
Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP Frameworks

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP frameworks we consider

• Apache Storm 

• Apache Flink (with hands-on lesson)

• Apache Spark Streaming (with hands-on 

lesson)

• Kafka Streaming (hands-on lesson)

• Cloud-based frameworks

– Google Cloud Dataflow 
– Amazon Kinesis
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Apache Storm

• Open-source, real-time, scalable streaming system 
storm.apache.org

• Provides an abstraction layer to execute DSP 
applications

• Many use cases, including real-time analytics, online 
ML, continuous computation, distributed RPC, ETL

• Fast: 1M tuples processed per second per node
• Easy to integrate with different sources (e.g., 

messaging systems)
• Initially developed by Twitter
• Current version: 2.6.2
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Storm: topology

• Main Storm’s concept: topology 

– Where the application logic is packaged into
– Long-running
– DAG of spouts (sources of streams) and bolts

(operators that do processing and data sinks)
– Top-level abstraction submitted to Storm for 

execution
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Storm: streams and tuples

• Storm uses streams and tuples as its data 

model

– Stream: core abstraction in Storm
• Unbounded sequence of tuples that is processed and 

created in parallel in a distributed fashion

• Streams are defined with a schema that names the fields 
in the stream's tuples

– Tuple: named list of values
• A field in a tuple can be an object of any type

• Storm supports all primitive types, strings, and byte 
arrays as tuple field values

• To use a custom data type, you need to define the 
corresponding serializer
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Storm: stream grouping
• Stream grouping defines how to send tuples between 

two adjacent nodes in the topology
– Remember of data parallelism: spouts and bolts execute in 

parallel (multiple threads of execution)

• Shuffle grouping
– Tuples are randomly partitioned

• Field grouping
– Stream is partitioned by the fields specified in the grouping 

(e.g., used-id)
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Storm: stream grouping

• All grouping (i.e., broadcast)
– Stream is replicated across all the bolt’s replicas (use with 

care)

• Global grouping
– Stream goes to a single one of the bolt’s replicas 

(specifically, to the replica with the lowest id)

• Direct grouping
– The producer of the tuple decides which replica of the 

consumer will receive this tuple
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Storm: a simple topology

• First example: exclamation
– Spout emits words, each bolt appends "!!!" to its input

github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java
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setSpout and setBolt
methods take as input: 

• user-specified id

• object containing the 
processing logic of 
the operator

• amount of parallelism 
for the operator

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()"words": 

TestWordSpout()

10

"exclaim1": 
ExclamationBolt()

"exclaim1": 
ExclamationBolt()"exclaim1": 

ExclamationBolt()

3

"exclaim1": 
ExclamationBolt()

"exclaim2": 
ExclamationBolt()

2

Shuffle
grouping

Shuffle
grouping



Storm: another topology

• Example: WordCount

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/WordCountTopology.java

• Bolts can be defined in any language
– Bolts written in another language are executed as subprocesses, 

and Storm communicates with them using JSON messages over 
stdin/stdout

– Communication protocol for Python available in an adapter library 
streamparse.readthedocs.io
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Storm: windowing
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• Storm supports sliding and tumbling windows
• Windows can be based on time duration or event 

count
– Count-based windows

• Based on tuples count (no relation to clock time)
– Time-based windows 

• Based on time duration

• Bolt that needs windowing support needs to 
implement IWindowedBolt interface
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Storm: windowing
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• Different window configurations, including
– Sliding windows

– Tumbling windows

See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/SlidingWindowTopology.java

• By default, tuples in the window are stored in memory 
until they are processed and expired
✗ Windows need to fit entirely in memory

• Storm also provides stateful windowing support
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Storm: Stream API

• Alternative interface to Storm: provides a typed API for 
expressing streaming computations and supports 
functional style operations
– Similarly to Spark and Flink, but still experimental

storm.apache.org/releases/2.6.2/Stream-API.html

• Stream APIs: Stream and PairStream (key-value pair 
streams)
– Support a wide range of operations, including 

