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MapReduce (MR): limitations 
• Programming model

– Hard to implement everything as a MR program

– Multiple MR steps even for simple tasks

• E.g., sorting words by their frequency requires two MR steps

– Lack of control, structures and data types 

• Efficiency (recall HDFS)
– High communication cost: compute (map), 

communicate (shuffle), compute (reduce)

– Read input and store output from/on disk 

– Limited exploitation of main memory 
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MapReduce: limitations 

• Lack of native support for iteration 
– Each step writes/reads data from disk: I/O overhead

– But real-world applications (e.g., ML algorithms) 

require iterating MR steps 

• Partial solution: design algorithms that minimize the 
number of iterations

• Not feasible for real-time data stream 
processing
– MR job requires to scan entire input before 

processing it
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Alternative programming models 

• Based on directed acyclic graphs (DAGs)
– Application structured as directed acyclic graph

• DAG node: operation (or task)
• DAG edge: dependency (data flow) between operations

– Spark, Spark Streaming, Flink, Storm, Airflow, 

TensorFlow, …

• SQL-based
– Hive, Spark SQL, Trino, Vertica, …

• NoSQL and NewSQL data stores
– HBase, MongoDB, Cassandra, Spanner, …

• Based on Bulk Synchronous Parallel

4Valeria Cardellini - SABD 2023/24

Alternative programming models: BSP 
• Bulk Synchronous Parallel (BSP)

– Developed by Leslie Valiant during 1980s

– Considers communication actions en masse
– Suitable for graph analytics at massive scale and 

massive scientific computations (e.g., matrix, graph 

and network algorithms)
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- Examples: Google’s 

Pregel, Apache Giraph

to perform graph 

processing on big data
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Apache Spark

• Unified engine for large-scale data analytics

– Leading platform for batch/streaming data, SQL analytics, 
data science and machine learning on clusters of nodes

– Multi-language: Scala, Python, Java and R

• In-memory data storage for fast iterative processing

– At least 10x faster than Hadoop MapReduce

• Suitable for execution of DAGs and powerful 

optimization

• Compatible with Hadoop’s storage APIs

– Can read/write to any Hadoop-supported system, including 
HDFS and HBase
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Spark milestones
• Spark project started in 2009

• Developed originally at UC Berkeley’s AMPLab by 

Matei Zaharia for his PhD thesis

• Open sourced in 2010, Apache project from 2013

• In 2014, Zaharia founded Databricks

• Current release: 3.5.1

• Top open source project for Big Data processing
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See Stack Overflow Trends



Programming model different from Mapreduce, why?

• MapReduce simplified Big Data analysis

– But executes jobs in a simple but rigid structure
• Step to process or transform data (map)
• Step to synchronize (shuffle)
• Step to combine results (reduce)

• As soon as MapReduce got popular, users wanted:

– Iterative computations, e.g., graph and ML algorithms
– Interactive ad-hoc queries
– More efficiency
– Faster in-memory data sharing across parallel jobs 

(required by both iterative and interactive applications)
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Spark: In-memory computation
• Key idea: keep and share datasets in main memory

• Distributed in-memory: 10x-100x faster than disk 

and network
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Spark vs Hadoop MapReduce
• Underlying programming paradigm similar to 

MapReduce

– Basically “scatter-gather”: scatter data and computation on 
multiple cluster nodes that run in parallel processing on 
data portions; gather final results

• Spark offers a more general data model 

– RDDs, DataSets, DataFrames

• Spark offers a more general and developer-friendly 

programming model

– Map -> Transformations in Spark 
– Reduce -> Actions in Spark

• Spark is storage agnostic

– Not only HDFS, but also Cassandra, S3, Parquet files, …
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Spark stack
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Spark core

• Provides basic functionalities (including task 
scheduling, memory management, fault 
recovery, interacting with storage systems) 
used by other components

• Provides a data abstraction called resilient 
distributed dataset (RDD), a collection of 
items distributed across many compute 
nodes that can be manipulated in parallel
– Spark Core provides APIs for building and 

manipulating these collections

• Written in Scala but APIs for Java, Python 
and R
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Spark as unified analytics engine

• A rich set of integrated higher-level modules 
built on top of Spark
– Can be combined seamlessly in the same 

application

• Spark SQL
– For SQL and structured data processing

– Supports many data sources (Hive tables, Parquet, 

JSON, …)

• Structured Streaming
– For incremental computation and stream 

processing
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PageRank performance (20 
iterations, 3.7B edges)

Spark as unified analytics engine

• MLlib
– Scalable ML library

– Many distributed algorithms: 

feature extraction, 

classification, regression, 

clustering, recommendation, …
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• GraphX
– API for manipulating graphs and 

performing graph-parallel computations

– Includes also common graph algorithms 

(e.g., PageRank)

