
Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Data Acquisition and Ingestion

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2023/24

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

1

Components of a data pipeline

Valeria Cardellini - SABD 2023/24 2

Source: www.striim.com/blog/guide-to-data-pipelines/

Our focus

Data ingestion

• How to collect data from external and multiple data
sources and ingest it into a system where it can be
stored and later analyzed?
– Using distributed file systems, NoSQL data stores, batch

processing frameworks

• How to connect external data sources to stream or in-
memory processing systems for immediate use?

• How to perform some data preprocessing (e.g., data
transformation, data conversion)?

• Goal of a data ingestion pipeline: move data - either
batched or streaming - from multiple sources to a
target destination, making it available for further
processing and analysis

Valeria Cardellini - SABD 2023/24 3

Driving factors

• Source type and location
– Batch data sources: files, logs, RDBMS, …
– Real-time data sources: IoT sensors, social media feeds,

stock market feeds, …
– Source location

• Velocity
– How fast data is generated?
– How frequently data varies?
– Real-time or streaming data require low latency and low

overhead

• Ingestion mechanism
– Depends on data consumer
– Pull vs. push based approach

Valeria Cardellini - SABD 2023/24 4

Requirements for data acquisition and ingestion

• Ingestion
– Batch data, streaming data
– Easy writing to storage (e.g., HDFS)

• Decoupling
– Data sources should not directly be coupled to processing

framework

• High availability and fault tolerance
– Data ingestion available 24x7
– For streaming data: buffering (persistence) in case

processing framework is not available

• Scalability and high throughput
– Number of sources and consumers will increase, amount of

data will increase

Valeria Cardellini - SABD 2023/24 5

• Data provenance
• Security

– Data authentication and encryption

• Data conversion
– From multiple sources: transform data into common format
– Also to speed up processing

• Data integration
– From multiple flows to single flow

• Data compression
• Data preprocessing (e.g., filtering)
• Data routing
• Backpressure

– Data buffering in case of temporary spikes in workload, so
that data can be replayed later without loss

6Valeria Cardellini - SABD 2023/24

Requirements for data acquisition and ingestion

A unifying view

Valeria Cardellini - SABD 2023/24 7

Data acquisition layer

• Allows collecting, aggregating and moving data
• From various sources (server logs, social media, IoT

sensors, …)
• To a data store (messaging system, distributed file

system, NoSQL data store)
• We analyze

– Apache Flume
– Apache NiFi

Valeria Cardellini - SABD 2023/24 8

Apache Flume
• Distributed, reliable, and available service for

efficiently collecting, aggregating, and moving large
amounts of stream data (e.g., log data)
flume.apache.org

• Robust and fault tolerant with tunable reliability
mechanisms and failover and recovery mechanisms
– Tunable reliability levels

• Best effort: “Fast and loose”
• Guaranteed delivery: “Deliver no matter what”

• Suitable for streaming analytics

Valeria Cardellini - SABD 2023/24 9

Flume: architecture

Valeria Cardellini - SABD 2023/24 10

Flume: architecture
• Agent: JVM running Flume

– One per machine
– Can run many sources, sinks and channels

• Event
– Basic unit of data that is moved using Flume (e.g., Avro event)
– Normally ~4KB

• Source
– Produces data in the form of events

• Channel
– Connects source to sink (like a queue)
– Implements the reliability semantics

• Sink
– Removes an event from a channel and forwards it to either to

a destination (e.g., HDFS) or to another agent

Valeria Cardellini - SABD 2023/24 11

Flume: data flows
• Flume allows a user to build multi-hop flows where

events travel through multiple agents before reaching
the final destination

• Supports multiplexing the event flow to one or more
destinations

• Multiple built-in sources and sinks (e.g., Avro, Kafka)

Valeria Cardellini - SABD 2023/24 12

Flume: reliability

• Events are staged in a channel on each agent
– Channel can be either durable (FILE, will persist data to

disk) or non durable (MEMORY, will lose data if machine
fails)

• Events are then delivered to next agent or final
destination (e.g., HDFS) in the flow

• Events are removed from a channel only after they
are stored in the channel of next agent or in the final
destination