• Transformations, which produce another stream from current one
(e.g., filter, map, flatMap)

• Windowing
• Aggregations (e.g., reduce, aggregate, reduceByKey, 
countByKey)

• Joins
• Output, which produce a result (e.g., print, forEach)
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Storm: Stream API example

• The usual WordCount using Stream API
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See github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/streams/WindowedWordCount.java

Storm: architecture
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• Master-worker architecture



Storm components: master and Zookeeper

• Nimbus

– Master node
– Users submit topologies to it
– Responsible for distributing and coordinating the 

topology execution

• Zookeeper

– Nimbus uses a combination of local disk(s) and 
Zookeeper to store info about application topology
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worker process

executor executor
THREAD THREAD

JAVA PROCESS

task

task

task

task

task

Storm components: worker node

• Worker node: computing resource, a kind of 

container for one or more worker processes

• Worker process: Java process running one or 

more executors

• Executor: smallest schedulable entity

– Execute one or more tasks related to same operator
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• Task: operator instance

– Actual work for bolt or spout 
is done by task



Storm components: supervisor

• Each worker node runs a supervisor

• Each supervisor:

– Receives assignments from Nimbus (through 
ZooKeeper) and spawns workers based on the 
assignment

– Sends to Nimbus (through ZooKeeper) a periodic 
heartbeat

– Advertises the topologies that the worker node is 
currently running, and any vacancies that are 
available to run more topologies
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Storm: running topology

• Application developer can configure the topology 
parallelism
– Number of worker processes

– Number of executors (threads)

– Number of tasks
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• Parallelism of running 
topology can be 
changed manually
using rebalance
command

See 
storm.apache.org/releases/current
/Understanding-the-parallelism-of-
a-Storm-topology.html



Storm: reliable message processing

• What happens if a bolt fails to process a tuple?
• Storm provides a mechanism by which the originating 

spout can replay the failed tuple
– Storm needs to maintain the link between every spout tuple 

and its tree of tuples so to detect when the tree of tuples has 
been successfully processed: anchoring

– And needs to ack (or fail) the spout tuple appropriately

• If ack is not received within a specified timeout time period, the 
tuple processing is considered as failed and the tuple is 
replayed

• Storm provides at-least-once semantics
– Best effort semantics if acking is disabled

storm.apache.org/releases/2.6.2/Guaranteeing-message-processing.html
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Storm: application monitoring

19
See storm.apache.org/releases/current/STORM-UI-REST-API.html

• # of messages executed * average 
execute latency / time window

– Latency

• For spouts: completeLatency (total 
latency for processing the message)

– Ignore value if acking is disabled
• For bolts: executeLatency (avg time the

• Storm has a built-in monitoring and metrics system
– Built-in and user-defined metrics

• Built-in metrics include:
– Capacity

bolt spends to run the execute method) and processLatency
(avg time from starting execute to ack)

⎼ JVM memory usage and garbage collection

• Metrics can be queried via Storm’s UI REST API or reported to 
a registered consumer (e.g., Graphite)
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Layers on top of Storm

• Trident

– High-level abstraction on top of Storm to provide 
exactly-once processing

• SQL

– To run SQL queries over streaming data
storm.apache.org/releases/2.4.0/storm-sql.html
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Unbounded vs. bounded streams
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• Bounded streams
– Have a defined start and end

– Can be processed by ingesting 
all data before performing any 
computations

– Ordered ingestion is not 
required because bounded 
data can always be sorted

• Data can be processed as bounded or 

unbounded streams

• Unbounded streams
– Have a start but no defined end

– Provide data as it is generated

– Must be continuously processed

– Not possible to wait for all input 
data to arrive

– Processing unbounded data 
often requires that events are 
ingested in a specific order



Batch processing vs. stream processing

• Batched/stateless: scheduled in batches

– Short-lived tasks (Hadoop, Spark)
– Distributed streaming over batches (Spark 

Streaming)