• Pandas API on Spark 
– For pandas workloads

Logistic regression performance

Spark on top of cluster managers

• Spark can exploit many cluster resource 
managers which allocate cluster resources to 
run the applications

1. Standalone
– Simple cluster manager included with Spark that 

makes it easy to set up a cluster

2. Hadoop YARN
– Hadoop cluster manager

3. Mesos
– Cluster manager from AMPLab

4. Kubernetes
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Spark architecture
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• Master/worker architecture
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Spark architecture
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spark.apache.org/docs/latest/cluster-overview.html

• Main program (called driver program) connects to 

cluster manager, which allocates resources

• Worker nodes in which executors run

• Executors are processes that run computations

and store data for the application
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Spark architecture
• Each application consists of a driver program and 

executors on the cluster

– Driver program: process which runs user’s main function and 
creates SparkContext object

– SparkContext: main entry point for Spark functionality, it tells
Spark how to access a cluster

• Each application gets its own executors, which are 

processes which stay up for the duration of the 

application and run tasks in multiple threads

– Isolation of concurrent applications

• To run on a cluster:

– SparkContext connects to cluster manager, which allocates 
cluster resources

– Once connected, Spark acquires executors on cluster nodes 
and sends the application code (e.g., jar) to executors

– Finally, SparkContext sends tasks to executors to run
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Spark architecture
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Executor Executor



Resilient Distributed Datasets (RDDs)

• RDDs are the key programming abstraction in 
Spark: a distributed memory abstraction

• Immutable, partitioned and fault-tolerant 
collection of elements that can be manipulated 
in parallel
– Like a LinkedList <MyObjects>

– Stored in main memory across the cluster nodes

• Each worker node that is used to run an application 
contains at least one partition of the RDD(s) that is (are) 
defined in the application
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RDDs: distributed and partitioned

• Stored in main memory of the executors running in 
the worker nodes (when it is possible) or on node 
local disk (if not enough main memory)

• Allow executing in parallel the code invoked on 
them
– Each executor of a worker node runs the specified code 

on its partition of the RDD
– Partition: atomic chunk of data (a logical division of data) 

and basic unit of parallelism
– Partitions of an RDD can be stored on different cluster 

nodes
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RDDs: immutable and fault-tolerant 
• Immutable once constructed

– RDD content cannot be modified

– New RDD is created from existing RDD(s)

• Automatically rebuilt on failure (without
replication)
– Track lineage information so to efficiently recompute 

missing or lost data due to (node) failures

– For each RDD, Spark knows how it has been 

constructed and can rebuild it if a failure occurs

– This information is represented by means of RDD 

lineage DAG which keeps track of one or more 

operations that lead to the creation of that RDD
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RDD: Spark management

• Spark manages the split of 

RDDs in partitions and 

allocates RDDs’ partitions 

to cluster nodes

• Spark hides complexity of 

fault tolerance

– RDDs are automatically 
rebuilt in case of failure 
using the RDD lineage DAG, 
that defines the logical 
execution plan
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RDD API

• RDD API
– Clean language-integrated API for Scala, Python, 

Java, and R

– Can be used interactively from console (Scala and 

PySpark)

• RDD suitability
– Best suited for unstructured data

– Provides fine-grained control over physical 

distribution of data

• Also higher-level APIs: DataFrame and DataSet
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Python Spark (PySpark)

• PySpark: Python API for Spark supporting the 

collaboration of Spark and Python

• Provides PySpark shell for interactive analysis

• Supports all of Spark’s features such as Spark SQL, 

DataFrames, Structured Streaming, MLlib and Spark 

Core
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PySpark: SparkContext

• SparkContext: entry point for low-level API 

functionalities, the connection to a Spark cluster

• To create a SparkContext you first need to build 

a SparkConf object that contains information about

application

conf = SparkConf().setAppName(appName).setMaster(master) 
sc = SparkContext(conf=conf)

• SparkConf allows to set various Spark parameters, 

among which

– master: URL of cluster to connect to
– appName: name of job to run

• In the shell, SparkContext is already available as sc
See spark.apache.org/docs/latest/api/python
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• Data flow is composed of any number of data 

sources, operators, and data sinks by connecting 

their inputs and outputs

• A Directed Acyclic Graph (DAG) in Spark is a set 

of nodes and links, where nodes represent the 

operations on RDDs and directed links represent 

the data dependencies between operations

– Acyclic graph: there are no cycles or loops in the graph
– Generalization of MapReduce model, which has only 

two operations (Map and Reduce)

Spark programming model: DAG
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• DAG can be visualized using Spark Web UI

