TOR VERGATA Macroarea di Ingegneria

IIIIIIIIIIIIIIIIIIIIIIIIII Dipartimento di Ingegneria Civile e Ingegneria Informatica

Apache Spark

Corso di Sistemi e Architetture per Big Data
A.A. 2023/24
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

High-level Interfaces

uoneibaju| / poddng

Data Storage

Resource Management

Valeria Cardellini - SABD 2023/24 1

MapReduce (MR): limitations

* Programming model
— Hard to implement everything as a MR program

— Multiple MR steps even for simple tasks
* E.g., sorting words by their frequency requires two MR steps

— Lack of control, structures and data types

« Efficiency (recall HDFS)

— High communication cost: compute (map),
communicate (shuffle), compute (reduce)

— Read input and store output from/on disk
— Limited exploitation of main memory

ES = =
S =)

Valeria Cardellini - SABD 2023/24

MapReduce: limitations

» Lack of native support for iteration
— Each step writes/reads data from disk: I/O overhead

— But real-world applications (e.g., ML algorithms)
require iterating MR steps

« Partial solution: design algorithms that minimize the
number of iterations

oEEHEE=E0EZEEES0EZEESs0EgEEE50

* Not feasible for real-time data stream
processing

— MR job requires to scan entire input before
processing it

Valeria Cardellini - SABD 2023/24 3

Alternative programming models

Based on directed acyclic graphs (DAGS)

— Application structured as directed acyclic graph
* DAG node: operation (or task)
* DAG edge: dependency (data flow) between operations

— Spark, Spark Streaming, Flink, Storm, Airflow,
TensorFlow, ...

SQL-based

— Hive, Spark SQL, Trino, Vertica, ...
NoSQL and NewSQL data stores

— HBase, MongoDB, Cassandra, Spanner, ...
Based on Bulk Synchronous Parallel

Valeria Cardellini - SABD 2023/24 4

Alternative programming models: BSP

* Bulk Synchronous Parallel (BSP)
— Developed by Leslie Valiant during 1980s
— Considers communication actions en masse

— Suitable for graph analytics at massive scale and
massive scientific computations (e.g., matrix, graph

and network algorithms) Processors
- Examples: Google’s

Pregel, Apache Giraph ..

to perform graph Computatio

processing on big data

Communicatio

o _
Synchronisation

Valeria Cardellini - SABD 2023/24 5

Apache Spark Spa

» Unified engine for large-scale data analytics

— Leading platform for batch/streaming data, SQL analytics,
data science and machine learning on clusters of nodes

— Multi-language: Scala, Python, Java and R

* In-memory data storage for fast iterative processing
— At least 10x faster than Hadoop MapReduce

» Suitable for execution of DAGs and powerful
optimization
» Compatible with Hadoop’s storage APlIs

— Can read/write to any Hadoop-supported system, including
HDFS and HBase

Valeria Cardellini - SABD 2023/24 6

Spark milestones

» Spark project started in 2009

» Developed originally at UC Berkeley’s AMPLab by
Matei Zaharia for his PhD thesis

* Open sourced in 2010, Apache project from 2013
» In 2014, Zaharia founded Databricks

» Current release: 3.5.1

» Top open source project for Big Data processing

0.80% | apache-spark

aaaaaa
0.70%

0.60% -
0.50% -
0.40%
0.30%
0.20%

See Stack Overflow Trends

0.10%

of Stack Overflow questions that month

0.00%

%

T T T T T
2010 2012 2014 2016 2018 2020 2022 2024

Valeria Cardellini - SABD 2023/24 Year 7

Programming model different from Mapreduce, why?