• Dataflow/stateful: continuously processed, 

typically scheduled once (Storm, Flink)

– Long-lived task execution
– State is kept inside tasks
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Apache Flink

• Distributed processing system for stateful computation 
over bounded and bounded data streams flink.apache.org

– One common runtime for data streaming and batch processing

• Integrated with many other projects in Big data open-
source ecosystem

• Originated from Stratosphere project by TU Berlin, 
Humboldt Univ. and Hasso Plattner Institute

• Current version: 1.19
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Flink: Stateful computation

• Flink’s operations can be stateful
– E.g., counting events per minute to display on        

dashboard, computing features for fraud detection model

• State is optimized for local access
– Stored in memory or in access-efficient data structures on 

disk 

– Goals: high throughput and low latency
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• State is partitioned: the set of parallel 
instances of a stateful operator is a 
sharded key-value store

Flink: fault tolerance
• Flink can guarantee exactly-once state consistency in 

case of failures by periodically and asynchronously
checkpointing local state to durable storage (state 
snapshot)
– State of operators can be restored from checkpoint to an 

earlier point in time and records are reset to the point of the 
state snapshot

Flink docs: nightlies.apache.org/flink/flink-docs-stable/
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DSP and time
• Different notions of time in a DSP application:

– Processing time: time at which an event is observed in the 
system (wall-clock time of the machine executing the 
operator)

– Event time: time at which an event actually occurred on its 
producing device

• Typically embedded within the event before it enters Flink and 
represented by a timestamp
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Flink: time

• Flink supports both processing time and event time
• Event time makes it easy to compute over streams 

where events arrive out-of-order and are late
• To support event time, the DSP needs a way to 

measure the progress of event time; how to measure 
it?

• Flink uses watermarks
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nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/time/



Flink: back pressure

• Continuous streaming with back pressure

– Flink runtime provides flow control: slow 
downstream operators backpressure faster 
upstream operators

– Flink UI allows us to monitor back pressure 
behavior of running applications

• Back pressure warning (e.g., High) for an upstream 
operator means it it is producing data faster than the 
downstream operators can consume
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Flink: windows

• Highly flexible streaming windows

– Including user-defined windows

• Supported window types

– Tumbling: no overlap
– Sliding: with overlap 
– Session
– Global
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Flink: windows
• Session window

– To group elements by 
sessions of activity

– Differently from tumbling and 
sliding windows, no overlap 
and no fixed start and end 
time

– Closes when a gap of 
inactivity occurs

• Global window
– To assign all elements with 

the same key to the same 
single global window

– Only useful if you also 
specify a custom trigger
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Flink: APIs
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• Different levels of abstraction to develop streaming 
applications
– SQL & Table API

– DataStream API

– ProcessFunctions

• APIs in Java, Scala and Python



Flink: APIs
• ProcessFunction: low-level stream processing 

operation, giving access to basic building blocks of 
(acyclic) streaming applications
– events (stream elements)

– state (fault-tolerant, consistent, only on keyed stream)

– timers (event time and processing time, only on keyed
stream)

nightlies.apache.org/flink/flink-docs-release-
1.19/docs/dev/datastream/operators/process_function/

V. Cardellini - SABD 2023/24 32

Flink: APIs
• DataStream API: streaming (and batch) applications

– Supports transformations on data streams (e.g., filter, update 
state, define windows, aggregate), with user-defined state 
and flexible windows

– Provides fine-grained control over state and time

– Supports different runtime execution modes

• STREAMING: classic one for unbounded streams
• BATCH: reminiscent of batch processing frameworks

nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/datastream/overview/
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Flink: APIs

• Table API & SQL
– Relational APIs for unified stream and batch processing

nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/table/overview/

• Python API
– Python API for Apache Flink: PyFlink DataStream API and 

PyFlink Table API
nightlies.apache.org/flink/flink-docs-release-1.19/docs/dev/python/overview/