– In figure: WordCount DAG

Spark programming model: DAG
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• DAG is divided into stages

• Stage: set of operations that 

do not involve a shuffle of 

data, resulting in a more 

efficient computation

• As soon as a shuffle of data 

is needed (i.e., when a wide 
transformation is performed), 

the DAG will yield a new 

stage

Operations in RDD API

• Spark programs are written in terms of 
operations on RDDs

• Programming model based on parallelizable 
operations
– Higher-order functions that execute user-defined 

functions in parallel

• RDDs are created from external data or other 
RDDs

• RDDs are created and manipulated through 
operators

See spark.apache.org/docs/latest/rdd-programming-guide.html

29Valeria Cardellini - SABD 2023/24



RDD operations
• RDD operations: higher-order functions

• Two types of RDD operations: transformations and 

actions

• Transformations: coarse-grained and lazy

operations that define new RDD based on previous 

one(s)

– map, filter, join, union, distinct, …
– lazy: the new RDD representing the result of a computation 

is not immediately computed but is materialized on demand 
when an action is called

• Actions: operations that kick off a job to execute on 

a cluster and return a value to the driver program 

after running a computation on RDD or write data to 

external storage

– count, collect, save, …
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Transformations and actions on RDDs

31

• Common transformations and actions on RDDs

- Seq[T]: sequence of elements of type T
spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

spark.apache.org/docs/latest/rdd-programming-guide.html#actions
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How to create RDD
• RDD can be created by: 

– Parallelizing existing data collections of the hosting 

programming language (e.g., collections and lists of 

Scala, Java, Python, or R)

• Number of partitions specified by user
• RDD API: parallelize

– From (large) files stored in HDFS or any other file 

system

• One partition per HDFS block
• RDD API: textFile

– Transforming an existing RDD

• Number of partitions depends on transformation type
• RDD API: transformation operations (map, filter, 
flatMap)
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How to create RDD
• Turn an existing collection into an RDD

– sc is Spark context variable
– Important parameter: number of partitions 
– Spark will run one task for each partition of the cluster 

(typical setting: 2-4 partitions for each CPU in the cluster) 
– Spark tries to set the number of partitions automatically 
– You can also set it manually by passing it as a second 

parameter to parallelize, e.g., sc.parallelize(data, 10)

• Load data from storage (local file system, HDFS, or 

S3)

lines = sc.parallelize(["pandas", "i like pandas"])

lines = sc.textFile("/path/input.txt")

Examples in Python
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RDD transformations: map and filter

• map: takes as input a function which is applied 

to each element of the RDD and maps each 

input element to another element

# transform each element through a function

nums = sc.parallelize([1, 2, 3, 4])

squares = nums.map(lambda x: x * x) # [1,4,9,16]

# select those elements that func returns true 

even = squares.filter(lambda num: num % 2 == 0)  # [4,16]
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• filter: takes as input a function which is applied as 

filter to each element of the RDD, selecting only

those elements on which the function returns true

RDD transformations: flatMap

• flatMap: takes as input a function which is 

applied to each element of the RDD; can map 

each input item to zero or more output items

# split input lines into words

lines = sc.parallelize(["hello world", "hi"])

words = lines.flatMap(lambda line: line.split(" "))

#[’hello', ’world', ’hi’]

# map each element to zero or more others

ranges = nums.flatMap(lambda x: range(0, x, 1))

# [0, 0, 1, 0, 1, 2, 0, 1, 2, 3] 

range function in 
Python: ordered 
sequence of integer 
values in range 
[start;end) with non-
zero step
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RDD transformations: reduceByKey

• reduceByKey: when called on a RDD of 

key-value pairs, aggregates values with 

the same key using the specified function

• Runs parallel reduce operations, one for 

each key in the RDD

x = sc.parallelize([("a", 1), ("b", 1), ("a", 1), ("a", 1),

... ("b", 1), ("b", 1), ("b", 1), ("b", 1)], 3)

# apply reduceByKey operation

y = x.reduceByKey(lambda accum, n: accum + n)

# [('b', 5), ('a', 3)]
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RDD transformations: reduceByKey

• Let’s see the corresponding DAG
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Stage 0 Stage 1



RDD transformations: join
• join: performs an inner-join on 

the keys of two RDDs

• Only keys that are present in both 

RDDs are output

• Join candidates are independently 

processed

users = sc.parallelize([(0, "Alex"), (1, "Bert"), (2, "Curt"), 
(3, "Don")])

hobbies = sc.parallelize([(0, "writing"), (0, "gym"), (1, 
"swimming")])

users.join(hobbies).collect()

# [(0, ('Alex', 'writing')), (0, ('Alex', 'gym')), (1, 
('Bert', 'swimming'))]
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RDD transformations: join

