dataflow

V. Cardellini - SABD 2023/24

Flink: programming model

» Parallel dataflows: operator parallelism
— Same solution as in Storm

keyBy()/) Streaming Dataflow
Source map() W'”d?"\z())/ Sink (condensed view)
apply

|

Operator Stream @

keyBy()/
Source map() window()/
[1] 1 apply()
\ 1]
! ,
Operator Stream Sink
Subtask Partition [1] L Streaming Dataflow
J 1 (parallelized view)
keyBy()/
Source map() window()/
r2] [2] apply()
[2]
v —
parallelism = 2 \

parallelism = 1

V. Cardellini - SABD 2023/24

Flink: programming model

» Stateful operators: require to remember information
across multiple events

— E.g., counting events per minute to display on a dashboard,
or computing features for a fraud detection model

— State is maintained in a sort of embedded key/value store
— Access to key/value state is only possible on keyed streams
after keyBy (), which re-partitions by hashing the key
-
[B .|

! Stateful
[1] [1]

D key/value
K state

oV
)
Source ~ Xeys(D/E.Z) Stateful
[2] [2]
u J

X
QU
123

V. Cardellini - SABD 2023/24

Flink: sources and sinks

38

« Sources ingest input data from external systems,
while sinks send result data to external systems

* Basic data sources and sinks are built into Flink

— predefined data sources include reading from files,
directories, and sockets, and ingesting data from collections
and iterators

— predefined data sinks support writing to files, to stdout and
stderr, and to sockets

» Connectors provide code for interfacing with various
third-party systems
— Apache Kafka, Rabbit MQ, Apache Pulsar, etc.

V. Cardellini - SABD 2023/24

39

Flink: control events

« Control events: special events injected in the
data stream by operators

« Two types of control events in Flink
— Watermarks
— Checkpoint barriers

V. Cardellini - SABD 2023/24 40

Flink: watermarks

« Watermarks (W) mark the progress of event time
within a data stream

» Generated at, or directly after, source functions
* Flow as part of data stream and carry a timestamp ¢

— W(t) declares that event time Stream (in order)
has reached time t in that i) [@]] 1]
stream, meaning that there weo) wits)
g ™~ / Event
should be no more elements watermark
. . y Event timestamp
with timestamp ' <=t
- CFUCIa| fOf OUt-Of-OI’deI’ Stream (out of order)

streams, where ev_ents are ml)] []5s)
not ordered by their o) Wiy

timestamps ™~ — Event

Watermark
Event timestamp

V. Cardellini - SABD 2023/24 41

Flink: watermarks

« By default, late elements are dropped when the
watermark is past the end of the window

* However, Flink allows to specify a maximum allowed
lateness for window operator
— By how much time elements can be late before they are
dropped (0 by default)

— Late elements that arrive after the watermark has passed the
end of the window but before it passes the end of the
window plus the allowed lateness, are still added to the
window

Late Event Stream (out of order)

N
I EEEREE
W(20) W17) w(13) wyit) w(7) w3
V. Cardellini - SABD 2023/24

Flink: watermarks

42

» Flink does not provide ordering guarantees after any
form of stream partitioning or broadcasting

— In such case, dealing with out-of-order tuples is left to the
operator implementation

V. Cardellini - SABD 2023/24

43

Flink: checkpoint barriers

» To provide fault tolerance special barrier markers
(called checkpoint barriers) are periodically injected
at streams sources and then pushed downstream up

data stream
<— newer records older records =
»un | 1
checkpoint checkpoint stream recora
barrier n barrier n-1 (event)
part of part of part of
checkpointn+1 checkpointn checkpoint n-1
V. Cardellini - SABD 2023/24 44

Fault tolerance

« To provide consistent results, DSP systems need to
be resilient to failures

» How? By periodically capturing a snapshot of
execution graph which can be used later to restart in
case of failures (checkpointing)

Snapshot: global state of execution graph, capturing all
necessary information to restart computation from that specific
execution state