• See lab lesson

V. Cardellini - SABD 2023/24 34

Flink: programming model
• Applications are composed of streaming dataflows

that are transformed by user-defined operators
– Streams: unbounded, partitioned, immutable sequence of 

events

• Streaming dataflows form directed graphs (usually
DAGs) that start with one or more sources, and end 
in one or more sinks
– DAGs basic building blocks: streams and transformation

operators
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Flink: programming model
• Stream operators

– Stream transformations that take one or more streams as 
input, and produce one or more output streams as a result
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Flink: programming model

• Parallel dataflows: operator parallelism
– Same solution as in Storm
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Flink: programming model

• Stateful operators: require to remember information 
across multiple events
– E.g., counting events per minute to display on a dashboard, 

or computing features for a fraud detection model

– State is maintained in a sort of embedded key/value store

– Access to key/value state is only possible on keyed streams
after keyBy(), which re-partitions by hashing the key
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Flink: sources and sinks

• Sources ingest input data from external systems, 
while sinks send result data to external systems

• Basic data sources and sinks are built into Flink
– predefined data sources include reading from files, 

directories, and sockets, and ingesting data from collections 
and iterators

– predefined data sinks support writing to files, to stdout and 
stderr, and to sockets

• Connectors provide code for interfacing with various 
third-party systems
– Apache Kafka, Rabbit MQ, Apache Pulsar, etc.
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Flink: control events

• Control events: special events injected in the 

data stream by operators

• Two types of control events in Flink

⎼ Watermarks 
⎼ Checkpoint barriers
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Flink: watermarks

• Watermarks (W) mark the progress of event time
within a data stream

• Generated at, or directly after, source functions
• Flow as part of data stream and carry a timestamp t
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– W(t) declares that event time 
has reached time t in that 
stream, meaning that there 
should be no more elements 
with timestamp t’ <= t

– Crucial for out-of-order
streams, where events are 
not ordered by their 
timestamps



Flink: watermarks

• By default, late elements are dropped when the 
watermark is past the end of the window

• However, Flink allows to specify a maximum allowed 
lateness for window operator
– By how much time elements can be late before they are 

dropped (0 by default) 

– Late elements that arrive after the watermark has passed the 
end of the window but before it passes the end of the 
window plus the allowed lateness, are still added to the 
window
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Flink: watermarks
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• Flink does not provide ordering guarantees after any 
form of stream partitioning or broadcasting
– In such case, dealing with out-of-order tuples is left to the 

operator implementation



Flink: checkpoint barriers

• To provide fault tolerance special barrier markers
(called checkpoint barriers) are periodically injected
at streams sources and then pushed downstream up 
to sinks
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Fault tolerance

• To provide consistent results, DSP systems need to 
be resilient to failures 

• How? By periodically capturing a snapshot of 
execution graph which can be used later to restart in 
case of failures (checkpointing)
Snapshot: global state of execution graph, capturing all 
necessary information to restart computation from that specific 
execution state

• Common approach is to rely on periodic global state 
snapshots, but has drawbacks:
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– Stalls overall computation

– Eagerly persists all tuples in 
transit along with states, 
which results in larger 
snapshots than required



Flink: snapshot algorithm
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• Flink implements a lightweight snapshot algorithm
– Allows to maintain high throughput while providing 

strong consistency guarantees
• Snapshot algorithm properties:

– Draws consistent snapshots of stream flows and operators’ 
state

– Even in presence of failures, application state reflects every
record from data stream exactly once

– State can be stored at JobManager’s heap or HDFS

– Disabled by default

• Inspired by Chandy-Lamport algorithm for distributed 
snapshot and tailored to Flink’s execution model 

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/stateful-
stream-processing/
arxiv.org/abs/1506.08603

Chandy-Lamport algorithm

• The observer process (process initiating the snapshot): 

– Saves its own local state
– Sends a snapshot request message bearing a snapshot token to all 

other processes
• If a process receives the token for the first time: 