• Let’s see the corresponding DAG
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More RDD transformations
• union: returns a new RDD that contains the union of the 

elements in the source RDD and the argument
• partitionBy: returns a copy of the RDD partitioned using 

the specified partitioner
• mapPartitions: similar to map, but runs separately on 

each partition
• distinct: returns a new RDD that contains the distinct 

elements of the source RDD
• groupByKey: when called on a key-value pair RDD, 

groups the values for each key in the RDD into a single 
sequence

• mapValues: passes each value in the key-value pair RDD 
through a map function without changing the keys

• sample: sample a fraction of the data, with or without
replacement
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How to pass functions to transformations

• Lambda expressions, for simple functions that can be 

written as an expression (see examples)

• Lambdas do not support multi-statement functions or 
statements that do not return a value

• Local defs inside the function calling into Spark, for 

longer code

• Top-level functions in a module
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Transformations and actions

• Transformations are lazy
– Are not computed till an action requires a result to be 

returned to the driver program
– Spark can build up the logical transformation plan 

• This design enables Spark to perform operations 

more efficiently as they can be grouped together

– E.g., if there were multiple filter or map operations, Spark 
can fuse them into one operation

– E.g., if Sparks knows that data is partitioned, Sparks can 
avoid moving data over the network for groupBy

• We run an action to trigger the computation

– Instructs Spark to compute a result from a series of 
transformations
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Some RDD actions

• collect: returns all the elements of the RDD as a list

• take: returns an array with the first n elements in the 

RDD

• count: returns the number of elements in the RDD

nums = sc.parallelize([1, 2, 3, 4])

nums.collect() # [1, 2, 3, 4]

nums.take(3) # [1, 2, 3]

nums.count() # 4
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Some RDD actions

• reduce: aggregates the elements in the RDD using 

the specified function

• saveAsTextFile: writes the elements of the RDD as 

a text file either to the local file system or HDFS

sum = nums.reduce(lambda x, y: x + y)

nums.saveAsTextFile("hdfs://file.txt")
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Shuffle operations
• Shuffle: Spark’s mechanism for re-distributing data so 

that it is grouped differently across partitions

– Involves copying data across executors and machines, 
making shuffle an expensive operation

• Example: with reduceByKey not all values for a single 

key necessarily reside on the same partition (or even 

the same machine), but they must be co-located to 

compute the result by means of an all-to-all operation
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• Operations which can cause a shuffle 

include

– repartition operations: repartition and 
coalesce

– ByKey operations, e.g., reduceByKey and 
groupByKey

– join operations, e.g., join and cogroup



Your very first examples in Spark
• After having installed Spark (e.g., Docker official 

image), you can run interactively the examples using 

PySpark by a terminal window

– sc is SparkContext variable

Valeria Cardellini - SABD 2023/24 46

First examples

• Let’s first analyze some simple examples 
using RDD API
– Pi estimation 

– WordCount

– Compute average

• More examples: see those distributed with 
Spark
– Java 

github.com/apache/spark/tree/master/examples/src/main/java/org/a
pache/spark/examples

– Python 

github.com/apache/spark/tree/master/examples/src/main/python
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Pi estimation in Python

def inside(p): 
x, y = random.random(), random.random() 
return x*x + y*y < 1 

samples = sc.parallelize(range(0, NUM_SAMPLES))
within_circle = samples.filter(inside)
count = within_circle.count() 
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)) 
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Pi estimation in Python with chaining

def inside(p): 
x, y = random.random(), random.random() 
return x*x + y*y < 1 

count = sc.parallelize(range(0, NUM_SAMPLES)) \
.filter(inside).count() 

print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)) 
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• Transformations and actions can be chained 

together



Pi estimation in Scala 
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val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
val x = math.random
val y = math.random
x*x + y*y < 1 

}.count() 
println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

• To run Spark shell in Scala

$ spark-shell

WordCount in Python
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text_file = sc.textFile("hdfs://inputfile")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://output")



WordCount in Python
• Alternative solution: use countByValue

– Action that returns the count of each unique value in the 
RDD as a dictionary of (value, count) pairs

– The driver collects the partial results of the partitions and 
does the merge itself

• Which solution is better? Depends on dataset size

– Large dataset: use map, reduceByKey and collect to 
exploit parallelism of reduceByKey

– Small dataset: countByValue may introduce less network 
traffic (one stage less)
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text_file = sc.textFile("hdfs://inputfile")
words = text_file.flatMap(lambda line: line.split(" "))
wordCount = words.countByValue()
print(wordCount)