» MapReduce simplified Big Data analysis

— But executes jobs in a simple but rigid structure
» Step to process or transform data (map)
+ Step to synchronize (shuffle)
» Step to combine results (reduce)

» As soon as MapReduce got popular, users wanted:
— lterative computations, e.g., graph and ML algorithms
— Interactive ad-hoc queries
— More efficiency

— Faster in-memory data sharing across parallel jobs
(required by both iterative and interactive applications)

Valeria Cardellini - SABD 2023/24 8

Spark: In-memory computation

« Key idea: keep and share datasets in main memory

 Distributed in-memory: 10x-100x faster than disk
and network

m |1 cache reference: 1ns

= Main memory reference: 100ns

BEEEEEEEEE SSD disk write: 350us
OEEREEEEEE
EREEE

=========E Same-datacenter RTT: 500us

Valeria Cardellini - SABD 2023/24 9

Spark vs Hadoop MapReduce

* Underlying programming paradigm similar to
MapReduce

— Basically “scatter-gather”; scatter data and computation on
multiple cluster nodes that run in parallel processing on
data portions; gather final results

« Spark offers a more general data model
— RDDs, DataSets, DataFrames
» Spark offers a more general and developer-friendly
programming model
— Map -> Transformations in Spark
— Reduce -> Actions in Spark
» Spark is storage agnostic
— Not only HDFS, but also Cassandra, S3, Parquet files, ...

Valeria Cardellini - SABD 2023/24 10

Spark stack

Spark saL] _ SPark MLib | GraphX

Streaming machine graph

structured data : :
real-time learning processing

Spark Core

Standalone Scheduler NZAVRIN

Valeria Cardellini - SABD 2023/24

Spark core

* Provides basic functionalities (including task
scheduling, memory management, fault
recovery, interacting with storage systems)
used by other components

* Provides a data abstraction called resilient
distributed dataset (RDD), a collection of
items distributed across many compute
nodes that can be manipulated in parallel
— Spark Core provides APIs for building and

manipulating these collections

« Written in Scala but APIs for Java, Python
and R

Valeria Cardellini - SABD 2023/24 12

Spark as unified analytics engine

* Arich set of integrated higher-level modules
built on top of Spark

— Can be combined seamlessly in the same
application

« Spark SQL
— For SQL and structured data processing

— Supports many data sources (Hive tables, Parquet,
JSON, ...)

« Structured Streaming

— For incremental computation and stream
processing

Valeria Cardellini - SABD 2023/24 13

Spark as unified analytics engine

. Logistic regression performance
[J
MLIib T 1m0
— Scalable ML library T 90
. . . § ® Hadoop
— Many distributed algorithms: o 60 Spark
feature extraction, E 30 oo
classification, regression, T 0 '
clustering, recommendation, ...
¢ Graphx F’age_Rank performance (20
— API for manipulating graphs and terations, 3.7B edges)
performing graph-parallel computajuons o T
— Includes also common graph algorithms 5w f
(e.g., PageRank) -
 Pandas API on Spark
— For pandas workloads 0 |
&\qu @QK\ '@é\
Valeria Cardellini - SABD 2023/24 (’@Q © °

Spark on top of cluster managers

« Spark can exploit many cluster resource
managers which allocate cluster resources to
run the applications

1. Standalone

— Simple cluster manager included with Spark that
makes it easy to set up a cluster

2. Hadoop YARN

— Hadoop cluster manager
3. Mesos

— Cluster manager from AMPLab
4. Kubernetes

Valeria Cardellini - SABD 2023/24 15

Spark architecture

* Master/worker architecture

-

Spark
Worker

Datanode
Block

Valeria Cardellini - SABD 2023/24

Spark Driver (Master)

Cluster Manager

Spark
Worker

Datanode
Block

Spark
Worker

Datanode
Block

16

Spark architecture

» Main program (called driver program) connects to
cluster manager, which allocates resources

 Worker nodes in which executors run

» Executors are processes that run computations
and store data for the application