– Sends the observer process its own saved state
– Attaches the snapshot token to all subsequent messages (to help 

propagate the snapshot token)
• When a process that has already received the token receives a 

message not bearing the token, it will forward that message to 
the observer process

– This message was sent before the snapshot “cut off” (as it does not 
bear a snapshot token) and needs to be included in the snapshot

• The observer builds up a complete snapshot: a saved state for 
each process and all messages “in the ether” are saved
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Flink: snapshot algorithm
• Based on checkpoint barriers injected by 

checkpoint coordinator 

– When an operator receives a barrier for 
snapshot n from all of its input streams, it 
emits a barrier for snapshot n into all of its 
outgoing streams. Once a sink operator 
has received barrier n from all of its input 
streams, it acknowledges snapshot n to the 
checkpoint coordinator (master). After all 
sinks have acknowledged a snapshot, it is 
considered completed

V. Cardellini - SABD 2023/24 48
nightlies.apache.org/flink/flink-docs-release-1.19/docs/learn-flink/fault_tolerance

Flink: performance and memory management

• High throughput and low latency

• Memory management
– Flink implements its own memory management inside JVM
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Flink: architecture
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• The usual master-worker architecture

– A JobManager and one or more TaskManagers

Flink: architecture
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• JobManager (master): responsible to coordinate 
distributed execution of Flink applications
– Schedules tasks, coordinates checkpoints, coordinates 

recovery on failures, etc.

• Composed by:
– ResourceManager: responsible for resource de-/allocation 

and provisioning, manages task slots (unit of resource 
scheduling in Flink cluster)

– Dispatcher: provides a REST interface to submit Flink
applications for execution and starts a new JobMaster for 
each submitted job; also runs Flink Web UI

– JobMaster: responsible for managing the execution of a 
single JobGraph

nightlies.apache.org/flink/flink-docs-release-1.19/docs/concepts/flink-architecture/



Flink: architecture
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• TaskManagers (workers): JVM processes that 
execute tasks of a dataflow, and buffer and exchange 
data streams
– Workers use task slots to control the number of tasks they 

accept (at least 1)

– Each task slot represents a fixed subset of worker resources

– By adjusting the number of task slots, users can define how 
tasks are isolated from each other

• Tasks in same JVM share TCP connections, heartbeat 
messages, data sets and data structures

Flink: from logical to physical graph

• Optimizer takes user-specified logical plan and 
creates an optimized plan

V. Cardellini - SABD 2023/24 53



Flink: application execution

• JobManager receives JobGraph (or Logical Graph)
– Representation of dataflow consisting of operators (JobVertex) 

and intermediate results (IntermediateDataSet)
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– Each operator has 
properties, like parallelism 
and code that it executes

• JobManager transforms 
JobGraph into 
ExecutionGraph (or
physical graph)
– Parallel version of JobGraph

– Graph nodes are tasks and 
graph edges indicate 
input/output relationships or  
partitions of data streams

Flink: application execution

• Data parallelism
– Different operators of same application may have different 

levels of parallelism

– Parallelism of individual operator, data source, or data sink 
can be defined by calling its setParallelism() method
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Flink: application execution

• Flink provides a Web UI to monitor the status of the 
cluster and running job
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Flink: monitoring

• Built-in monitoring and metrics system
• Allows gathering and exposing metrics to external 

systems
• Built-in metrics include

– Throughput

– Latency: delay between event creation and time at which 
results based on this event become visible

– Used JVM heap/non-heap/direct memory

– CPU

– Availability

– Backpressure

– Checkpointing
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Flink: application monitoring
• Throughput

– In terms of rate of outgoing number of records (per 
operator/task), e.g., 

• numRecordsOutPerSecond: number of records operator/task 
sends per second

• Latency 
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/#end-to-end-
latency-tracking

– Flink supports end-to-end latency tracking: special markers 
(called LatencyMarker) are periodically inserted at all 
sources in order to obtain a distribution of latency between 
sources and each downstream operator

