TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

A

Addressing Deployment Challenges
in Data Stream Processing

Corso di Sistemi e Architetture per Big Data
A.A. 2023/24
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP deployment challenges

» Let’s consider two challenges when deploying DSP
applications

a) How to place DSP operators on underlying
computing infrastructure (i.e., operator placement)

b) How to determine and adapt at run-time the number
of replicas per operator (i.e., operator elasticity)

V. Cardellini - SABD 2023/24 1

DSP operator placement

« Goal: determine which distributed computing nodes
should host and execute each application operator, with
the goal of optimizing application QoS

computing and networkmg resources

V. Cardellini - SABD 2023/24

Placement: Edge-Cloud continuum

« Edge/Fog + Cloud computing: allows to increase
scalability and availability, reduce latency, network
traffic, and power consumption

« But placement becomes more challenging

e ’ma

N

Pl
\

V. Cardellini - SABD 2023/24

Placement: challenges

« Significant network latencies
— E.g., geo-distributed resources

* Heterogeneous computing and networking resources
— E.g., capacity limits , business constraints

« Computing/network resources can be unavailable
« Data movement around the network

* Plus peculiarities of DSP applications:

— Computational requirements may be unknown a-priori and
change continuously

— Long-running applications

- Need to adapt to internal and external changes

V. Cardellini - SABD 2023/24

Placement: frameworks

* Most frameworks use simple placement
policies

* Apache Storm
— Round Robin as default strategy
— Resource Aware Scheduler as alternative

storm.apache.org/releases/2.6.2/Resource Aware Scheduler overview.html
» Takes into account resource availability on machines and
resource requirements of workloads

» But requires user to specify memory and CPU
requirements for individual topology components

V. Cardellini - SABD 2023/24

Placement: different approaches

» Several operator placement policies in literature that
address the problem but:

— Different assumptions (system model, application topology,
QoS attributes and metrics, ...)

— Different objectives
— Not easily comparable

« Main methodologies:

— Mathematical programming

» Optimal operator placement problem: NP-hard

» Does not scale well, but provides useful insights
— Heuristics

» Majority of policies
— Deep Reinforcement Learning

V. Cardellini - SABD 2023/24

Placement: different approaches

 Who is the decision maker?

— Centralized placement strategies

» Require global view (full resource and network state,
application state, workload information)

v Capable of determining optimal global solution
X Scalability

— Decentralized placement strategies
» Take decision based only on local information
v Scalability, better suited for run-time adaptation
X Optimality is not guaranteed

V. Cardellini - SABD 2023/24

ODP: Optimal DSP Placement
» We proposed ODP

— Centralized policy for optimal placement of DSP applications
— Formulated as Integer Linear Programming (ILP) problem

* Our goals:
— To compute the optimal placement (of course!)

— To provide a unified general formulation of the
placement problem for DSP applications (but not only!)

— To consider multiple QoS attributes of applications
and resources

— To provide a benchmark for heuristics

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for
Distributed Stream Processing Applications, DEBS 16

V. Cardellini - SABD 2023/24

ODP: model

DSP application

\\NORD‘
(RANK
W}‘_(RiN’iNG_S).)
@ source . operator
Operators Data streams
* Cii required computing * \; data rate from operator i to j

resources
* R;: execution time per data unit

V. Cardellini - SABD 2023/24

ODP: model

Computing and network resources

(Logical) Network links

* d,,: network delay from u to v
* B, ,: bandwidth from u to v

« A, link availability

Computing resources
» C,: amount of resources
« S,: processing speed
« A, resource availability

V. Cardellini - SABD 2023/24 10

ODP: model

Decision variables
Determine where to map DSP operators and data streams

u
|
Z
Xi,u= 1
4} [o...]
Yijwy=1
Vv
x=1 @ —[_]
J
w
[o-..]

V. Cardellini - SABD 2023/24 1

ODP: some QoS metrics

* Response time

max end-to-end delay between sources and destination

R

")

/ﬁ b
N P

« Application availability

probability that all components/links are up and running

* Inter-node traffic
overall network data rate

* Network usage
in-flight bytes

V. Cardellini - SABD 2023/24

Zinkses rate(/)Lat(/)

12

ODP: optimal problem formulation

Tunable knobs to set the
optimal placement goals

Latency

Availability

Network bandwidth and node
capacity constraints

Assignment and
integer constraints

V. Cardellini - SABD 2023/24

S

max F(x,y,r)
@,y,r

ubject to:

r Z Z Z %mz,u+
Z Z Au,0)Y(i.5), (u,0) Vp € ma

(4,9) (u,v)

a(@,y) => > auwiut
Z Z A (u,0)Y(i,5),(u,v)