Driver Program

SparkContext

il

Cluster Manager

Worker Node

Executor | Cache

Task Task

e
\

A\ 4
_‘ Executor | Cache
Task Task

Worker Node

spark.apache.org/docs/latest/cluster-overview.html

Valeria Cardellini - SABD 2023/24

17

Spark architecture

» Each application consists of a driver program and
executors on the cluster

— Driver program: process which runs user’s main function and
creates SparkContext object

— SparkContext: main entry point for Spark functionality, it tells
Spark how to access a cluster
» Each application gets its own executors, which are
processes which stay up for the duration of the
application and run tasks in multiple threads
— Isolation of concurrent applications

* To run on a cluster:

— SparkContext connects to cluster manager, which allocates
cluster resources

— Once connected, Spark acquires executors on cluster nodes
and sends the application code (e.g., jar) to executors

vateria caramin AU, SparkContext sends tasks to executors to run

Spark architecture

18

Driver Program

Cluster
Manager

sc=new SparkContext ———— SParkContext <
rDD=sc.textfile(“hdfs://...”)
rDD filter(...)

rDD.Cache

rDD.Count

rDD.map

Executor Executor

@ Datanode Datanode

User
(Developer)

Writes

Valeria Cardellini - SABD 2023/24

19

Resilient Distributed Datasets (RDDs)

 RDDs are the key programming abstraction in
Spark: a distributed memory abstraction

« Immutable, partitioned and fault-tolerant
collection of elements that can be manipulated
in parallel
— Like a LinkedList <MyQObjects>

— Stored in main memory across the cluster nodes

« Each worker node that is used to run an application
contains at least one partition of the RDD(s) that is (are)
defined in the application

Valeria Cardellini - SABD 2023/24

RDDs: distributed and partitioned

« Stored in main memory of the executors running in
the worker nodes (when it is possible) or on node
local disk (if not enough main memory)

» Allow executing in parallel the code invoked on
them

— Each executor of a worker node runs the specified code
on its partition of the RDD

— Partition: atomic chunk of data (a logical division of data)
and basic unit of parallelism

— Partitions of an RDD can be stored on different cluster

nodes
L OPL ML B P AL B BL B

]]]

Valeria Cardellini - SABD 2023/24

RDDs: immutable and fault-tolerant

 Immutable once constructed
— RDD content cannot be modified
— New RDD is created from existing RDD(s)

« Automatically rebuilt on failure (without
replication)
— Track lineage information so to efficiently recompute
missing or lost data due to (node) failures

— For each RDD, Spark knows how it has been
constructed and can rebuild it if a failure occurs

— This information is represented by means of RDD
lineage DAG which keeps track of one or more
operations that lead to the creation of that RDD

Valeria Cardellini - SABD 2023/24

RDD: Spark management

« Spark manages the split of

22

tan

RDDs in partitions and myRDD : ROD p ad—
allocates RDDs’ partitions |7 [
to cluster nodes % — — =

\ Partition
N S Y

tition

tion

« Spark hides complexity of

fault tolerance

— RDDs are automatically =y
rebuilt in case of failure !
using the RDD lineage DAG, (2 [ms |

o)
that defines the logical N
execution plan \\ 4 /

Valeria Cardellini - SABD 2023/24

-

23

RDD API

 RDD API

— Clean language-integrated API for Scala, Python,
Java, and R

— Can be used interactively from console (Scala and
PySpark)
« RDD suitability
— Best suited for unstructured data

— Provides fine-grained control over physical
distribution of data

 Also higher-level APIs: DataFrame and DataSet

Valeria Cardellini - SABD 2023/24

Python Spark (PySpark)

24

« PySpark: Python API for Spark supporting the
collaboration of Spark and Python

» Provides PySpark shell for interactive analysis

» Supports all of Spark’s features such as Spark SQL,
DataFrames, Structured Streaming, MLIib and Spark

Core
Spark SOL and Pandas APl on Structured Machine
DataFrames Spark Streaming Learning

