

# Addressing Deployment Challenges in Data Stream Processing

#### Corso di Sistemi e Architetture per Big Data

A.A. 2023/24 Valeria Cardellini

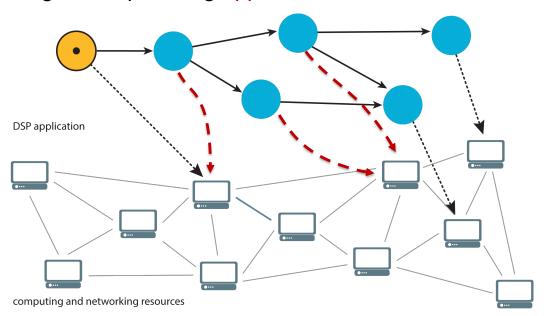
Laurea Magistrale in Ingegneria Informatica

#### DSP deployment challenges

- Let's consider two challenges when deploying DSP applications
- a) How to place DSP operators on underlying computing infrastructure (i.e., operator placement)
- b) How to determine and adapt at run-time the number of replicas per operator (i.e., operator elasticity)

# DSP operator placement

 Goal: determine which distributed computing nodes should host and execute each application operator, with the goal of optimizing application QoS



V. Cardellini - SABD 2023/24

# Placement: Edge-Cloud continuum

- Edge/Fog + Cloud computing: allows to increase scalability and availability, reduce latency, network traffic, and power consumption
- · But placement becomes more challenging



## Placement: challenges

- Significant network latencies
  - E.g., geo-distributed resources
- Heterogeneous computing and networking resources
  - E.g., capacity limits, business constraints
- Computing/network resources can be unavailable
- Data movement around the network
- Plus peculiarities of DSP applications:
  - Computational requirements may be unknown a-priori and change continuously
  - Long-running applications
    - → Need to adapt to internal and external changes

V. Cardellini - SABD 2023/24

#### Placement: frameworks

- Most frameworks use simple placement policies
- Apache Storm
  - Round Robin as default strategy
  - Resource Aware Scheduler as alternative

storm.apache.org/releases/2.6.2/Resource Aware Scheduler overview.html

- Takes into account resource availability on machines and resource requirements of workloads
- But requires user to specify memory and CPU requirements for individual topology components

# Placement: different approaches

- Several operator placement policies in literature that address the problem but:
  - Different assumptions (system model, application topology, QoS attributes and metrics, ...)
  - Different objectives
  - Not easily comparable
- Main methodologies:
  - Mathematical programming
    - Optimal operator placement problem: NP-hard
    - · Does not scale well, but provides useful insights
  - Heuristics
    - · Majority of policies
  - Deep Reinforcement Learning

V. Cardellini - SABD 2023/24

#### Placement: different approaches

- Who is the decision maker?
  - Centralized placement strategies
    - Require global view (full resource and network state, application state, workload information)
    - √ Capable of determining optimal global solution
    - X Scalability
  - Decentralized placement strategies
    - Take decision based only on local information
    - √ Scalability, better suited for run-time adaptation
    - X Optimality is not guaranteed

# **ODP: Optimal DSP Placement**

- We proposed ODP
  - Centralized policy for optimal placement of DSP applications
  - Formulated as Integer Linear Programming (ILP) problem
- · Our goals:
  - To compute the optimal placement (of course!)
  - To provide a unified general formulation of the placement problem for DSP applications (but not only!)
  - To consider multiple QoS attributes of applications and resources
  - To provide a benchmark for heuristics

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, <u>Optimal Operator Placement for Distributed Stream Processing Applications</u>, DEBS '16

V. Cardellini - SABD 2023/24

#### ODP: model

#### **DSP** application



#### **Operators**

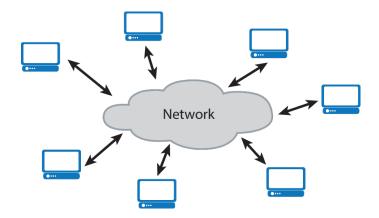
- C<sub>i</sub>: required computing resources
- R<sub>i</sub>: execution time per data unit

#### **Data streams**

•  $\lambda_{i,j}$ : data rate from operator *i* to *j* 

#### ODP: model

#### **Computing and network resources**



#### **Computing resources**

- C<sub>u</sub>: amount of resources
- S<sub>u</sub>: processing speed
- A<sub>u</sub>: resource availability