(4,5) (u,v)

Bluw) = > M) Yiig). () Vu € Vies, v € Vies
(i.9)

ZC’ixi,u < Cy Yu € Vies
Z wa =1 Vi € Vasp
Tiw = D Y(i.0), () V(2,7) € Edasp,u € Vres

v
Tju = Zy(i,j),(u,v) V(i,7) € Easp,v € Vres
Tiw € {S, 1} Vi € Visp, u € Vies

Y(i,g),(uw) € {07 1} V(i,j) € EdSP> (u,v) € Eﬁfs

ODP: scalability issue

Placement problem is NP-hard: does not scale well!

105 - 105 ¢

104 T :
2 403 - 18 403k]
o) r 1o . i
£ - 1 E ; 1
=102 - 1 E 102 ¢ :
C c
ie} 2 r 1
5 101 - 45 101 |]
(o] o
(7] = 2]
¢ 100 § & 100 -]

101 ’ Fat Application 1071 | Fat Application

t Sequential Application] b Sequential Application
102 \ \ f \ 102 ! \ \ \
10 20 30 40 50 0 20 40 60 80 100
DSP Operators Computing Nodes
We need heuristics to compute placement
in a feasible amount of time
V. Cardellini - SABD 2023/24 14

Centralized placement heuristics

« Example of centralized heuristic that aims to reduce
inter-node traffic

» Aniello et al.: co-locate pairs of communicating tasks
on same computing node as to minimize inter-node
communication and balance CPU demand

Greedy heuristic — Key idea:
— Rank task pairs according to exchanged traffic
— For each pair:

» If task pairs have not been yet assigned, assign them to same
node

» If either is assigned, consider least loaded node and those
where they have been assigned. Work out the configuration
which minimizes the inter-process traffic

L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS '13

V. Cardellini - SABD 2023/24 15

Decentralized placement heuristic

» Heuristics goal: reduce network usage

— Network usage metric combines link latencies and exchanged
data rates among DSP operators:

Zlinks»el rate(/)Lat(/)

« Pietzuch et al. exploit spring relaxation idea:

— DSP application regarded as a system of springs, whose
minimum energy configuration corresponds to minimizing
network usage

» Features
— Decentralized policy to minimize network impact

— Adaptive to change in network conditions

P. Pietzuch et al., Network-aware operator placement for stream-processing systems,

ICDE ‘06
V. Cardellini - SABD 2023/24 16

Decentralized placement heuristic

1. Represents DSP application as an equivalent system of springs

/”@35
‘O .

mmmm@%mw“

V. Cardellini - SABD 2023/24 17

Decentralized placement heuristic

2. Determines operator placement in the cost space by minimizing the
elastic energy of the equivalent system

annt
Illllllllllllllll@m ||||nnunnmmun@“‘
ttigyyy, “,
7,
umlluu,,,ll’llz,

Network of springs tries to minimize potential energy E
E =) DR()Lat(l)’

leL

Streams as springs, that restore aforce F =7 <k e s:
— Kk (spring constant): exchanged data rate on link
— s (spring extension): latency on link

V. Cardellini - SABD 2023/24 18

Decentralized placement heuristic

3. Maps its decision back to physical nodes

'H””@HHU”” «nunn@““"
: g :
"A-

V. Cardellini - SABD 2023/24 19

V. Cardellini - SABD 2023/24

ODP as benchmark

Distributed placement heuristic that minimizes network usage
Pietzuch et al. : min EE(y) =min Y > A jydf, V). (u)
(i.9) (ww):uzto
8000

I I
S-ODP_EE —
7000 - Pietzuch et al.

6000
5000
4000

3000
2000

Elastic Energy (tuple/s - s2)

1000

0 500 1000 1500 2000 2500 3000

Time (s)
V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed

0

Stream Processing Applications, DEBS '16
V. Cardellini - SABD 2023/24 20

Not only placement

« Stream processing workloads are characterized by:
— High volume and production rate

» Exploit replication (i.e., operator elasticity): concurrent
execution of multiple operator replicas on different data

portions
» How to determine the number of replicas?
sources of words count words intermediate rank total rank

>—0—0—0 -

. medium load high load . overload
21

Operator placement and replication

@ source ‘ operator . sink

V. Cardellini - SABD 2023/24 22

ODRP: Opt. DSP Replication and Placement
» We proposed ODRP

— Centralized policy for optimal replication and placement of
DSP applications

— Formulated as Integer Linear Programming (ILP) problem that
extends ODP

« OQOur goals:

— Jointly determine optimal number of replicas and their
placement

— Consider multiple QoS attributes of applications and resources
— Provide a unified general formulation

— Provide a benchmark for heuristics

 Limitation: scalability, in practice we need heuristics

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator replication and
placement for distributed stream processing systems, ACM Perf. Eval. Rew., 2017.
V. Cardellini - SABD 2023/24 23

DSP deployment challenges

» How to self-adapt at run-time the application
deployment?
» DSP applications are:
— long-running
— subject to varying workloads

— with€ 500
400 A
300 | 4
200 |
100 |

0| :
0 100 200 300 400 500 600 700

Time (minutes)
* Which main mechanisms do we need for run-time
adaptation?
— Migration: move operators from one node to another

— Elastic scaling: change parallelism at application and/or

infrastructure level
V. Cardellini - SABD 2023/24

(tuples/s)

Source data ra

Elasticity: limits of centralized approaches

» Centralized optimization algorithms do not scale for
large problem instances
» Centralized MAPE architecture does not scale in

geo-distributed environments

— Components are distributed but control logic is still
centralized

» Which solution for Edge-Cloud continuum?
Decentralize MAPE

V. Cardellini - SABD 2023/24

How to decentralize control?

* Many patterns for decentralized control
— Each one having pros and cons

«
M A E
A
N . ,
P T . . =
Master I M—>A—>P > E
] t
{ A — P //v P !]
—— —~__ L S ‘M_.A_.p_.g - TAL B JE
\ M E cee M E ‘ M > A E M > A E W | . [.
- - | - ’ = by : A - A
.~ Worker 1 ™ " WorkerN ™

Figure 1: Hierarchical MAPE: master-worker pattern Figure 2: Hierarchical MAPE: regional pattern Figure 3: Hierarchical MAPE: hierarchical control pattern

M—>A—>P—>E M—>A—>P—>E ‘M»A»P»E M—>A—>P—>E
e e . J '
il i [
M > A [PIE NI ‘M»A»P»E - - B
D L - o L,

Figure 4: Flat MAPEs: coordinated control pattern Figure 5: Flat MAPEs: information sharing pattern

D. Weyns et al., On patterns for decentralized control in self-adaptive
systems. In Software Engineering for Self-Adaptive Systems Il, 2013 -
V. Cardellini - SABD 2023/24

How to decentralize control?

e Qur approach:

— Hierarchical distributed architecture to support
run-time adaptation

— Based on efficient distribution of MAPE control loops

o Global view
ﬁ_’ﬁ\& ‘M—»A—»P—»i’ M—»A—»P—»EL

\ Local views
\/

V. Cardellini - SABD 2023/24 27

Local elasticity policy

» Let’s focus on the local policy to control the
elasticity of each DSP operator

* The policy can rely only on limited local view of
system
— e.g., utilization and input data rate of the operator it
controls
» Two classes of elasticity policies

— Classic threshold-based policy (e.g., used by AWS
Auto Scaling)

X Need experience to choose thresholds
— Based on Reinforcement Learning

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation
for elastic Data Stream Processing, Future Generation Computer Systems, 2018

V. Cardellini - SABD 2023/24

Reinforcement Learning in a nutshell

28

» A branch of ML dealing with sequential decision-making

« Agent interacts with environment through actions and
receives feedback in the form of reward (paid cost)

* Goal: learn to act as to maximize (minimize) long-term
reward (cost)

» Trial-and-error experience

RL agent

State Actions

Reward

Environment

V. Cardellini - SABD 2023/24

Reinforcement Learning in a nutshell

We consider different classes of RL
algorithms:

— Baseline model-free learning algorithms (e.g., Q-
learning)

— Model-based learning algorithms that exploit what
is known or can be estimated about system
dynamics

Sutton and Barto, Reinforcement Learning: An Introduction, 2020
V. Cardellini - SABD 2023/24 30

RL-based local elasticity policy

Monitored
State Adaptation

» At each step RL agent performs an Action
action, looking at current state s; [|

Paid cost
« Chosen action a; causes payment of -
immediate cost ¢; and transition to a new
state s;.4

» To minimize expected long-term (discounted) cost,
RL agent estimates Q(s, a)

— Q-function: expected long-run cost that follows the execution
of action a in state s