MLlib

Spark Core and RDDs

Valeria Cardellini - SABD 2023/24

25

PySpark: SparkContext

« SparkContext: entry point for low-level API
functionalities, the connection to a Spark cluster

« To create a SparkContext you first need to build
a SparkConf object that contains information about
application
conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)
« SparkConf allows to set various Spark parameters,
among which
- master: URL of cluster to connect to
- appName: name of job to run

 In the shell, SparkContext is already available as sc
See spark.apache.org/docs/latest/api/python

Valeria Cardellini - SABD 2023/24 26

Spark programming model: DAG

« Data flow is composed of any number of data
sources, operators, and data sinks by connecting
their inputs and outputs

» ADirected Acyclic Graph (DAG) in Spark is a set
of nodes and links, where nodes represent the
operations on RDDs and directed links represent
the data dependencies between operations

— Acyclic graph: there are no cycles or loops in the graph

— Generalization of MapReduce model, which has only
two operations (Map and Reduce)

Data
w Source

Valeria Cardellini - SABD 2023/24 27

Spark programming model: DAG

» DAG can be visualized using Spark Web Ul
— In figure: WordCount DAG

Stage 0 Stage 1

« DAG is divided into stages textrile partitiongy

« Stage: set of operations that
do not involve a shuffle of mapP4rtitions
data, resulting in a more
efficient computation

« As soon as a shuffle of data
is needed (i.e., when a wide map
transformation is performed),
the DAG will yield a new
stage

saveAgTextFile

Valeria Cardellini - SABD 2023/24

Operations in RDD API

28

« Spark programs are written in terms of
operations on RDDs

* Programming model based on parallelizable
operations

— Higher-order functions that execute user-defined
functions in parallel

« RDDs are created from external data or other
RDDs

* RDDs are created and manipulated through
operators
See spark.apache.org/docs/latest/rdd-programming-guide.html

Valeria Cardellini - SABD 2023/24

29

RDD operations

» RDD operations: higher-order functions

» Two types of RDD ope
actions

 Transformations: coa

rations: transformations and

rse-grained and lazy

operations that define new RDD based on previous

one(s)
— map, filter, join, union, d

istinct, ...

— lazy: the new RDD representing the result of a computation
is not immediately computed but is materialized on demand

when an action is called

» Actions: operations that kick off a job to execute on
a cluster and return a value to the driver program
after running a computation on RDD or write data to

external storage

— count, collect, save, ...
Valeria Cardellini - SABD 2023/24

30
Transformations and actions on RDDs
« Common transformations and actions on RDDs
- Seq[T]: sequence of elements of type T
spark.apache.org/docs/latest/rdd-programming-quide.html#transformations
spark.apache.org/docs/latest/rdd-programming-quide.html#actions
map(f : T = U) RDD[T] = RDD[U]
filter(f : T = Bool) RDD[T] = RDD|T]
flatMap(f : T = Seq[U]) RDD[T] = RDD[U]
sample(fraction : Float) RDD[T] = RDDIT] (Deterministic sampling)
groupByKey() D[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f: (V,V)=V) RDD[(K V)] = RDDI[(K, V)]
Transformations union() (RDD[T],RDDI[T]) = RDDIT]
join() (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDD[(K, V)],RDD[(K, W)]) =~ RDDI(K, (Seq[V], Seq[W]))]
crossProduct() (RDD[T],RDDI[U]) = RDD[(T, U)]
mapValues(f : V= W) RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner[K]) D[(K, V)] = RDD[(K, V)]
count() [] = Long
collect() RDD[1= Seq[T]
Actions reduce(f: (T,T) = T) RDD[T] =T
Zookup(K) RDD[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
)

save(path : String

Outputs RDD to a storage system, e.g., HDFS

Valeria Cardellini - SABD 2023/24

31

How to create RDD

« RDD can be created by:
— Parallelizing existing data collections of the hosting

programming language (e.g., collections and lists of

Scala, Java, Python, or R)
* Number of partitions specified by user
* RDD API: parallelize