• Transactional approach to guarantee the reliable
delivery of events
– Sources and sinks encapsulate in a transaction the

storage/retrieval of events

Valeria Cardellini - SABD 2023/24 13

Apache NiFi

Valeria Cardellini - SABD 2023/24 14

• Easy to use, powerful and reliable system to automate
the flow of data between systems, mainly used for data
routing and transformation nifi.apache.org

• Highly configurable
– Flow specific QoS: loss-tolerant vs guaranteed delivery, low

latency vs high throughput
– Dynamic prioritization of queues
– Flow can be modified at runtime: useful for preprocessing
– Backpressure control

• Ease of use: drag-and-drop web-based UI to create,
manage and monitor the dataflow
– Allows to define sources from where to collect data, processors

for data transformation, destinations to store data

• Data provenance and security (SSL, data encryption)

NiFi: core concepts
• Based on flow-based programming
• Main NiFi concepts:

– FlowFile: each piece of user data moving in the system
– FlowFile Processor: performs the work (data routing,

transformation, or mediation between systems)
– Connection: linkage between processors; acts as queue
– Flow Controller: maintains knowledge of how processes

connect and manages threads and allocations
– Process Group: specific set of processes and their

connections

Valeria Cardellini - SABD 2023/24 15

connection processorprocessor

NiFi: visual command & control

• Drag and drop Processors to build a flow
nifi.apache.org/docs/nifi-docs/html/getting-started.html

• Start, stop and configure components in real time
• View errors and corresponding messages
• View statistics and health of data flow
• Create templates (i.e., reusable sub-flows) for

common Processors and Connections

Valeria Cardellini - SABD 2023/24 16

NiFi: visual command & control

Valeria Cardellini - SABD 2023/24 17

NiFi: processors

• Main steps to create and run the dataflow
– Add Processors
– Configure Processors
– Connect Processors among them
– Start and stop Processors
– Get info on Processors

Valeria Cardellini - SABD 2023/24 18

NiFi: processors
• NiFi provides many different Processors out of the

box
– Capabilities to ingest data from many different systems,

route, transform, process, split, and aggregate data, and
distribute data to many systems

– Classified by category

• Data transformation
– E.g., CompressContent, EncryptContent, ReplaceText

• Routing and mediation
– E.g., ControlRate, DistributeLoad, RouteOnContent

• Database access
– E.g., ExecuteSQL, PutSQL

• Attribute extraction
– E.g., ExtractText, HashContent, IdentifyMimeType

Valeria Cardellini - SABD 2023/24 19

NiFi: processors
• System interaction

– E.g., ExecuteProcess

• Data ingestion
– E.g., GetFile, GetFTP, GetHTTP, ListenUDP, GetHDFS,

FetchS3Object, ConsumeKafka, GetMongo, GetTwitter

• Data egress / Sending data
– E.g., PutEmail, PutFile, PutFTP, PutHDFS, PutSQL,

PublishKafka, PutMongo

• Splitting and aggregation
– E.g., SplitText, UnpackContent, MergeContent,

SplitContent

• HTTP
– E.g., GetHTTP, PostHTTP, InvokeHTTP, ListenHTTP

• Amazon Web Services
– E.g., FetchS3Object, PutS3Object, GetSQS, PutSQS

20Valeria Cardellini - SABD 2022/23Valeria Cardellini - SABD 2023/24

NiFi: architecture

Valeria Cardellini - SABD 2023/24 21

• NiFi executes within a JVM

• Multiple NiFi servers can be clustered for scalability

NiFi: use case

• Use NiFi to fetch tweets by means of NiFi’s processor
‘GetTwitter’
– Use Twitter Streaming API to retrieve tweets

• Move data stream to Apache Kafka using NiFi’s
processor ‘PublishKafka’

Valeria Cardellini - SABD 2023/24 22

Data serialization formats for Big Data

• Serialization: process of converting structured
data into a compact (binary) form

• Data serialization formats you already know
– JSON
– Protocol buffers

• Other serialization formats
– Apache Avro (row-oriented)
– Apache ORC (column oriented)
– Apache Parquet (column-oriented)
– Apache Thrift

Valeria Cardellini - SABD 2023/24 23

Choice of data serialization format

• May have a positive impact
• Faster read
• Faster write
• Support for split table files
• Support for schema evolution
• Advanced compression