Compute average in Python

# Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31),  

("Jules", 30), ("TD", 35), ("Brooke", 25)])
# Use map and reduceByKey transformations with their lambda 
# expressions to aggregate and then compute average 
agesRDD = (dataRDD
.map(lambda x: (x[0], (x[1], 1)))
.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
.map(lambda x: (x[0], x[1][0]/x[1][1]))) 
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• A common pattern in data analysis

• Let’s aggregate all the ages for each name, group by 

name, and then average the ages



Java: Lambda expressions
• Lambda expressions are short blocks of code which 

take in parameters and return a value

– Enable to treat functionality as method argument, or code 
as data 

• Similar to methods (anonymous methods, i.e., 

methods without names), but do not need a name 

and can be implemented in the body itself

• Usually passed as parameters to a function

• Arrow operator -> divides the lambda expressions in 

two parts

– Left side: parameters required by lambda expression
– Right side: actions of lambda expression
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Pi estimation in Java with chaining

List<Integer> l = new ArrayList<>(NUM_SAMPLES); 
for (int i = 0; i < NUM_SAMPLES; i++) { 

l.add(i); 
} 
long count = sc.parallelize(l).filter(i -> { 

double x = Math.random(); 
double y = Math.random(); 
return x*x + y*y < 1; 

}).count(); 
System.out.println("Pi is roughly " + 4.0 * count / NUM_SAMPLES); 
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WordCount in Java
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• JavaPairRDD: RDD containing key/value pairs

• Spark’s Java API allows to create tuples using 

scala.Tuple2 class

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaRDD<String> words = lines.flatMap(line -> 

Arrays.asList(SPACE.split(line).iterator());

JavaPairRDD<String, Integer> ones = words.mapToPair(w -> 

new Tuple2<>(w, 1));

JavaPairRDD<String, Integer> counts = ones.reduceByKey((x, y) ->

x+y);

counts.saveAsTextFile("output");

WordCount in Java with chaining
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JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaPairRDD<String, Integer> counts = lines

.flatMap(s -> Arrays.asList(SPACE.split(line)).iterator())

.mapToPair(w -> new Tuple2<>(w, 1))

.reduceByKey((x, y) -> x + y);

counts.saveAsTextFile("output");



Initializing Spark: SparkContext

• First step in Spark program using RDD API: create 

SparkContext object

– Represents connection to Spark cluster, can be used to create 
RDDs on that cluster

• SparkConf object: configuration for a Spark application

– Used to set various Spark parameters as key-value pairs 

• Only one SparkContext may be active per JVM

– stop() active SparkContext before creating a new one
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SparkConf().setMaster("local").setAppName("My app")

SparkSession
• From Spark 2.0, SparkSession unifies the different 

contexts from different APIs and represents the entry 

point into all functionalities in Spark

• Available as variable spark from Spark shell and 

PySpark

• Within application: use builder to create and 

configure SparkSession
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Java

Python



Pi estimation in Python: using SparkSession
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Full example in Python using

SparkSession and API RDD

Access SparkContext from 
SparkSession and operate on RDD

Create and configure SparkSession

Slightly different from slide 48: map 
and reduce rather than filter and count 

github.com/apache/spark/blob/master/examples/src/main/python/pi.py

WordCount in Java: using SparkSession
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Full example in Java using

SparkSession and API RDD

Create and configure SparkSession



WordCount in Java: using SparkSession
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Use RDDUse Dataset

github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/
JavaWordCount.java

Launch applications

• Launch Spark application using bin/spark-submit
script
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See spark.apache.org/docs/latest/submitting-applications.html



Launch applications: main options
• --class: app entry point (e.g., 

org.apache.spark.examples.SparkPi)
• --master: master URL for cluster (e.g.,  

spark://23.195.26.187:7077) (default: local)
• --deploy-mode: whether to deploy driver on worker nodes 

(cluster) or locally as external client (default: client) 
• --conf: Spark configuration property in key=value format
• application-jar: path to jar including app and all 

dependencies. Be careful: URL must be globally visible, e.g., 
hdfs:// path or a file:// path that is present on all nodes

• For Python app: pass a .py file in place of application-jar
and add Python .zip, .egg or .py files to the search path using    
--py-files

• application-arguments: arguments passed to the main 
method of the main class, if any
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Launch applications: example

./bin/spark-submit --class 
org.apache.spark.examples.SparkPi \

--master local \
--deploy-mode client \
--num-executors 2 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
examples/jars/spark-examples*.jar 10
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./bin/spark-submit \
examples/src/main/python/pagerank.py \
data/mllib/pagerank_data.txt 10

• Launch PageRank in Python passing arguments

• Launch Pi estimation in Java configuring Spark and 

passing argument



Deploy modes and cluster managers

• Spark supports different deploy modes and cluster 

managers, so it can run in different configurations 

and environments
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Caching and persistence
• By default, RDDs are recomputed each time you run 

an action on them

– This can be expensive (in time) if you need to use the RDD 
more than once (e.g., iterative algorithms) 