— From (large) files stored in HDFS or any other file
system
* One partition per HDFS block
« RDD API: textFile
— Transforming an existing RDD

* Number of partitions depends on transformation type

* RDD API: transformation operations (map, filter,
flatMap)

Valeria Cardellini - SABD 2023/24

How to create RDD

32

* Turn an existing collection into an RDD

lines = sc.parallelize(["pandas", "i like pandas"])
— scis Spark context variable
— Important parameter: number of partitions

— Spark will run one task for each partition of the cluster
(typical setting: 2-4 partitions for each CPU in the cluster)

— Spark tries to set the number of partitions automatically

— You can also set it manually by passing it as a second
parameter to parallelize, e.g., sc.parallelize(data, 10)

» Load data from storage (local file system, HDFS, or
S3)

lines = sc.textFile("/path/input.txt")

Examples in Python

Valeria Cardellini - SABD 2023/24

33

RDD transformations: map and filter

e map: takes as input a function which is applied
to each element of the RDD and maps each ===

input element to another element .}_)::!:j::
transform each element through a function .:}__>':!::l::
nums = sc.parallelize([1, 2, 3, 4]) -:}_ﬁ:._!_:l_i
squares = nums.map(lambda x: x * x) # [1,4,9,16] E]:F———éﬂiﬁii

o filter: takes as input a function which is applied as
filter to each element of the RDD, selecting only
those elements on which the function returns true

select those elements that func returns true

even = squares.filter(lambda num: num % 2 == @) # [4,16]

Valeria Cardellini - SABD 2023/24 34

RDD transformations: flatMap

o flatMap: takes as input a function which is
applied to each element of the RDD; can map
each input item to zero or more output items

map each element to zero or more others range function in

Python: ordered
ranges = nums.flatMap(lambda x: range(@, x, 1)) sequence of integer
[0, 6, 1, 0, 1, 2, 0, 1, 2, 3] values in range

[start;end) with non-
zero step

split input Llines into words

lines

words

sc.parallelize(["hello world", "hi"])
lines.flatMap(lambda line: line.split(" "))

#[’hello', ’world', ’hi’]

Valeria Cardellini - SABD 2023/24 35

RDD transformations: reduceByKey

e reduceByKey: when called on a RDD of
key-value pairs, aggregates values with | B _>E B
the same key using the specified function |ges| | BT

* Runs parallel reduce operations, one for - L)!-i_j_:
each key in the RDD - =1

X = sc.parallelize([("a", 1), ("b", 1), ("a", 1), ("a", 1),
¢ (“b") 1)) (“b") 1)) (“b") 1)) ("b") 1)]) 3)

apply reduceByKey operation

y = X.reduceByKey(lambda accum, n: accum + n)

[('b", 5), ('a’, 3)]

Valeria Cardellini - SABD 2023/24 36

RDD transformations: reduceByKey

» Let’s see the corresponding DAG

Stage 0 Stage 1
parallelize partitionBy
x mapPlrtitions

Valeria Cardellini - SABD 2023/24 37

RDD transformations: join

e join: performs an inner-join on |

= m

the keys of two RDDs = o

* Only keys that are present in both .}a.]-:;‘-%]

RI?DS are output | | i

« Join candidates are independently ml
processed

users = sc.parallelize([(©, "Alex"), (1, "Bert"), (2, "Curt"),
(3, "Don")])

hobbies = sc.parallelize([(0, "writing"), (@, "gym"), (1,
"swimming")])

users.join(hobbies).collect()

[(0, ('Alex', 'writing')), (@, ('Alex', 'gym')), (1,
('Bert', 'swimming'))]

