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The reference Big Data stack
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Why data stream processing?

* Applications such as:

— Sentiment analysis on tweets @ Twitter

— User profiling @Yahoo!

— Tracking of query trend evolution @Google

— Fraud detection in financial transactions

— Real-time advertising

— Healthcare analytics involving loT medical sensors
* Require:

— Continuous processing of unbounded data streams

generated by multiple and distributed sources
— In (near) real-time fashion
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Why data stream processing?

* Inthe early years data stream processing
(DSP) was considered a solution for very
specific problems (e.g., financial tickers)

 Now we have more general settings
— E.g., social media, Internet of Things
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Why data stream processing?

* Decrease latency to obtain results and improve
data freshness

— Events are processed close to the time they are
generated

— Applications respond to events as they occur
— No delays involved with batch processing
— No data persistence on stable storage
« Simplify data analytics pipelines and underlying
infrastructure

V. Cardellini - SABD 2023/24



Data stream

« “Adata stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the
order in which items arrive, nor is it feasible to locally
store a stream in its entirety. Queries over streams
run continuously over a period of time and
iIncrementally return new results as new data arrive.”

Golab and Ozs, , ACM SIGMOD
Rec., 2003.

« A data stream refers to both velocity and variety of
Big data

 Astream is an unbounded sequence of tuples,
where a tuple is an ordered list of values
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http://www09.sigmod.org/sigmod/record/issues/0306/1.golab-ozsu1.pdf

Data stream: example

uuuuu

« Data stream related to maritime

traffic in the Mediterranean

@x3b62baab6210a8e69d3e7f9df53d000c83de0fdoe, 2,
15.247220,37.287770,163,511,01-06-15 ©:00,AUGUSTA, 12 \\\

Ox0fe9acdb3675a8a2942faftbd4at61lbc37ed44cOec, 146, “— tuples
23.694910,37.313620,13,15,01-06-15 ©0:00,SALERNO, 88 ‘////

@xb35dc6acdc29f2241296c44384Fa2bof7044d257, 20,
15.669920, 38.387740,339,339,01-06-15 0:00,MESSINA, 66

‘‘‘‘‘‘‘

Each tuple contains the fields:

SHIP_ ID,SPEED,LON2,LAT2,COURSE,HEADING, TIMESTAMP,
departurePortName,Reported Draught
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Traditional DSP challenges

» Stream data can arrive at high
velocity, with high volumes and § =
highly variable arrival patterns £ |,

— High resource requirements for i
processing

3000

Arrival Rate (tuple/s)

2 4 6 8 10 12 14 16 18 20
Time (days)

* Processing stream data has real-time aspects

— Stream processing applications have QoS
requirements, e.g., end-to-end latency

— Must be able to react to events as they occur
* Faults can happen during processing
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Challenges for DSP in Cloud-Edge continuum

« Goals: increase scalability and reduce latency

 How? Rely not only on Cloud resources but
also on distributed and near-edge computation
(Fog/edge computing)
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DSP application model

« A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

* Represented by a directed dataflow graph

— Graph vertices: operators ' l_],:} £ source
— Graph edges: streams 'I: o8s_ / | S
— Graph is often referred to S e B

as topology AL T T _’:}

« Graph is typically acyclic: directed acyclic graph (DAG)

— In DAGs, data can only move from upstream tasks to
downstream task

— Most DSP systems support only DAGs, few systems (e.g., Flink)
support also loops

Topology does not usually change during processing
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DSP application model: examples

 DAG for WordCount application in DSP salsa

 DAG for NYC taxi streaming analysis: data streams
originated from NYC taxis are processed to find the
top-10 most frequent routes during the last 30 minutes

T
datasource  parser filterByCoordinates countByWindow  partialRank - globalRank
metronome @ source @ operator @ sink
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DSP programming model

« Dataflow programming

— Programming paradigm that models a program
as a directed graph of data (dataflow) flowing
between operations

— Pioneered by Jack Dennis and his students at
MIT in the 1960s

« Examples

— Apache NiFi: automates dataflow between
systems

— Apache Flink: stream and batch processing

— Apache Beam: unifies batch and streaming data
processing on top of several execution engines

— TensorFlow: ML library based on dataflow
programming
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DSP programming model

« What to we need?