#### (Logical) Network links

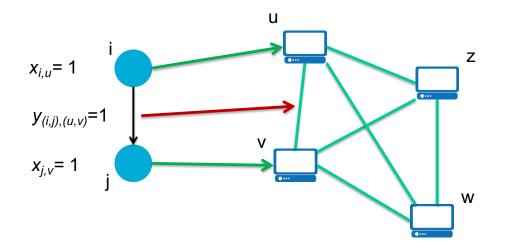
- $d_{u,v}$ : network delay from u to v
- $B_{u,v}$ : bandwidth from u to v
- $A_{u,v}$ : link availability

V. Cardellini - SABD 2023/24

#### ODP: model

#### **Decision variables**

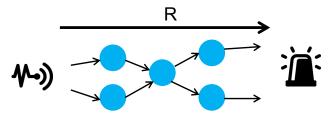
· Determine where to map DSP operators and data streams



# ODP: some QoS metrics

#### Response time

max end-to-end delay between sources and destination



- Application availability probability that all components/links are up and running
- Inter-node traffic overall network data rate
- **Network usage** in-flight bytes

 $\Sigma_{\text{links} \in I}$  rate(I)Lat(I)

V. Cardellini - SABD 2023/24 12

# ODP: optimal problem formulation

Tunable knobs to set the optimal placement goals

$$\max_{\boldsymbol{x},\boldsymbol{y},r} F(\boldsymbol{x},\boldsymbol{y},r)$$

subject to:

Latency

**Availability** 

$$r \ge \sum_{i} \sum_{u} \frac{R_i}{S_u} x_{i,u} + \sum_{(i,j)} \sum_{(u,v)} d_{(u,v)} y_{(i,j),(u,v)} \qquad \forall p \in \pi_G$$

$$a(oldsymbol{x},oldsymbol{y}) = \sum_i \sum_u a_u x_{i,u} + \sum_{(i,j)} \sum_{(u,v)} a_{(u,v)} y_{(i,j),(u,v)}$$

$$\sum_{(i,j)}^{i} \sum_{(u,v)}^{u} a_{(u,v)} y_{(i,j),(u,v)}$$

$$B_{(u,v)} \ge \sum_{(i,j)} \lambda_{(i,j)} y_{(i,j),(u,v)} \qquad \forall u \in V_{res}, v \in V_{res}$$

$$\sum_{i} C_{i} x_{i,u} \le C_{u} \qquad \forall u \in V_{res}$$

$$\sum_{u} x_{i,u} = 1 \qquad \forall i \in V_{dsp}$$

$$\sum_{i} C_i x_{i,u} \le C_u \qquad \forall u \in V_{res}$$

$$\sum_{u} x_{i,u} = 1 \qquad \forall i \in V_{dsp}$$

$$x_{i,u} = \sum_{v} y_{(i,j),(u,v)} \qquad \forall (i,j) \in E_{dsp}, u \in V_{res}$$

$$x_{j,v} = \sum_{u} y_{(i,j),(u,v)} \qquad \forall (i,j) \in E_{dsp}, v \in V_{res}$$

$$x_{i,u} \in \{0,1\} \qquad \forall i \in V_{dsp}, u \in V_{res}$$

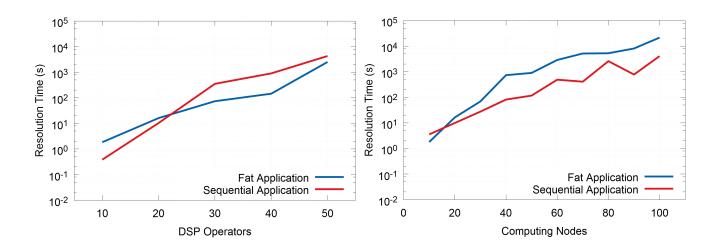
$$y_{(i,j),(u,v)} \in \{0,1\} \qquad \forall (i,j) \in E_{dsp}, (u,v) \in E_{res}$$

Network bandwidth and node capacity constraints

> Assignment and integer constraints

## ODP: scalability issue

#### Placement problem is NP-hard: does not scale well!



We need **heuristics** to compute placement in a feasible amount of time

V. Cardellini - SABD 2023/24

#### Centralized placement heuristics

- Example of centralized heuristic that aims to reduce inter-node traffic
- Aniello et al.: co-locate pairs of communicating tasks on same computing node as to minimize inter-node communication and balance CPU demand