« Common approach is to rely on periodic global state
snapshots, but has drawbacks:

— Stalls overall computation n @

— Eagerly persists all tuplesin {00001 (007 1 EE
transit along with states,

which results in larger = =
snapshots than required E <>% E ééﬁ?} execution snapshots

V. Cardellini - SABD 2023/24 45

Flink: snapshot algorithm

* Flink implements a lightweight snapshot algorithm

— Allows to maintain high throughput while providing
strong consistency guarantees

» Snapshot algorithm properties:

— Draws consistent snapshots of stream flows and operators’
state

— Even in presence of failures, application state reflects every
record from data stream exactly once

— State can be stored at JobManager’s heap or HDFS
— Disabled by default

* Inspired by Chandy-Lamport algorithm for distributed
snapshot and tailored to Flink’s execution model

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/stateful-
stream-processing/

arxiv.org/abs/1506.08603

V. Cardellini - SABD 2023/24

Chandy-Lamport algorithm

46

« The observer process (process initiating the snapshot):
— Saves its own local state

— Sends a snapshot request message bearing a snapshot token to all
other processes

» |f a process receives the token for the first time:
— Sends the observer process its own saved state
— Attaches the snapshot token to all subsequent messages (to help
propagate the snapshot token)

* When a process that has already received the token receives a
message not bearing the token, it will forward that message to
the observer process

— This message was sent before the snapshot “cut off” (as it does not
bear a snapshot token) and needs to be included in the snapshot

* The observer builds up a complete snapshot: a saved state for
each process and all messages “in the ether” are saved

V. Cardellini - SABD 2023/24

47

Flink: snapshot algorithm

data stream

« Based on checkpoint barriers injected by < reverreeore older records —>
checkpoint coordinator D | | 1 »
check_point chec_kpoint stream recora
— When an operator receives a barrier for permern permer-d (event
snapshot n from all of its input streams, it caror part of part of
. checkpointn+1 checkpointn checkpoint n-1
emits a barrier for snapshot n into all of its
outgoing streams. Once a sink operator
has received barrier n from all of its input S
streams, it acknowledges snapshot n to the snapshots
checkpoint coordinator (master). After all e
! oy . ’ Sa
sinks have acknowledged a snapshot, it is y
considered completed ><: \
@ T 3
| | & —
t3 barrier snapshotting...tz barrier snapshoting... t1 barrier data stream
C OT TOOOO OOEOOOOO OO0 00
o : i l —
OO <
.).é -- snapshots --
O] << barriers
snap t2 snap t1 I

nightlies.apache.org/flink/flink-docs-release-1.19/docs/learn-flink/fault tolerance
V. Cardellini - SABD 2023/24 48

Flink: performance and memory management

« High throughput and low latency

Throughput Latency at Full Throughput

150
g EFlink = Storm —8—Median (w/ 99th percentile)
5 150
o —
& 100 3
g5 $ 100
Q.= £
8c =
s€ 5o &
5 g 50
o I 5
0 0
40 80 120
CPU Cores “0 # CPS%ores 120

* Memory management
— Flink implements its own memory management inside JVM

User code
objects

Managed
memory

- sorting
- hashing
- caching

Intgrnal
V. Cardellini - SABD 2023/24 obfects 49

Flink: architecture

» The usual master-worker architecture
— A JobManager and one or more TaskManagers

(Worker) (Worker)

TaskManager TaskManager
Task | | Task | | Task Task | | Task | Task
Slot Slot Slot Slot Slot Slot

| Memory & 1/O Manager |

| Memory & I/O Manager |

L N
| Network Manager <Data Stream;> Network Manager I

| Actor System - | | Actor System I
N ! A

Flink Program

™ Task Status | /
- N, feartbeats / / Deploy/Stop/
Program .\ Statistics | / Cancel Tasks