Valeria Cardellini - SABD 2023/24 38

RDD transformations: join

» Let’s see the corresponding DAG

Stage 0 Stage 1

parallelize parallelize partitionBy

mapP3rtitions

union

Valeria Cardellini - SABD 2023/24 39

More RDD transformations

e union: returns a new RDD that contains the union of the
elements in the source RDD and the argument

e partitionBy: returns a copy of the RDD partitioned using
the specified partitioner

e mapPartitions: similar to map, but runs separately on
each partition

e distinct: returns a new RDD that contains the distinct
elements of the source RDD

e groupByKey: when called on a key-value pair RDD,
groups the values for each key in the RDD into a single
sequence

» mapValues: passes each value in the key-value pair RDD
through a map function without changing the keys

e sample: sample a fraction of the data, with or without
replacement

Valeria Cardellini - SABD 2023/24

How to pass functions to transformations

» Lambda expressions, for simple functions that can be
written as an expression (see examples)

* Lambdas do not support multi-statement functions or
statements that do not return a value

» Local defs inside the function calling into Spark, for
longer code

» Top-level functions in a module

Valeria Cardellini - SABD 2023/24

Transformations and actions

» Transformations are lazy

— Are not computed till an action requires a result to be
returned to the driver program

— Spark can build up the logical transformation plan
» This design enables Spark to perform operations
more efficiently as they can be grouped together

— E.qg., if there were multiple filter or map operations, Spark
can fuse them into one operation

— E.g., if Sparks knows that data is partitioned, Sparks can
avoid moving data over the network for groupBy

» We run an action to trigger the computation

— Instructs Spark to compute a result from a series of
transformations

Valeria Cardellini - SABD 2023/24

Some RDD actions

42

e collect: returns all the elements of the RDD as a list

sc.parallelize([1, 2, 3, 4])
nums.collect() # [1, 2, 3, 4]

nums

e take: returns an array with the first n elements in the
RDD

nums.take(3) # [1, 2, 3]
e count: returns the number of elements in the RDD

nums.count() # 4

Valeria Cardellini - SABD 2023/24

43

Some RDD actions

e reduce: aggregates the elements in the RDD using
the specified function

sum = nums.reduce(lambda x, y: x + y)

e saveAsTextFile: writes the elements of the RDD as
a text file either to the local file system or HDFS

nums.saveAsTextFile("hdfs://file.txt")

Valeria Cardellini - SABD 2023/24

Shuffle operations

44

« Shuffle: Spark’s mechanism for re-distributing data so

that it is grouped differently across partitions
— Involves copying data across executors and machines,
making shuffle an expensive operation

« Example: with reduceByKey not all values for a single
key necessarily reside on the same partition (or even
the same machine), but they must be co-located to
compute the result by means of an all-to-all operation

« Operations which can cause a shuffle o

include e i

— repartition operations: repartition and
coalesce

— ByKey operations, e.g., reduceByKey and

groupByKey i s
— join operations, e.g., join and cogroup

Valeria Cardellini - SABD 2023/24

45

Your very first examples in Spark

 After having installed Spark (e.g., Docker official
image), you can run interactively the examples using
PySpark by a terminal window

- sc is SparkContext variable

Welcome to

/I I

NN/ _\/_"1 __1 '_/

/__ 1 __/_,_/_1 /_/_\ version 3.5.1
/_/

Using Python version 3.8.10 (default, Nov 22 2023 10:22:35)

Spark context Web UI available at http://09a04056b82e:4040

Spark context available as 'sc' (master = locallx], app id = local-1714590071409
).
SparkSession available as 'spark'.