• To avoid computing an RDD more than once, ask 

Spark to persist (or cache) data for rapid reuse

– To persist RDD, use persist() or cache() methods on it
– When RDD is persisted, each node stores in memory any 

partitions of it and reuses them in other actions on that RDD 
(or RDDs derived from it): future actions are much faster (more 
than 10x)

• Key tool for iterative algorithms and fast interactive use

• Cache and persist also DataFrame and Dataset
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Caching and persistence: storage level
• Using persist() you can specify the storage level for 

persisting an RDD

– cache() is equivalent to persist() with default storage level 
(MEMORY_ONLY)

• Main storage levels:

– MEMORY_ONLY: if the RDD does not fit in memory, some 
partitions will not be cached and will be recomputed on the fly
each time they are needed

– MEMORY_AND_DISK
– DISK_ONLY

• Which storage level is best? 

– Try to keep in-memory as much as possible
– Try not to spill to disk unless the functions that computed your 

datasets are expensive (e.g., filter a large amount of data)
– Use replicated storage levels only if you want fast fault 

recovery
68Valeria Cardellini - SABD 2023/24

Caching and persistence: performance speedup
• Spark outperforms Hadoop by up to 100x in 

iterative ML

– Speedup comes from avoiding I/O and deserialization 
costs by storing data in memory
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Source: “Apache Spark: A Unified Engine for Big Data Processing”

110 s/iteration

1st iteration 80 s

Further iterations 1 s



Caching and persistence: example
• Let’s analyze how persistence is used in 

iterative algorithms

• Naïve implementation of K-means algorithm

– At each iteration we need to use the RDD 

containing the data points to be clustered

– Let’s cache this RDD

data = lines.map(parseVector).cache()

70Valeria Cardellini - SABD 2023/24

github.com/apache/spark/blob/master/examples/src/main/python/kmeans.py

K-means in Spark

• Name of data file, number of clusters K and 

convergence threshold are read from command line

• Code uses NumPy, the fundamental package for 

scientific computing with Python

$ ./bin/spark-submit --master local \

$SPARK_HOME/examples/src/main/python/kmeans.py \

$SPARK_HOME/data/mllib/kmeans_data.txt 2 0.1
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K-means in Spark

• Let’s first define two utility functions: parseVector
and closestPoint

Return index of the 
closest centroid for point 
p. centers contains the 
centroids, where
centers[i] is
the i-th centroid
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Convert data into
float numbers

K-means in Spark
• Read data to be clustered from input file, convert 

data into float numbers and then set K and 

convergeDist
• Cache the RDD data to improve performance

• Inizialize randomly the cluster centroids kPoints
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takeSample is an action 
used to retrieve a random 
sample from the RDD (False 
means without replacement)



K-means in Spark
• Repeat in a loop until convergence

– Map each data point to its closest centroid
– Calculate new cluster centroids (using average pattern)
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How Spark works on clusters
• A Spark application runs as a set of processes 

(executors) on the cluster, coordinated by the driver 
program of the application

• Executor: process launched for an application on a 

worker node, that runs tasks and keeps data in 

memory or disk storage 

– Each application has its own executors
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task

How Spark works at runtime
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stage 1

data shuffle

• Application creates RDDs, transforms them, and runs 

actions: this results in a DAG of operations

• DAG is transformed into stages

– Stage: set of tasks without a shuffle in between, contains 
pipelined transformations with narrow dependencies

– Each task is a unit of execution that is sent to one executor 
and works on a single partition of data

• Actions drive the execution

Stage execution

• Spark:
– Creates a task for each partition in RDD

– Schedules and assigns tasks to worker nodes

• All this happens internally (you need to do 
anything)
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Summary of Spark components

• RDD: parallel dataset with partitions

• DAG: logical graph of RDD operations

• Stage: set of tasks that run in parallel

• Task: unit of execution in Spark
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Coarse grain

Fine grain
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Fault tolerance

• Spark keeps track of the transformations 
used to build RDDs (their lineage DAG)

• Lineage information plus RDD immutability 
provide fault tolerance
– Lineage is used to recover lost data of a RDD by 

replaying transformations on RDDs
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Example: RDD lineage DAG 
created during log analysis 



Application scheduling

• DAG scheduler takes tasks from Spark app and 

sends them out to executors to get processed

• When app runs a Spark action (e.g., collect), 

scheduler builds a physical execution plan (DAG of 

stages) from the logical execution plan (RDD lineage 

DAG)

• The scheduler determines the preferred location to 

run each task on the basis of data locality

– If a task needs a partition which is available in a node’s 
memory, the task is sent to that node