Dataflow /
/ / Trigger

.4 - Status / / !
Optimizer / Client updates Statistics & i /'Checkpoints
Graph Builder| | || T results N
o Actor T ‘\ i
Dataflow graph System e N JobManager \}\ 4
Submit job ™ eee ___ s ©v A
(send dataflow) Cancel)™ {-‘ Actor System |
update job
Dataflow Graph Scheduler
Checkpoint
Coordinator
V. Cardellini - SABD 2023/24 (Master / YARN Application Master) 50

Flink: architecture

» JobManager (master): responsible to coordinate
distributed execution of Flink applications
— Schedules tasks, coordinates checkpoints, coordinates
recovery on failures, etc.
« Composed by:
— ResourceManager: responsible for resource de-/allocation

and provisioning, manages task slots (unit of resource
scheduling in Flink cluster)

— Dispatcher: provides a REST interface to submit Flink
applications for execution and starts a new JobMaster for
each submitted job; also runs Flink Web Ul

— JobMaster: responsible for managing the execution of a
single JobGraph

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/flink-architecture/

V. Cardellini - SABD 2023/24 51

Flink: architecture

« TaskManagers (workers): JVM processes that
execute tasks of a dataflow, and buffer and exchange
data streams

— Workers use task slots to control the number of tasks they
accept (at least 1)
— Each task slot represents a fixed subset of worker resources

— By adjusting the number of task slots, users can define how
tasks are isolated from each other

» Tasks in same JVM share TCP connections, heartbeat
messages, data sets and data structures

Processes
TaskManager TaskManager
Task Slot Task Slot Task Slo Task Slot Task Slot Task Slot
keyBy()/ keyBy()/
i window()/ i i Sink ¢ e i window()/
ioapply() f] ioapply() i
P N A
| \ /
N\ /I \\ /I
V. Cardellini - SABD 2023/24 Threads Threads

Flink: from logical to physical graph

» Optimizer takes user-specified logical plan and
creates an optimized plan

B>G)
@ @ =t
: 304
a) Logical
-
@»@ﬁ? . ©
b) Optimised

V. Cardellini - SABD 2023/24

Flink: application execution

» JobManager receives JobGraph (or Logical Graph)

— Representation of dataflow consisting of operators (JobVertex)
and intermediate results (IntermediateDataSet)

— Each operator has
properties, like parallelism

and code that it executes

» JobManager transforms

JobGraph into

ExecutionGraph (or

physical graph)

— Parallel version of JobGraph

— Graph nodes are tasks and
graph edges indicate

input/output relationships or
partitions of data streams

V. Cardellini - SABD 2023/24 54

Flink: application execution

« Data parallelism

— Different operators of same application may have different
levels of parallelism

— Parallelism of individual operator, data source, or data sink
can be defined by calling its setParallelism() method

keyBy()/ Streaming Dataflow
Source map() window()/ Sink (condensed view)

\ apply()

Operator Stream @
keyBy()/

Source map() window()/
1] 1] apply()
x 83

Operator Stream Sink
Subtask Partition 1] | Streaming Dataflow

] j (parallelized view)
: keyBy()/
Source map() window()/
2]

aoply()
2]

t J
parallelism = 2 \

parallelism = 1

V. Cardellini - SABD 2023/24 55

Flink: application execution

* Flink provides a Web Ul to monitor the status of the
cluster and running job

Streaming WordCount ENEIEY H
D: 1d5f6e3c409182d79fd244a9c69410e1 Start Tim

Bytes Received Records Received Bytes Sent Records Sent Paralleism Start Tme Duration EndTme ¢ Tasks

V. Cardellini - SABD 2023/24 56

Flink: monitoring

 Built-in monitoring and metrics system

» Allows gathering and exposing metrics to external
systems

* Built-in metrics include
— Throughput

— Latency: delay between event creation and time at which
results based on this event become visible