• But does not account for time spent in operator processing (or 
in window buffers)

• Assume that all machines clocks are sync
• Disabled by default (can significantly impact performance, use 

for debugging): to enable, set latencyTrackingInterval > 0 
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Flink: application monitoring
• Back pressure: to monitor back pressure behavior of 

running jobs
– E.g., High warning for a task means that it is producing data 

faster than downstream operators can consume
nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/monitoring/back_pressure

• Checkpointing: to monitor the checkpoints of jobs
• Application-specific metrics can be added

– E.g., counters for number of invalid records 

• Metrics can be
– Queried via Flink’s Monitoring REST-ful API, that accepts 

HTTP requests and responds with JSON data 

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/rest_api/
– Visualized in Flink dashboard (use Metrics tab)

– Sent to external systems (e.g., Graphite and InfluxDB)

nightlies.apache.org/flink/flink-docs-release-1.19/docs/ops/metrics/
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Flink: deployment

• Designed to run on large-scale clusters with 
thousands of nodes

• Can be run in a fully distributed fashion on a static
(possibly heterogeneous) standalone cluster

• For a dynamically shared cluster, can be deployed on 
YARN, Mesos or Kubernetes

• Docker images for Apache Flink available on Docker 
Hub 
– Docker official image: https://hub.docker.com/_/flink 
– By Flink developers: https://hub.docker.com/r/apache/flink
See nightlies.apache.org/flink/flink-docs-
master/docs/deployment/resource-providers/standalone/docker/
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Delivery guarantees 
• Some frameworks provide at-least-once delivery 

guarantees (e.g., Storm) 
– Each tuple is guaranteed to be processed, but it may get 

processed more than once

• Nothing is lost, but might be duplicated
– How? Deliveries are retried until they are acked (recall RR1 

mechanism)

• To avoid data loss, also the source should be 
replayable
– If the DSP system fails before the tuple could be persisted or 

processed, the source must provide the same tuple again

– E.g., Kafka is a replayable source

• For stateful non-idempotent operators (e.g., 
counting), at-least-once delivery guarantees can give 
incorrect results
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Towards strict delivery guarantees 
• Flink, Storm plus Trident, Spark Structured 

Streaming, and Google’s MillWheel offer stronger 
delivery guarantees (i.e., exactly-once) from the 
user’s perspective
– In strict sense: each tuple is guaranteed to be processed 

once and only once

– What is needed?

• Replayable sources
• Reliable operators, where each operator keeps track of its 

progress and persists its state into fault-tolerant storage
– Write-ahead log to provide atomicity and durability
– Checkpointing

• Idempotent (or transactional) sinks, so that every tuple affects 
the sinks exactly once
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Towards strict delivery guarantees 
• Exactly-once in MillWheel works as follows:

– Upon receipt of an input tuple for a computation 

• The tuple is checked against de-duplication data from previous 
deliveries; duplicates are discarded

• User code is run for the tuple, possibly resulting in pending 
changes to timers, state, and productions

• Pending changes are committed to backing store
• Senders are acked
• Pending downstream productions are sent

– As an optimization, these operations may be coalesced into 
a single checkpoint for multiple tuples
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Akidau et al., MillWheel: Fault-Tolerant Stream Processing at Internet Scale, VLDB 2013



Comparing DSP frameworks

• Let’s compare open source DSP frameworks 
according to some features
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API Windows Delivery 
semantics

Fault tol. State 
mgmt.

Flow 
control

Operator 
elasticity

Storm Low-level

High-level

SQL

No batch

Yes At-least-once

Exactly-once

with Trident

Acking

Checkpoint. 

(similar to 

Flink)

Limited

Yes with 

Trident

Back 

pressure

No

Flink High-level

SQL

Also batch

Yes, also 

used-def.