#### Greedy heuristic – Key idea:

- Rank task pairs according to exchanged traffic
- For each pair:
  - » If task pairs have not been yet assigned, assign them to same node
  - » If either is assigned, consider least loaded node and those where they have been assigned. Work out the configuration which minimizes the inter-process traffic

L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS '13

#### Decentralized placement heuristic

- · Heuristics goal: reduce network usage
  - Network usage metric combines link latencies and exchanged data rates among DSP operators:

$$\sum_{\text{links} \in I} \text{rate}(I) \text{Lat}(I)$$

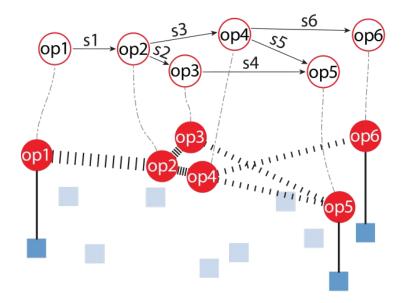
- Pietzuch et al. exploit spring relaxation idea:
  - DSP application regarded as a system of springs, whose minimum energy configuration corresponds to minimizing network usage
- Features
  - Decentralized policy to minimize network impact
  - Adaptive to change in network conditions

P. Pietzuch et al., <u>Network-aware operator placement for stream-processing systems</u>, ICDE '06

V. Cardellini - SABD 2023/24

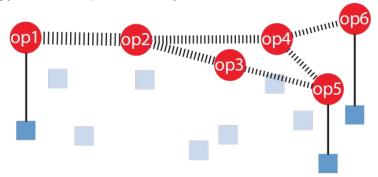
## Decentralized placement heuristic

1. Represents DSP application as an equivalent system of springs



# Decentralized placement heuristic

2. Determines operator placement in the cost space by minimizing the elastic energy of the equivalent system

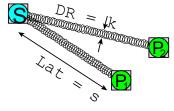


Network of springs tries to minimize potential energy E

$$E = \sum_{l \in L} DR(l) Lat(l)^2$$

Streams as springs, that restore a force  $F = \frac{1}{2} \cdot k \cdot s$ :

- k (spring constant): exchanged data rate on link
- s (spring extension): latency on link

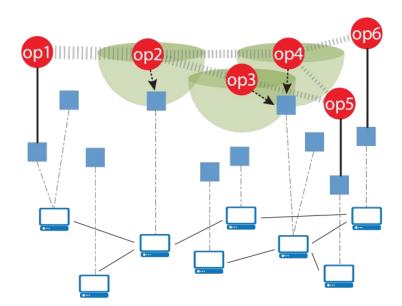


V. Cardellini - SABD 2023/24

18

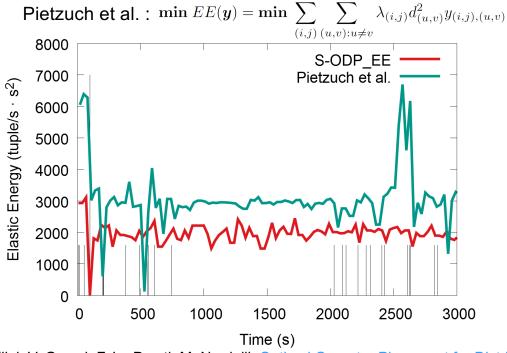
# Decentralized placement heuristic

3. Maps its decision back to physical nodes



# ODP as benchmark

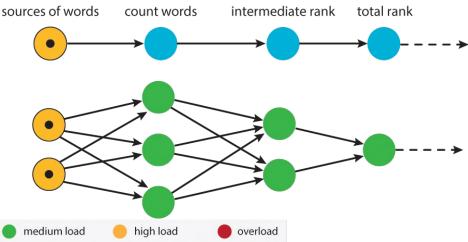
Distributed placement heuristic that minimizes network usage