— Used JVM heap/non-heap/direct memory
- CPU

— Availability

— Backpressure

— Checkpointing

V. Cardellini - SABD 2023/24 57

Flink: application monitoring

* Throughput
— In terms of rate of outgoing number of records (per
operator/task), e.g.,
e numRecordsOutPerSecond: number of records operator/task
sends per second

- Latency
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/#end-to-end-

latency-tracking
— Flink supports end-to-end latency tracking: special markers

(called LatencyMarker) are periodically inserted at all
sources in order to obtain a distribution of latency between

sources and each downstream operator
» But does not account for time spent in operator processing (or
in window buffers)
* Assume that all machines clocks are sync

» Disabled by default (can significantly impact performance, use
for debugging): to enable, set 1atencyTrackingInterval >0

V. Cardellini - SABD 2023/24

Flink: application monitoring

58

» Back pressure: to monitor back pressure behavior of

running jobs
— E.g., High warning for a task means that it is producing data
faster than downstream operators can consume

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/monitoring/back pressure

» Checkpointing: to monitor the checkpoints of jobs

» Application-specific metrics can be added
— E.g., counters for number of invalid records

 Metrics can be

— Queried via Flink’s Monitoring REST-ful API, that accepts
HTTP requests and responds with JSON data

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/rest api/
— Visualized in Flink dashboard (use Metrics tab)

— Sent to external systems (e.g., Graphite and InfluxDB)
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/

V. Cardellini - SABD 2023/24

59

Flink: deployment

* Designed to run on large-scale clusters with
thousands of nodes

* Can be run in a fully distributed fashion on a static
(possibly heterogeneous) standalone cluster

* For a dynamically shared cluster, can be deployed on
YARN, Mesos or Kubernetes

» Docker images for Apache Flink available on Docker
Hub
— Docker official image: https://hub.docker.com/ /flink

— By Flink developers: https://hub.docker.com/r/apache/flink

See nightlies.apache.org/flink/flink-docs-
master/docs/deployment/resource-providers/standalone/docker/

V. Cardellini - SABD 2023/24

Delivery guarantees

60

« Some frameworks provide at-least-once delivery
guarantees (e.g., Storm)

— Each tuple is guaranteed to be processed, but it may get
processed more than once

* Nothing is lost, but might be duplicated

— How? Deliveries are retried until they are acked (recall RR1
mechanism)

 To avoid data loss, also the source should be
replayable

— If the DSP system fails before the tuple could be persisted or
processed, the source must provide the same tuple again

— E.g., Kafka is a replayable source

» For stateful non-idempotent operators (e.g.,
counting), at-least-once delivery guarantees can give

incorrect results
V. Cardellini - SABD 2023/24

61

Towards strict delivery guarantees

* Flink, Storm plus Trident, Spark Structured
Streaming, and Google’s MillWheel offer stronger
delivery guarantees (i.e., exactly-once) from the
user’s perspective
— In strict sense: each tuple is guaranteed to be processed

once and only once
— What is needed?
* Replayable sources

* Reliable operators, where each operator keeps track of its
progress and persists its state into fault-tolerant storage
— Write-ahead log to provide atomicity and durability
— Checkpointing

» ldempotent (or transactional) sinks, so that every tuple affects
the sinks exactly once

V. Cardellini - SABD 2023/24 62

Towards strict delivery guarantees

« Exactly-once in MillWheel works as follows:

— Upon receipt of an input tuple for a computation

» The tuple is checked against de-duplication data from previous
deliveries; duplicates are discarded

» User code is run for the tuple, possibly resulting in pending
changes to timers, state, and productions

* Pending changes are committed to backing store
» Senders are acked
* Pending downstream productions are sent

— As an optimization, these operations may be coalesced into
a single checkpoint for multiple tuples

Akidau et al., Mill\Wheel: Fault-Tolerant Stream Processing at Internet Scale, VLDB 2013
V. Cardellini - SABD 2023/24 63

Comparing DSP frameworks

» Let's compare open source DSP frameworks

according to some features

API

Low-level Yes
High-level

SQL

No batch

High-level
SQL
Also batch

Storm

Flink Yes, also

V. Cardellini - SABD 2023/24

used-def.