At-least-once

Exactly-once

Checkpoint. Yes Back 

pressure

No

A recent need

• A common need for many companies

– Run both batch and stream processing

• Alternative solutions

1. Lambda architecture
2. Unified frameworks
3. Unified programming model
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Lambda architecture
• Data-processing design pattern to integrate batch and 

real-time stream processing
• Composed of 3 layers

– Batch and speed (stream) layers: batch framework to process 
the entire dataset and, in parallel, streaming framework used to 
process real-time events

– Results from the two layers are then merged

66Source: https://voltdb.com/products/alternatives/lambda-architecture
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Lambda architecture: example
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• LinkedIn’s lambda architecture
– Before Samza development



Lambda architecture: pros and cons

• Pros:

– Flexibility in frameworks’ choice
• Cons: 

– Implementing and maintaining two separate 
frameworks for batch and stream processing can 
be hard and error-prone

– Overhead of developing and managing multiple 
source codes 

• The logic in each fork evolves over time, and keeping 
them in sync involves duplicated and complex manual 
effort, often with different languages
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Unified frameworks

• Use a unified (Lambda-less) design for 

processing both real-time as well as batch 

data using the same data structure

• Spark and Flink follow this trend
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Unified programming model: Apache Beam

• A layer of abstraction on top of processing 

frameworks

• Provides a unified programming model

– Allows to define batch and streaming data processing 
pipelines that run on supported execution engines, 
including Flink, Spark, Google Cloud Dataflow

• Write once, run anywhere

– Programming languages: Java, Python, Go
• Engine-specific runners translate Beam code to 

target runtime

• Initially developed by Google, now open-source 

top-level Apache project
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Using Beam: key concepts

• PCollection: represents a collection of data, which 
could be bounded or unbounded in size

• PTransform: represents a computation that 
transforms input PCollections into output 
PCollections.

• Pipeline: manages a DAG of PTransforms and 
PCollections that is ready for execution

• PipelineRunner: specifies where and how the pipeline 
should execute
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Using Beam: key concepts

• Create the Pipeline

– PipelineOptions object
• Read data input 

– E.g., text files
• Apply pipeline transformations

• Write output

– E.g., to text file
• Run the Pipeline
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Using Beam: WordCount in Python
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See github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount.py



Beam: pros and cons

• Pros

– Single, unified programming model
– Flexibility to switch underlying processing system 

with low effort 

• Con:

– Impact on performance 
• Dated evaluation (2019): slowdown >= 3x with respect to 

same programs developed using native system APIs
Quantitative Impact Evaluation of an Abstraction Layer for Data 
Stream Processing Systems, ICDCS ‘19 
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DSP in the Cloud

• Data streaming systems also as Cloud services
– Amazon Kinesis Data Streams

– Google Cloud Dataflow

– IBM Streaming Analytics

– Microsoft Azure Stream Analytics 

• Abstract underlying service infrastructure and support 
dynamic scaling of computing resources

• Appear to execute in a single data center (i.e., no 
geo-distribution)
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Google Cloud Dataflow 

• Fully-managed data processing service, supporting 
both stream and batch data processing
– Automated resource management

– Dynamic work rebalancing

– Horizontal auto-scaling

• Provides a unified programming model based on 
Apache Beam 
– Apache Beam SDK in Java and Python

– Enable developers to implement custom extensions and 
choose other execution engines

• Provides exactly-once processing
– MillWheel is Google’s internal version of Cloud Dataflow 
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Google Cloud Dataflow 

• Can be seamlessly integrated with GCP services for 
streaming events ingestion (Cloud Pub/Sub), data 
warehousing (BigQuery), machine learning (Cloud 
Machine Learning)
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Amazon Kinesis Data Streams

• Allows to collect and ingest streaming data at scale for 
real-time analytics
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Amazon Kinesis Data Streams
• Serverless, fully managed Apache Flink: allows to 

process data streams in real time
– Based on Flink: same operators to filter, aggregate and 

transform streaming data

– Per-hour pricing based on number of Kinesis Processing 
Units (KPUs) used to run application

• Horizontal auto-scaling of KPUs
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