• The scheduler handles failures to compute missing 

partitions from each stage until it computes the target 

RDD
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Spark’s high-level modules
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Spark SQL

82

• Spark module for structured data processing

• Run SQL queries on top of Spark

• Integrated with Spark ecosystem
– Seamlessly mix SQL queries with Spark programs, 

using either SQL or DataFrame API

– Apply functions to results of SQL queries, e.g.,

• Compatible with Hive, speedup up to 100x
– Hive: data warehouse built on top of Hadoop that  

provides data summarization, query, and analysis 

with SQL-like interface
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Spark SQL: the beginning

• How to extend Hive to run on Spark? 
– Shark: modified Hive’s backend to run over Spark, 

employing in-memory columnar storage

– Shark limitations

• Only Hive data model
• Query optimizer tied to Hadoop

83Valeria Cardellini - SABD 2023/24

Hive on Hadoop MapReduce Shark on Spark



Spark SQL: Features
• Borrows from Shark

– Hive data loading, in-memory columnar storage

• Adds:
– RDD-aware query optimizer (Catalyst Optimizer)

– Schema to RDD (DataFrame and Dataset APIs)

– Rich language interfaces
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Spark SQL: Catalyst optimizer
• Catalyst is based on functional programming 

constructs in Scala and designed for

– Easily adding new optimization techniques and features to 
Spark SQL

– Enabling developers to extend the optimizer (e.g., adding 
data source specific rules, support for new data types)

• Phases of query execution: analysis, logical 

optimization, physical planning, and code generation
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DataFrame and Dataset APIs

• Higher-level APIs than RDD

• Best suited for structured and semi-structured 
data

• DataFrames and Datasets have in common 
with RDDs:
– Distributed in-memory collection of data

– Immutable

– Can be manipulated in similar ways to RDDs

– Are evaluated lazily

– Can be persisted in memory

– Spark keeps a lineage of transformations
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DataFrame and Dataset APIs
• DataFrame adds to RDD a schema to describe data

– Unlike RDD, data is organized into a distributed in-memory 
table with named columns and schema

– Spark SQL provides APIs to run SQL queries on DataFrame
with a simple SQL-like syntax

• Table-like format of a DataFrame
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DataFrame and Dataset APIs
• Dataset extends DataFrame providing type-safe, 

OO programming interface

– Structured and strongly typed collection of data
– A dataset is a collection of strongly-typed JVM objects in 

Scala or a class in Java

• DataFrames vs Datasets 

– DataFrames are more flexible and efficient in terms of 
performance

– Datasets are more type-safe and expressive, but with a 
limited set of APIs and more memory consumption

• DataFrame and Dataset APIs have with similar

interfaces

• SparkSession: entry point for both APIs
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RDDs vs DataFrames vs Datasets
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A Tale of Three Apache Spark APIs: RDDs vs DataFrames and Datasets, 2016



Dataset API
• Provides the benefits of RDDs (strong typing, ability 

to use lambda functions) with those of Spark SQL’s 

optimized execution engine

• Available only in Scala and Java

• Can be constructed from JVM objects 

• Can be manipulated using transformations (map, 

flatMap, filter, groupBy, ...) and actions

• Lazy, i.e. computation is only triggered when an 

action is invoked

– Internally, a logical plan describes the computation required 
to produce data. When an action is invoked, Spark query 
optimizer optimizes the logical plan and generates a physical 
plan for efficient execution
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Dataset API
• How to create a Dataset?

– From a file using read function
– From an existing RDD by converting it
– Through transformations applied on existing Datasets

• When creating a Dataset you have to know the 

schema (i.e., the data types) 

• With JSON and CSV files it is possible to infer the schema 

Valeria Cardellini - SABD 2023/24 91



DataFrame API
• DataFrame: a Dataset organized into named columns

• Conceptually equivalent to a table in a relational 

database but with richer optimizations

– Like Dataset, it exploits Catalyst optimizer

• Available in Scala, Java, Python, and R

– Can be used in PySpark shell
– In Scala and Java, a DataFrame is represented by a Dataset 

of Rows

• Can be manipulated in similar ways to RDDs

• Can be constructed from: 

– Structured data files (JSON, CSV, Parquet, Avro, ORC, 
protubuf)

– Existing RDDs, either inferring the schema using reflection 
or programmatically specifying the schema

– Tables in Hive
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DataFrame API: constructing data frames

• Create a DataFrame from an RDD, a list or a pandas

DataFrame
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DataFrame API: constructing data frames
• Create a DataFrame from a file

– To load a file into a DataFrame, can use generic read.load
and its options

– Can also specify the data source that will be used along with 
any  extra options that you would like to pass to data source, 
e.g., read.csv, read.json

– CSV file: can infer schema and specify separator (default is 
",")
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df = spark.read.load(
"/opt/spark/examples/src/main/resources/people.csv",
format="csv", sep=";", inferSchema="true", header="true")

See 
github.com/apache/spark/blob/master/examples/src/main/python/sql/datasource.py
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DataFrame API: loading CSV file

• Can infer schema from CSV file
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Parquet file format
• An efficient columnar data storage format 

parquet.apache.org

• Supported by many other data processing 

frameworks, regardless of data model or 

programming language choice

– Hive, Impala, ...