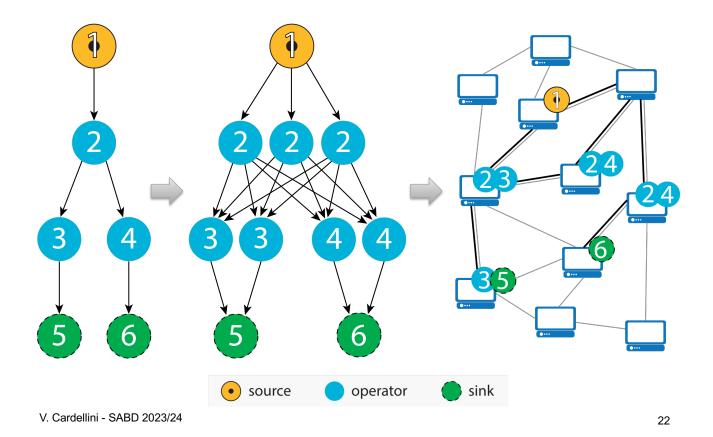
V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, <u>Optimal Operator Placement for Distributed Stream Processing Applications</u>, DEBS '16 V. Cardellini - SABD 2023/24

# Not only placement

- Stream processing workloads are characterized by:
  - High volume and production rate
- Exploit replication (i.e., operator elasticity): concurrent execution of multiple operator replicas on different data portions
- How to determine the number of replicas?



## Operator placement and replication



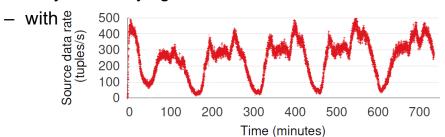
ODRP: Opt. DSP Replication and Placement

- We proposed ODRP
  - Centralized policy for optimal replication and placement of DSP applications
  - Formulated as Integer Linear Programming (ILP) problem that extends ODP
- Our goals:
  - Jointly determine optimal number of replicas and their placement
  - Consider multiple QoS attributes of applications and resources
  - Provide a unified general formulation
  - Provide a benchmark for heuristics
- Limitation: scalability, in practice we need heuristics

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, <u>Optimal operator replication and placement for distributed stream processing systems</u>, *ACM Perf. Eval. Rew.*, 2017.

# DSP deployment challenges

- How to self-adapt at run-time the application deployment?
- · DSP applications are:
  - long-running
  - subject to varying workloads



- Which main mechanisms do we need for run-time adaptation?
  - Migration: move operators from one node to another
  - Elastic scaling: change parallelism at application and/or infrastructure level

V. Cardellini - SABD 2023/24

# Elasticity: limits of centralized approaches

- Centralized optimization algorithms do not scale for large problem instances
- Centralized MAPE architecture does not scale in geo-distributed environments
  - Components are distributed but control logic is still centralized
- Which solution for Edge-Cloud continuum?
   Decentralize MAPE

#### How to decentralize control?

#### Many patterns for decentralized control

- Each one having pros and cons

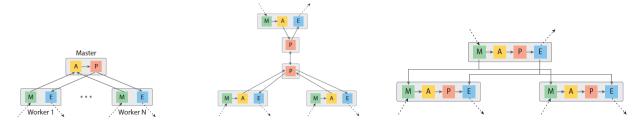


Figure 1: Hierarchical MAPE: master-worker pattern

Figure 2: Hierarchical MAPE: regional pattern

Figure 3: Hierarchical MAPE: hierarchical control pattern

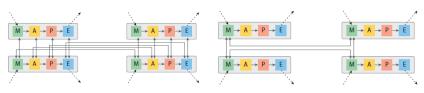


Figure 4: Flat MAPEs: coordinated control pattern

Figure 5: Flat MAPEs: information sharing pattern

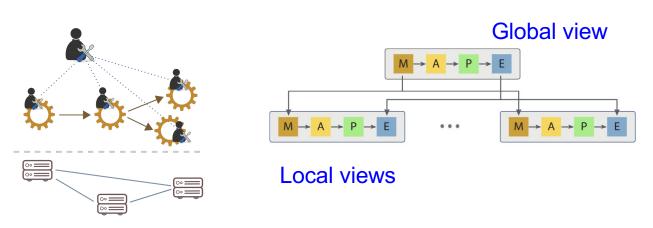
D. Weyns et al., <u>On patterns for decentralized control in self-adaptive systems</u>. In *Software Engineering for Self-Adaptive Systems II*, 2013

V. Cardellini - SABD 2023/24

26

#### How to decentralize control?

- Our approach:
  - Hierarchical distributed architecture to support run-time adaptation
  - Based on efficient distribution of MAPE control loops