Valeria Cardellini - SABD 2023/24 24

Apache Avro
• Key features avro.apache.org

– Compact, fast, binary data format
– Supports a number of data structures for serialization
– Neutral to programming language
– Simple integration with dynamic languages
– Relies on schema: data+schema is fully self-describing

• JSON-based schema segregated from data

– Can be used in RPC
– Spark (and Hadoop) can access Avro as data source
spark.apache.org/docs/latest/sql-data-sources-avro.html

• Comparing performance of serialization formats
– Avro should not be used from small objects (high

serialization and deserialization times)
– Interesting for large objects

Valeria Cardellini - SABD 2023/24 25

Apache ORC

• ORC (Optimized Row Columnar): format optimized
for analytical workloads orc.apache.org

• Key features
– Columnar storage
– Compression efficiency (e.g., native zstd)
– Predicate pushdown: query optimization technique that filters

data at the storage level before retrieving it
– Optimized for Hive
– Spark can access ORC as data source

spark.apache.org/docs/latest/sql-data-sources-orc.html

• Comparative analysis of Avro, ORC and Parquet
www.linkedin.com/pulse/comparative-analysis-avro-parquet-orc-understanding-
differences-bose

Valeria Cardellini - SABD 2023/24 26

Messaging layer: use cases

• Mainly used in data processing pipelines for
data ingestion or aggregation

• Typically used at the beginning or end of a
data processing pipeline
– E.g., at beginning of data processing pipeline:

• Incoming data from various sensors: ingest data into a
streaming system for real-time analytics or a distributed
file system for batch analytics

Valeria Cardellini - SABD 2023/24 27

Messaging layer: architectural choices

• Message queue
– ActiveMQ
– RabbitMQ
– ZeroMQ
– Amazon SQS

• Publish/subscribe
☞Kafka
☞Apache Pulsar
– NATS
– Redis

Valeria Cardellini - SABD 2023/24 28

Apache Kafka

• Analyzed in SDCC course
• In a nutshell

– Open-source, distributed pub/sub and event
streaming platform

– Designed as a replicated, distributed, persistent
commit log

– Clients produce or consume events directly
to/from a cluster of brokers, which read/write
events durably to the underlying local file system
and also automatically replicate the events
synchronously or asynchronously within the
cluster for fault tolerance and high availability

• Let’s recall the main points
Valeria Cardellini - SABD 2023/24 29

Kafka: architecture

• Kafka cluster: distributed and replicated commit log of
data over servers known as brokers

30

• Kafka maintains feeds of
messages in categories
called topics

• Producers publish
messages to a topic, while
consumers subscribe to
topics and process
published messages

Valeria Cardellini - SABD 2023/24

Kafka: topics and partitions
• For each topic, Kafka cluster maintains a partitioned

log: topic is split into a fixed number of partitions
• Each partition is an ordered, numbered, immutable

sequence of records that is continually appended to
• Each partition is replicated for fault tolerance across a

configurable number of brokers
• Partitions are distributed across brokers for scalability

31Valeria Cardellini - SABD 2023/24

Kafka: partition replication

• Each partition has one leader broker and 0 or more
followers

• Leader handles read and write requests
• A follower replicates leader and acts as backup
• Each broker is a leader for some of its partitions and

a follower for others to distribute load

Valeria Cardellini - SABD 2023/24 32

Kafka: partitions

• Producers publish their records to partitions of a topic
(round-robin or partitioned by keys), and consumers
consume published records of that topic

• Each record is associated with a monotonically
increasing sequence number, called offset
– Kafka provides the topic __consumer offsets to store

offsets

• Consumers must manage their offset

33Valeria Cardellini - SABD 2023/24

Kafka: consumers

• In Kafka design, pull approach for consumers
kafka.apache.org/documentation.html - design_pull

• Consumers use offset to track which messages have
been consumed
– Replay messages using offset

• Consumers can be grouped into a Consumer Group:
set of consumers sharing a common group ID
– A Consumer Group maps to a logical subscriber
– Each group consists of multiple consumers for scalability and

fault tolerance

34Valeria Cardellini - SABD 2023/24

Kafka: APIs

• Core APIs
1. Producer API: allows apps to

publish records of data (e.g.,
logs, IoT) to topics

2. Consumer API: allows apps to
read records from topics

3. Connect API: reusable
connectors (producers or
consumers) that connect
topics to existing applications
or data systems so to move
large collections of data into and out of Kafka
⎼ Connectors for AWS S3, HDFS, RabbitMQ, MySQL, Postgres,