Windows Delivery

semantics

At-least-once
Exactly-once
with Trident

At-least-once
Exactly-once

Fault tol.

Acking

Checkpoint.

(similar to
Flink)

Checkpoint.

A recent need

State
mgmt.
Limited
Yes with
Trident

Yes

Flow
control

Back
pressure

Back
pressure

Operator
elasticity

No

No

64

« A common need for many companies

— Run both batch and stream processing

 Alternative solutions
1. Lambda architecture
2. Unified frameworks
3. Unified programming model

V. Cardellini - SABD 2023/24

65

Lambda architecture

» Data-processing design pattern to integrate batch and
real-time stream processing

« Composed of 3 layers

— Batch and speed (stream) layers: batch framework to process
the entire dataset and, in parallel, streaming framework used to
process real-time events

— Results from the two layers are then merged

NEW DATA
RECENT DATA
’:’\ ‘J REALTIMEVIEW
. ’ 4
4

é BATCH LAYER \
Ad

Source: https://voltdb.com/products/alternatives/lambda-architecture

66
V. Cardellini - SABD 2023/24

Lambda architecture: example

» LinkedIn’s lambda architecture
— Before Samza development

Streams to Batch
& Batch to Stream

Batch / Offline s :

V. Cardellini - SABD 2023/24

Lambda architecture: pros and cons

* Pros:
— Flexibility in frameworks’ choice

« Cons:

— Implementing and maintaining two separate
frameworks for batch and stream processing can
be hard and error-prone

— Overhead of developing and managing multiple

source codes

» The logic in each fork evolves over time, and keeping
them in sync involves duplicated and complex manual
effort, often with different languages

V. Cardellini - SABD 2023/24

Unified frameworks

68

« Use a unified (Lambda-less) design for
processing both real-time as well as batch
data using the same data structure

« Spark and Flink follow this trend

V. Cardellini - SABD 2023/24

69

Unified programming model: Apache Beam

» A layer of abstraction on top of processing
frameworks

* Provides a unified programming model

— Allows to define batch and streaming data processing
pipelines that run on supported execution engines,
including Flink, Spark, Google Cloud Dataflow

« Write once, run anywhere
— Programming languages: Java, Python, Go

» Engine-specific runners translate Beam code to
target runtime

« Initially developed by Google, now open-source
top-level Apache project

V. Cardellini - SABD 2023/24

Using Beam: key concepts

70

» PCollection: represents a collection of data, which
could be bounded or unbounded in size

« PTransform: represents a computation that
transforms input PCollections into output
PCollections.

» Pipeline: manages a DAG of PTransforms and
PCollections that is ready for execution

» PipelineRunner: specifies where and how the pipeline
should execute

V. Cardellini - SABD 2023/24

71

Using Beam: key concepts

« Create the Pipeline
— PipelineOptions object
* Read data input
— E.g., text files
* Apply pipeline transformations
« Write output
— E.g., to text file w pavo
* Run the Pipeline
V. Cardellini - SABD 2023/24 72

Using Beam: WordCount in Python

We use the save_main_session option because one or more DoFn's in this

workflow rely on global context (e.g., a module imported at module level)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session

with beam.Pipeline(options=pipeline_options) as p:

Read the text file[pattern] into a PCollection.

lines = p | ReadFromText(known_args.input)

Count the occurrences of each word.
counts = (
lines
| 'split' >> (
beam.FlatMap(lambda x: re.findall(r'[A-Za-z\']+', Xx)).
with_output_types(unicode))
| 'PairWithOne' >> beam.Map(lambda x: (x, 1))
| 'GroupAndSum' >> beam.CombinePerKey(sum))

Format the counts into a PCollection of strings.
def format_result(word_count):

(word, count) = word_count

return '%s: %s' % (word, count)

output = counts | 'Format' >> beam.Map(format_result)