• Interoperable with other data storage formats

– Avro, Thrift, Protocol Buffers, ...
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Parquet file format
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• Supports efficient compression and encoding 

schemes

• Example: Parquet vs. CSV 

• Spark SQL provides support for reading and writing 

Parquet files 

• Schema of original data is automatically preserved

• Like protobuf, Avro, and Thrift, Parquet also supports 

schema evolution



DataFrame API: using Parquet
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See spark.apache.org/docs/latest/sql-data-sources-parquet.html

Spark SQL can automatically infer the schema of a JSON 
dataset and load it as a Dataset[Row]. This conversion
can be done using SparkSession.read.json()

From DataFrame to RDD and viceversa

• To convert DataFrame to RDD when greater control 

is needed, call .rdd method on DataFrame object

• Reverse conversion can be done by calling 

spark.createDataFrame() on an existing RDD
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DataFrame API: benefits
• Let’s consider expressivity and simplicity 

• Example: aggregate all the ages for each name, 

group by name, and then average the ages

– With RDDs (see slide 53), we instruct Spark how to 
aggregate keys and compute averages using lambda 
functions: hard to read and cryptic

– With DataFrames, we instruct Spark what to do
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from pyspark.sql.functions import avg 
# Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 
31), ("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name", 
"age"])
# Group the same names together, aggregate their ages, 
# and compute an average 
avg_df = data_df.groupBy("name").agg(avg("age"))
# Show the results of the final execution
avg_df.show() 

Spark Streaming
• To analyze streaming data

– Ingested and analyzed in micro-batches

• Uses a high-level abstraction called Dstream

(discretized stream) which represents a continuous 

stream of data

– Represented as a sequence of RDDs

• Internally, it works as:

• See hands-on lesson

• Structured Spark Streaming

– New generation Spark’s stream processing engine built on the 
Spark SQL engine
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Spark MLlib
• Spark Mllib: Spark library for machine learning

– Includes 2 packages: 
• spark.mllib: MLlib RDD-based API (maintenance mode)
• spark.ml: MLlib DataFrame-based API to support a variety of 

data types

• Provides common ML algorithms

– Classification (e.g., logistic regression), regression, clustering 
(e.g., K-means), recommendation (e.g., collaborative filtering), 
decision trees, random forests, and more

• Provides also utilities 

– For ML: feature transformations, model evaluation and hyper-
parameter tuning

– For distributed linear algebra (e.g., PCA) and statistics (e.g., 
summary statistics, hypothesis testing)
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Spark MLlib: logistic regression example
• Logistic regression: popular method to predict a 

categorical response

– Binomial and multinomial

• Dataset of labels and features

• Load training data and fit model using binomial 

logistic regression
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LIBSVM format

ML package

Valeria Cardellini - SABD 2023/24



Spark MLlib: K-means
• MLlib implementation of K-means includes a 

parallelized variant of K-means++ called Kmeans||

– K-means++ goal: find K initial cluster centroids by spreading 
them out so as to improve solution quality and convergence

• 1st cluster centroid is chosen uniformly from data points 
• Each subsequent centroid is chosen from the remaining data 

points with probability proportional to its squared distance from 
the point's closest existing cluster centroid

– Since K-means++ is sequential (it needs K passes over the 
data), Spark uses its parallel variant Kmeans||

• K-means input is feature vector

• K-means output is predicted cluster centers
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Bahmani et al, Scalable k-means++, Proc. VLDB Endow., 2012. 
theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf

Spark ML: k-means example
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Silhouette is used to study the separation distance 
between resulting clusters. 

Silhouette plot displays a measure of how close each 
point in one cluster is to points in the neighboring 
clusters and provides a way to assess the number of 
clusters visually.



Combining processing tasks with Spark

Valeria Cardellini - SABD 2023/24 106

• It is easy to seamlessly combine different 
Spark libraries in the same application

• Example in Scala combining SQL, ML and 
streaming libraries in Spark
– Read historical Twitter data using Spark SQL

– Train a K-means clustering model using MLlib

– Apply the model to a new stream of tweets in 

order to predict language from location

Combining processing tasks with Spark

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))
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