- Dataflow composition: create the topology
associated with the DAG for a DSP
application

« Dataflow manipulation: use processing
elements (i.e., operators) to perform data
transformations
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Dataflow composition: How to define a DSP application

* Explicit way: describe topology
— Explicitly defines operators (built-in or user-defined) and how
they are connected in the DAG
— Used in many DSP systems (e.g., Flink, Storm, Spark
Streaming)
« Implicit way: use formal language
— Declarative languages that specify query result (SQL-like)
« Streams Processing Language (SPL) in
« SQL support in Flink provided by
— Procedural languages that specify composition of operators

¢ e.g., SQuAI (Stream Query Algebra) used in
Aurora/Borealis

* The first offers more flexibility, the latter more rigor and
expressiveness
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Dataflow manipulation

* How streaming data is manipulated by the
operators in the DAG?

* Operator properties:
— Operator type

— Operator state
— Windowing
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DSP operator

« Self-contained processing element that

— Transforms one or more input streams into another
stream

— Can execute a generic user-defined code
« Algebraic operation (filter, aggregate, join, ..)

« User-defined and possibly complex operation (e.g., part-of-
speech-tagging, machine learning algorithm)

— Multiple operators execute at the same time on
different streams
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DSP operator: types

« Edge adaptation: converting data from
external sources into tuples that can be
consumed by downstream operators

* Aggregation: collecting and summarizing a
subset of tuples from one or more streams

« Splitting: partitioning a stream into multiple
streams
* Merging: combining multiple input streams
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DSP operator: types

* Logical and mathematical operations:
applying different logical processing,
relational processing, and mathematical
functions to tuple attributes

« Sequence manipulation: reordering,
delaying, or altering the temporal properties
of a stream

« Custom data manipulations: applying data
mining, machine learning, ...
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DSP operator: state

* Operator can be either stateless or stateful

« Stateless: processing depends only on current
iInput
— Operator knows nothing about state and thus
processes tuples independently of each other,

iIndependently of prior history or even from tuple
arrival order

— E.g., filter, map

— Easily parallelizable

— No synchronization in a multi-threaded context

— Easy restart upon failures (no need to recover state)
— In a nutshell: easy to manage
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DSP operator: state

« Stateful: keeps some sort of state (i.e.,
information across multiple tuples) that
operator can read and modify during execution,

« Examples of stateful operator
— Aggregation or summary of tuples per minute/hour

— When an application searches for certain patterns,
the state will store the sequence of events
encountered so far

— When training a machine learning model over a
stream of data points, the state holds the current
version of the model parameters

« State makes management more complex
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DSP operator: state

« State may be stored in different ways:

- Entirely stored within in- Loy Losacnte | LS,
memory data structures and J {é}‘l ’

replicated to disk only for 2\
fault tolerance 1?}‘:

- Entirely stored on non- L3
volatile memory (e.g., disk)

- Hybrid solution: partially stored in memory for
iImproved performance and flushed to disk to scale in

size
- Stored on a storage service (e.g., Redis)
« State is mostly private to operator but in some
system can be shared between operators

— Shared state makes execution even more complex
V. Cardellini - SABD 2023/24
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Windowing

 Window: buffer associated with an operator input
port to retain incoming tuples over which we can apply
computations so to process them as a whole
— E.g., the most frequently purchased items over the last hour

* Window is characterized by:
— Size: amount of data that should be buffered before

triggering operator execution

« Statically defined: time-based (e.g., 30 seconds) or count-
based (e.qg., the last 100 tuples)

« Dynamically defined: session-based

— Sliding interval: how the window moves forward
« Time-based or count-based
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Windowing: patterns

« Different windowing patterns by combining window

size and sliding interval

— Sliding window: window size and sliding interval are different,
single tuples may be included in multiple consecutive windows

— Tumbling (or fixed) window: sliding interval is equal to window
size, consecutive windows do not overlap

Count-based sliding window Count-based tumbling window
(size:2; slide:1) (size:2; slide:2)
to ‘Vl Vz\V3 Vg || Vs | Vg b “ Vi || V2 |V3 Vg || Vs | Vg
ty vy \ V, || Vs ‘v4 Ve | Vg vy | v, |v3 V4 |v5 Ve
b vy |V, ‘ V3 | Vg ‘V5 Ve Lo vy | Vo | Vs | Vs |V5 Ve ‘
> >
time time ,,
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Windowing: patterns

Tumbling windows

Sliding windows
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Windowing: patterns