#### Local elasticity policy

- Let's focus on the local policy to control the elasticity of each DSP operator
- The policy can rely only on limited local view of system
  - e.g., utilization and input data rate of the operator it controls
- Two classes of elasticity policies
  - Classic threshold-based policy (e.g., used by AWS Auto Scaling)
    - X Need experience to choose thresholds
  - Based on Reinforcement Learning

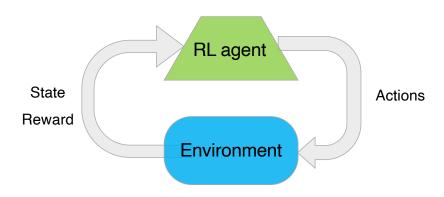
V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, <u>Decentralized self-adaptation</u> for elastic Data Stream Processing, *Future Generation Computer Systems*, 2018

V. Cardellini - SABD 2023/24

28

# Reinforcement Learning in a nutshell

- A branch of ML dealing with sequential decision-making
- Agent interacts with environment through actions and receives feedback in the form of reward (paid cost)
- Goal: learn to act as to maximize (minimize) long-term reward (cost)
- Trial-and-error experience



# Reinforcement Learning in a nutshell

- We consider different classes of RL algorithms:
  - Baseline model-free learning algorithms (e.g., Qlearning)
  - Model-based learning algorithms that exploit what is known or can be estimated about system dynamics

Sutton and Barto, Reinforcement Learning: An Introduction, 2020

V. Cardellini - SABD 2023/24 30

# RL-based local elasticity policy

Monitored State

Paid cost

Adaptation Agent

Managed System

- At each step RL agent performs an action, looking at current state s<sub>t</sub>
- Chosen action at causes payment of immediate cost c<sub>t</sub> and transition to a new state St+1
- To minimize expected long-term (discounted) cost, RL agent estimates Q(s, a)
  - Q-function: expected long-run cost that follows the execution of action a in state s

#### **Algorithm 1** RL-based Operator Elastic Control Algorithm

- 1: Initialize the O functions
- 2: **loop**
- choose a scaling action  $a_i$  (based on current estimates of Q) 3:
- 4: observe the next state  $s_{i+1}$  and the incurred cost  $c_i$
- update the  $Q(s_i, a_i)$  functions based on the experience
- 6: end loop

V. Cardellini - SABD 2023/24 31

Adaptation

Action

# RL-based local elasticity policy: Q-learning

- Q-learning: baseline model-free RL algorithm
- Given current state, the agent chooses next action
  - Either exploiting its knowledge about system (i.e., current estimates of Q-function stored in Q-table) by greedily selecting the action that minimizes the estimated future costs
  - Or exploring by selecting a random action to improve its knowledge about system
    - We consider ε-greedy action selection method

| Q-table |            |  |  |  |  |  |
|---------|------------|--|--|--|--|--|
| $a_1$   | <b>a</b> 2 |  |  |  |  |  |
|         |            |  |  |  |  |  |

| State/Action          | $a_1$        | a <sub>2</sub> | ••• |
|-----------------------|--------------|----------------|-----|
| $s_1$                 | $Q(s_1,a_1)$ | $Q(s_1,a_2)$   |     |
| <i>s</i> <sub>2</sub> | $Q(s_2,a_1)$ | $Q(s_2, a_2)$  |     |
| •••                   |              | •••            |     |
| Sn                    | $Q(s_n,a_1)$ | $Q(s_n,a_2)$   |     |

Q-learning: update step of Q-function

$$Q(s_i, a_i) \leftarrow (1 - \alpha)Q(s_i, a_i) + \alpha \left[c_i + \gamma \min_{a' \in A(s_{i+1})} Q(s_{i+1}, a')\right]$$

V. Cardellini - SABD 2023/24 32

# RL-based local elasticity policy: advanced RL techniques

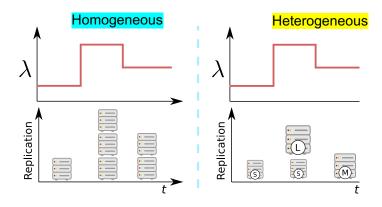
- We have exploited advanced RL techniques in order to deal with large state space (e.g., due to heterogeneous computing resources)
  - Function Approximation
  - Deep Learning
  - Goal: build approximate representations of state space and achieve near-optimal solutions with reduced memory demand
- Let's consider the high-level ideas
- To learn more about:
  - Our tutorial at Performance 2021 Reinforcement Learning for Run Time Performance Management in the Cloud/Edge
  - Russo Russo et al., Hierarchical Auto-Scaling Policies for Data Stream Processing on Heterogeneous Resources, ACM TAAS, 2023