Write the output using a "Write" transform that has side effects.
pylint: disable=expression-not-assigned

output | WriteToText(known_args.output)

See github.com/apache/beam/blob/master/sdks/python/apache beam/examples/wordcount.py
V. Cardellini - SABD 2023/24 73

Beam: pros and cons

* Pros
— Single, unified programming model

— Flexibility to switch underlying processing system
with low effort

e Con:

— Impact on performance

» Dated evaluation (2019): slowdown >= 3x with respect to
same programs developed using native system APls

Quantitative Impact Evaluation of an Abstraction Layer for Data
Stream Processing Systems, ICDCS ‘19

V. Cardellini - SABD 2023/24

DSP in the Cloud

« Data streaming systems also as Cloud services
— Amazon Kinesis Data Streams
— Google Cloud Dataflow
— IBM Streaming Analytics
— Microsoft Azure Stream Analytics

» Abstract underlying service infrastructure and support
dynamic scaling of computing resources

» Appear to execute in a single data center (i.e., no
geo-distribution)

V. Cardellini - SABD 2023/24

74

75

Google Cloud Dataflow@

« Fully-managed data processing service, supporting

both stream and batch data processing

— Automated resource management

— Dynamic work rebalancing

— Horizontal auto-scaling
» Provides a unified programming model based on

Apache Beam

— Apache Beam SDK in Java and Python

— Enable developers to implement custom extensions and
choose other execution engines

* Provides exactly-once processing
— MillWheel is Google’s internal version of Cloud Dataflow

V. Cardellini - SABD 2023/24

Google Cloud Dataflow

76

» Can be seamlessly integrated with GCP services for
streaming events ingestion (Cloud Pub/Sub), data
warehousing (BigQuery), machine learning (Cloud
Machine Learning)

Data o== Third-Party
Cloud Studio Tools
Pub/Sub 7~ 2~
L T] g Data Warehouse
Cloud
Stream
> > e Cloud BigQuery

Datastore

Ingest

Cloud Cloud Machine

b4 > ~
_— Batch _ Dataflow ——— o Learning e——— /¥l Predictive Analytics

Apache Avro

&kofka L 0 Cloud Bigtable e [i5] Caching & Serving

Apache Kafka

V. Cardellini - SABD 2023/24

77

Amazon Kinesis Data Streams

» Allows to collect and ingest streaming data at scale for
real-time analytics

© Amazon Managed
< Service for Apache

Flink
27 Spark on Amazon
Spark EMR
=
CCCa—
— \ o A\ |sfe
oo NS @ Amazon EC2
7
Amazon Kinesis 5_] AWS Lambda
Input Data Streams Output
Capture and send data to Ingest and store data streams . . Analyze streaming
Amazon Kinesis Data Streams for processing Build custom real-time data using your
applications using Managed favorite Bl tools
Service for Apache Flink,

stream processing
frameworks such as Apache
Spark, or stream your code
running Amazon EC2 or AWS
Lambda

V. Cardellini - SABD 2023/24

78

Amazon Kinesis Data Streams

» Serverless, fully managed Apache Flink: allows to
process data streams in real time

— Based on Flink: same operators to filter, aggregate and
transform streaming data

— Per-hour pricing based on number of Kinesis Processing
Units (KPUs) used to run application

» Horizontal auto-scaling of KPUs

V. Cardellini - SABD 2023/24

79

References

» Akidau, Streaming 101: The world beyond batch, 2015

e Carbone et al., Apache Flink: Stream and batch processing in a
single engine, Bulletin IEEE Comp. Soc. Tech. Comm. on Data
Eng., 2015

e Carbone et al., State management in Apache Flink®: consistent
stateful distributed stream processing, Proc. VLDB Endowment,
2017

» Carbone et al., A survey on the evolution of stream processing
systems, VLDB Journal, 2023

V. Cardellini - SABD 2023/24

80