AWS Lambda, MongoDB, Twitter, …
35

https://kafka.apache.org/documentation/#api

Valeria Cardellini - SABD 2023/24

Kafka: APIs

• Streams API: allows transforming streams of data
from input topics to output topics
– Kafka as real-time streaming platform

• Hands-on: use Kafka Streams to process data in
pipelines consisting of multiple stages

Valeria Cardellini - SABD 2023/24 36

Kafka @ Netflix

• Netflix uses Kafka for data collection and buffering

Valeria Cardellini - SABD 2023/24 37

See netflixtechblog.com/kafka-inside-keystone-pipeline-dd5aeabaf6bb

• Another example: www.confluent.io/blog/how-kafka-is-used-by-netflix/

Kafka @ Uber
• Uber has one of the largest Kafka deployment in the

industry

Valeria Cardellini - SABD 2023/24

www.uber.com/en-IT/blog/presto-on-apache-kafka-at-uber-scale/

38

Kafka @ Audi

Va
le

ria
 C

ar
de

llin
i -

SA
BD

 2
02

3/
24

39

• Audi uses Kafka for
real-time data
processing
– 850 sensors in each car

https://www.youtube.com/watch?v=yGLKi3TMJv8

Kafka performance

• Performance evaluation study of Apache Kafka
How Fast Can We Insert? An Empirical Performance
Evaluation of Apache Kafka, ICPADS 2020
– Achieves ingestion rate of about 421K messages/second or

92 MB/s (single topic with 1 partition and replication factor of
1) on commodity hardware and using 2 senders

– Ack level choice influences performance: configurations with
enabled acks showed better performance

Valeria Cardellini - SABD 2023/24 40

Apache Pulsar

• Cloud-native, distributed messaging and streaming
platform, originally developed by Yahoo

• Scalable, low-latency and durable messaging based
on pub-sub pattern, with support for geo-replication

• Multiple subscription types for topics
• Guaranteed message delivery with persistent

message storage provided by Apache BookKeeper
• Enables also stream-native data processing through

a serverless lightweight computing framework,
named Pulsar Functions

Valeria Cardellini - SABD 2023/24 41

Pulsar: subscription types
• A subscription is a configuration rule that determines

how messages are delivered to consumers
• Multiple subscription types: exclusive, shared (or

round-robin), failover, and key-shared

Valeria Cardellini - SABD 2023/24 42

Pulsar: architecture
• Layered architecture designed to provide scalability

and flexibility
– Stateless serving layer and stateful persistence layer
– Serving layer comprised of brokers that receive and deliver

messages
– Persistence layer comprised of Apache BookKeeper storage

nodes called bookies that durably store messages
• BookKeeper is a distributed write-ahead log

Valeria Cardellini - SABD 2023/24 43

Pulsar: architecture
• Pulsar instance of Pulsar composed of one or more

Pulsar clusters
– Clusters may be geographically distributed and data can be

geo-replicated among different clusters
– Each cluster consiste of one or more brokers, an ensemble

of bookies, and a ZooKeeper quorum
– ZooKeeper is used for cluster-level configuration and

coordination

Valeria Cardellini - SABD 2023/24 44

Cloud services for data ingestion

• Amazon Kinesis Data
Firehose
– Fully managed Ingest,

Transform, Load, e.g.,

• Google Cloud Pub/Sub
– Fully-managed real-time

pub/sub messaging service

Valeria Cardellini - SABD 2023/24 45

to S3 as data lake
– Can transform and compress streaming data before

storing it
– Can invoke Lambda functions to transform source

data

References

• Apache Flume documentation,
flume.apache.org/FlumeUserGuide.html

• Apache NiFi documentation, nifi.apache.org/docs.html

• Apache Kafka documentation,
kafka.apache.org/documentation/

• Apache Pulsar documentation,
pulsar.apache.org/docs/3.0.x/concepts-overview/
pulsar.apache.org/docs/en/standalone/

Valeria Cardellini - SABD 2023/24 46