Q¢

St+1

Algorithm 1 RL-based Operator Elastic Control Algorithm
1: Initialize the Q functions
2: loop
3: choose a scaling action ag; (based on current estimates of Q)
4
5

observe the next state s;,; and the incurred cost ¢;
update the Q(s;, a;) functions based on the experience
end loop

D Lk

V. Cardellini - SABD 2023/24 31

RL-based local elasticity policy: Q-learning

» Q-learning: baseline model-free RL algorithm

» Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current
estimates of Q-function stored in Q-table) by greedily
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its
knowledge about system

* We consider e-greedy action selection method Q-table
State/Action a ap
S1 Q(Sl, 31) Q(Sl, 32) .
S2 Q(s2,a1) | Q(s2, a2) | ...
Sn Q(sn a1) | Q(snya2) | ...

« Q-learning: update step of Q-function

a’ e A(siy+1)

Q (si,a) < (1 —a)Q (i, a;) + [Ci +y min Q(Si1, a')]

V. Cardellini - SABD 2023/24 32

RL-based local elasticity policy:
advanced RL techniques

* We have exploited advanced RL techniques in order
to deal with large state space (e.g., due to
heterogeneous computing resources)

— Function Approximation
— Deep Learning

— Goal: build approximate representations of state space and
achieve near-optimal solutions with reduced memory
demand

» Let’s consider the high-level ideas

* To learn more about:
— Our tutorial at Performance 2021 Reinforcement Learning for
Run Time Performance Management in the Cloud/Edge
— Russo Russo et al., Hierarchical Auto-Scaling Policies for
Data Stream Processing on Heterogeneous Resources,
ACM TAAS, 2023

V. Cardellini - SABD 2023/24

Auto-scaling on heterogeneous nodes

« We consider a heterogeneous computing

infrastructure

— Nodes with different types/amount of resources

* RL agent must decide not only how many replicas to
run but also which types of nodes to host them

V. Cardellini - SABD 2023/24

>~

Replication

\

Homogeneous

Y

Y

How to formulate?

>

Replication

Heterogeneous

34

* N resource types: Ties ={ 5 & f@ }
. State s = (k, A)

— k; = #replicas on nodes of type i

— A =input data rate

« Actions A(s)={(0,T): 6e{-1,+1}, T

€T, .ssU{do—nothing}

 Cost = w,sresource cost + w,.sperformance
+ w,sreconfiguration

V. Cardellini - SABD 2023/24

.
.
.
.
.
.
.
.
-
.
-

Monitored

State Adaptation
Action

Paid cost

Managed System

Strl

.

Ct

35

Standard RL algorithms do not work

* Q-learning does not work
X Too much memory to store tabular representation

of Q-function Soal o
52 Q(s2,a1) | Qsz, a2) | ...
X Very SIOW Convergence S,. Q(sn, 1) | '(.?.(smaz) [...

QL ——

100 GB .
0.3 QL+PDS Q-learning
10 GB Optimal Offline —a- -
0.25
1GB e
e 0.2

g 3
> o
S 100 MB &)
1S
2 fomB /‘/ g’ 0.15
g 1 MB < 0.1
' '
100 KB 005 |
12 4 6 8 10 0
Available Node Types 100 200 300 400
. Time Steps (x1,000)
Note: each operator has its own Q-table!
V. Cardellini - SABD 2023/24 36

How to improve?

* We exploit multiple solutions
1. Separate the known from the unknown, inject partial model
knowledge (i.e., post-decision states) and learn only the
unknown part
— Do we really need to learn everything from scratch?
» We know which is the impact of scaling actions on the current
deployment
» We know whether a reconfiguration cost is paid after a certain
action
* We can estimate performance-related costs through a model

QL ——

0.3 QL+PDS
Optimal Offline —a- -
0.25
0.2

0.15
0.1
0.05 | _ e

0

Avg. Cost

/ Partial model knowledge

100 200 300 400
Time Steps (x1,000)
V. Cardellini - SABD 2023/24 37

How to improve?

» We exploit multiple solutions

2. Resort to non-linear function approximation (deep
Q network)

3. Combine all together

DQL —e—
0.3 DQL+PDS —&—

0.25
0.2

Function approximation
0.15 M /
0.1

0.05 NB—E—E—E——E—E— <4 Partial model knowledge
0

100 200 300 400 +
Time Steps (x1,000) Function approximation

Avg. Cost

V. Cardellini - SABD 2023/24

Other DSP deployment challenges

« DSP applications and serverless DSP in the
Edge-Cloud continuum?

« How to provide security guarantees?
» Possible topics for theses

V. Cardellini - SABD 2023/24 39