 Window can be also dynamically defined: session

window

— Dynamic size of window length, depending on inputs

— Starts with an input and expands itself if the following input
has been received within the gap duration

— Closes when there’s no input received within the gap duration

after receiving the latest input

— Enables to group events until there are no new events for
specified time duration (inactivity)

user 1
user 2

Session windows

user 3
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Windowing: emit

* Once a trigger determines that a window is ready for
processing, it fires, i.e., emits the result of the current

window

« Example: tumbling/sliding time window of 1 minute

that sums the values

Tumbling window of 1 minute that sums
the values

Input %0 9,6 8 47,3 8, 4,2 1, 3, 2)

Tumbling windows —> | 9, 6, 8, 4,|| 7, 3, 8, 4,|| 2, 1, 3, 2

Output —> 27 22 8
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Sliding window of 1 minute that
sums the values every half minute

Input—>o 9,6, 84,7,3,8,42,1,3,2 )

Sliding windows —> |9, 6, 8, 4,

8, 4,7, 3,

7, 3, 8, 4,

8,4, 2,1,

2,1, 3, 2

|
Output—> 27 22 22 15 8
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Windowing: which pattern?

« Choosing the appropriate window type requires careful
consideration of data and processing requirements

« Some rule of thumb

— Use tumbling windows to segment a data stream into distinct
segments, and perform a function against them

— Recall that sliding windows can produce overlapping results

* Any problem domain where you want to closely monitor
changes over time or compare changes relative to previous
reading could be a good fit for sliding windows

— Take also into account that windows can be defined over long
periods of time (such as days, weeks, or months) and
therefore accumulate very large state

* Depending on DSP system, sliding windows may be more
memory consuming
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“Hello World”: a variant of WordCount

« Goal: emit top-k words in terms of occurrence
when there is a rank update

Words source Words counter Sorter

Q (word) ‘m(word, counteKO (rank)

* Which operators can be performance
bottleneck?

 How to scale DSP application in order to
sustain a traffic load increase”?

V. Cardellini - SABD 2023/24
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“Hello World”: a variant of WordCount

 The usual answer: let’s replicate operators whenever
possible

 We use data parallelism (aka operator fission) and
redesign DSP application by dividing sorting into two
stages (multiple intermediate sorters and one final sorter)

* How to partition the downstream among multiple
replicas?

Words counter

Words source

(w, :
\\Noﬂ\\ Orq, Coun; Intermediate sorter

(I'anks) Final sorter

>,
—

(final rank)
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Example of DSP application: DEBS'14 GC

* Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes

— Smart plugs deployed in households and equipped with sensors that
measure values related to power consumption

* |nput data stream:
2967740693, 1379879533, 82.042, 0, 1, 0, 12
* Query 1. make load forecasts based on current
$| \ o (- load measurements and historical data
\

— QOutput data stream:
ts, house id, predicted load

o1 * Query 2: find outliers concerning energy
£ 4. consumption
15 — Output data stream:
A ts_start, ts_stop, household_id, percentage
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https://debs.org/grand-challenges/2014/

Example of DSP application: DEBS'15 GC

* Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

« Data stream composed of tuples

« Each tuple includes: pickup and drop-off points
(longitude and latitude), corresponding timestamps plus
information related to payment

©7290D3599E7A@D62097A346EFCC1FB5, E7750A37CABO7DODF FOAF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
©0:02:00,120,0.44,-73.956528,40.716976, -
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50
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https://debs.org/grand-challenges/2015/

Example of DSP application: DEBS'15 GC

last 30 minutes

for taxi drivers

Query 1: identify top-10 most frequent routes during the
Query 2. identify areas that are currently most profitable

Both queries rely on sliding window operators

— Continuously evaluate query results

Danbury:

NNNNNNNN
of

xxxxxxxxxx

uuuuuuuu

| oEdison

Tomg River
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https://debs.org/grand-challenges/2015/

Example of DSP application: DEBS'16 GC

debs.org/grand-challenges/2016

e Real-time analytics for a dynamic (evolving) social-
network graph

e Query 7. identify the posts that currently trigger the most
activity in the social network

o Query 2: identify large communities that are currently
iInvolved in a topic

* Require continuous analysis

of dynamic graph considering
multiple streams that reflect

graph updates
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Distributed DSP system

 Distributed system that executes DSP applications
— Continuously calculates results for long-standing queries
— Over potentially infinite data streams
— Using stateless or stateful operators

« System nodes may be heterogeneous
— Computing capacity, network bandwidth, ...