V. Cardellini - SABD 2023/24

33

# Auto-scaling on heterogeneous nodes

- We consider a heterogeneous computing infrastructure
  - Nodes with different types/amount of resources
- RL agent must decide not only how many replicas to run but also which types of nodes to host them

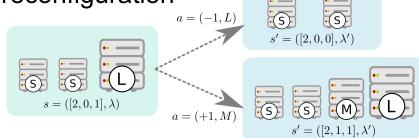


V. Cardellini - SABD 2023/24

#### How to formulate?

- State s = (**k**, λ)
  - $k_i = \#$ replicas on nodes of type i
  - $-\lambda$  = input data rate
- Actions A(s)= $\{(\delta,\tau): \delta \in \{-1,+1\}, \tau \in T_{res}\} \cup \{do-nothing\}$
- $\begin{array}{c} \text{Monitored} \\ \text{State} & \text{Adaptation} \\ s_t & \text{Adaptation Agent} \\ \hline c_{t-1} & \text{Adaptation Agent} \\ \hline a_t & \\ \hline s_{t+1} & \\ \hline c_t & \text{Managed System} \end{array}$

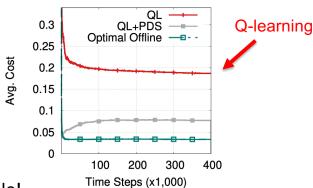
• Cost =  $w_{res}$  resource cost +  $w_{perf}$  performance +  $w_{rcf}$  reconfiguration



# Standard RL algorithms do not work

- Q-learning does not work
  - X Too much memory to store tabular representation of Q-function
  - X Very slow convergence

| 100 GB                                        |   |   |   |                 |                |   |    |
|-----------------------------------------------|---|---|---|-----------------|----------------|---|----|
| 10 GB                                         |   |   |   |                 |                |   |    |
| <u>ම</u> 1 GB                                 |   |   |   |                 |                |   |    |
| Osed Memory [log] 1 GB 100 MB 10 MB 1 MB 1 MB |   |   |   |                 |                |   |    |
| ₩ 10 MB                                       |   |   | / |                 |                |   |    |
| ss 1 MB                                       |   |   |   |                 |                |   |    |
| 100 KB                                        | / | * |   |                 |                |   |    |
|                                               | 1 | 2 |   | 4<br>railable N | 6<br>ode Types | 8 | 10 |



 $Q(s_2, a_1)$   $Q(s_2, a_2)$ 

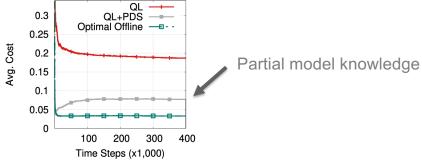
 $Q(s_n, a_1) \mid Q(s_n, a_2) \mid \dots$ 

Note: each operator has its own Q-table!

V. Cardellini - SABD 2023/24

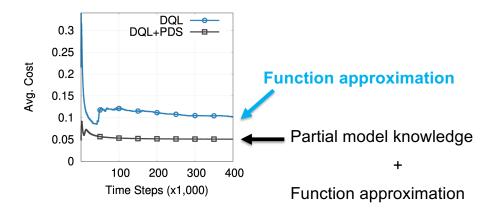
## How to improve?

- We exploit multiple solutions
- Separate the known from the unknown, inject partial model knowledge (i.e., post-decision states) and learn only the unknown part
  - Do we really need to learn everything from scratch?
    - We know which is the impact of scaling actions on the current deployment
    - We know whether a reconfiguration cost is paid after a certain action
    - · We can estimate performance-related costs through a model



# How to improve?

- · We exploit multiple solutions
- Resort to non-linear function approximation (deep Q network)
- 3. Combine all together



V. Cardellini - SABD 2023/24

# Other DSP deployment challenges

- DSP applications and serverless DSP in the Edge-Cloud continuum?
- How to provide security guarantees?
- Possible topics for theses