* Must be highly optimized and with minimal overhead
so to deliver real-time response

« Must manage a number of issues
— Operator placement on computing nodes
— Node and operator failures
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Distributed DSP system

 Traditionally runs in a locally distributed Cluster
within a data center (also Cloud-based) &=

e Assumptions:

— Scale out
« Commodity servers
« Data-parallelism (operator parallelism) is king

— Designed to handle failures

* Newer environments: edge computing and Cloud-
edge continuum

E m 1 central
~“" ﬁ analytics
actuators@ MO @ C/S
(\ II.P” 04_0( topology a’*

Things Edge Stream Processing Cloud
‘ O source () sink O operation -P data row
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Main distributed DSP frameworks

* Apache Storm

* Apache Flink

* Apache Samza

* Apache Spark Streaming
« Kafka Streaming

* Cloud-based services
— Amazon Kinesis
— Azure Stream Analytics
— Google Cloud Dataflow

V. Cardellini - SABD 2023/24
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Distributed DSP systems: processing model

* Main stream processing models:
— One-at-a-time: each tuple is individually processed
— Micro-batched: tuples are grouped before being

processed

(eg EApac erg?orm

el\g/gllc,rb?pga\c;hgpark

Streaming)

Lower latency

Higher throughput

At-least-once semantics

Exactly-once semantics In some cases

Simpler programming model

Source: N. Marz, J. Warren, Big Data, Manning Pub., 2015
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Distributed DSP systems: evolution

1st gen: From DBs to DSMSs 2nd gen: Scale-Out Data Streaming

~-Fixpoint
- Synopses - Out-of-Order Comb;putation

- Continuous - Sliding windows - Scalability - State Management - Model Serving
Queries - CEP - Best-Effort - Proc. Guarantees
- Inverted DBs Processing - Reconfiguration

- Stream SQL
- Microservices
Aurora/Borealis - Actors

i - Transactions
Tamtfy Esper | STREAM Twitter Storm

Spark
IBM System S

S4 Streaming

NiagaraCQ Oracie CGL Naiad Samza Millwheel/ e Stateful Functions
Map Reduce Sstore | Dataflow proee ;
TelegraphCQ l Kafta Stroiins Ambrosia
= =
’92-’00 ’00-03 ‘04 ’10-12 13-17 ’18- '22-

Early systems were designed as extensions of relational execution
engines with the addition of windows

Modern systems have evolved considering completeness and
ordering (e.g., out-of-order computation) and have witnessed
architectural paradigm shifts (e.g., processing guarantees,
reconfiguration and state management)

Recent shift towards general event-driven architectures, actor-like
programming models and microservices, and growing use of hw

accelerators
Fragkoulis et al., , 2023 37
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Data-intensive systems: a common view

« Distributed data-intensive systems for batch and
stream processing share some common
characteristics in terms of architecture

( : = : Distributed computing infrastructure :
Driver jobs : :

: Node Node

start | Pregram livocation|: G | | co—
3 % &data |: ||l Worker Worker

| P — —

Clients : State State
[EQ portion portion
Slot

=T &

: [\ ~ data
[ Sources Sl L ) § Sinks
J?o S : data bus § CE S

register

Margara et al., A Model and Survey of Distributed Data-Intensive Systems, 2023
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https://dl.acm.org/doi/pdf/10.1145/3604801

Data-intensive systems: a common view

« Applications (i.e., jobs) and their lifecycle

— Job lifecycle includes: definition using API, compilation into
an execution plan, deployment, and execution

— Jobs are compiled into elementary units of execution (i.e.,
tasks) and run on slots offered by worker nodes

— Each task can be replicated (data parallelism)

— Tasks must be deployed onto the slots of the underlying
infrastructure through a placement algorithm

.......................................................

Task C : Distributed computing infrastructure
v
' ‘ :Lb - Worker
I. Task A Task B K TaskE || | —
> mr' State (portion) | | | [___State (portion)
e
— : Slot
- 1
Jobs Executlon ; \\l TaskA
plan ' (C
IE% Jobs Jobs [ st |
) compilation deployment | . \I Task A
N — . — =
Driver program ||  State (portion) j E State (portion) ,
+ L Worker ) Worker K

.......................................................
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