>>> nums = sc.parallelize([1, 2, 3, 4])
>>> squares = nums.map(lambda x: Xx * Xx)
>>> nums.collect()

[1, 2, 3, 4]

>>> squares.collect()

[1, 4, 9, 16]

>>> I

Valeria Cardellini - SABD 2023/24

First examples

46

« Let’s first analyze some simple examples
using RDD API
— Pi estimation
— WordCount
— Compute average

* More examples: see those distributed with
Spark

— Java
github.com/apache/spark/tree/master/examples/src/main/javal/org/a

pache/spark/examples

— Python

qgithub.com/apache/spark/tree/master/examples/src/main/python

Valeria Cardellini - SABD 2023/24

47

Pi estimation in Python

def inside(p):
X, Yy = random.random(), random.random()
return x*x + y*y < 1

samples = sc.parallelize(range(©, NUM_SAMPLES))
within circle = samples.filter(inside)

count = within circle.count()
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2023/24 48

Pi estimation in Python with chaining

* Transformations and actions can be chained
together

def inside(p):
X, Yy = random.random(), random.random()
return x*x + y*y < 1
count = sc.parallelize(range(©, NUM_SAMPLES)) \
.filter(inside).count()
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2023/24 49

Pi estimation in Scala

» To run Spark shell in Scala
$ spark-shell

val count = sc.parallelize(1l to NUM_SAMPLES).filter { _ =>
val x = math.random
val y = math.random
xX*x + y*y < 1

}.count()

println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

Valeria Cardellini - SABD 2023/24

WordCount in Python

text _file = sc.textFile("hdfs://inputfile")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://output™)

(e

e

textFile flatMap map

saveAs
TextFile

[[]]]

— reduceByKey

Valeria Cardellini - SABD 2023/24

WordCount in Python

« Alternative solution: use countByValue

— Action that returns the count of each unique value in the
RDD as a dictionary of (value, count) pairs

— The driver collects the partial results of the partitions and
does the merge itself

text file = sc.textFile("hdfs://inputfile")

words = text file.flatMap(lambda line: line.split(" "))
wordCount = words.countByValue()

print(wordCount)

» Which solution is better? Depends on dataset size

— Large dataset: use map, reduceByKey and collect to
exploit parallelism of reduceByKey

— Small dataset: countByValue may introduce less network
traffic (one stage less)

Valeria Cardellini - SABD 2023/24

Compute average in Python

52

« A common pattern in data analysis

» Let's aggregate all the ages for each name, group by
name, and then average the ages

Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31),

("Jules", 30), ("TD", 35), ("Brooke", 25)])
Use map and reduceByKey transformations with their Lambda
expressions to aggregate and then compute average
agesRDD = (dataRDD
.map(lambda x: (x[@], (x[1], 1)))
.reduceByKey(lambda x, y: (x[9] + y[@], x[1] + y[1]))
.map(lambda x: (x[0], x[1][9]/x[1][1])))

Valeria Cardellini - SABD 2023/24

53

Java: Lambda expressions

» Lambda expressions are short blocks of code which
take in parameters and return a value

— Enable to treat functionality as method argument, or code
as data

« Similar to methods (anonymous methods, i.e.,
methods without names), but do not need a name
and can be implemented in the body itself

» Usually passed as parameters to a function

« Arrow operator -> divides the lambda expressions in

two parts
— Left side: parameters required by lambda expression
— Right side: actions of lambda expression

Valeria Cardellini - SABD 2023/24 54

Pi estimation in Java with chaining

List<Integer> 1 = new ArrayList<>(NUM_SAMPLES);
for (int i = @; 1 < NUM_SAMPLES; i++) {

l.add(i);
}
long count = sc.parallelize(l).filter(i -> {

double x = Math.random();

double y = Math.random();

return x*x + y*y < 1;
}).count();
System.out.println("Pi is roughly " + 4.0 * count / NUM_SAMPLES);

Valeria Cardellini - SABD 2023/24

55

WordCount in Java

« JavaPairRDD: RDD containing key/value pairs

» Spark’s Java API allows to create tuples using
scala.Tuple2 class

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

lines.flatMap(line ->

JavaRDD<String> words
Arrays.asList(SPACE.split(line).iterator());
JavaPairRDD<String, Integer> ones = words.mapToPair(w ->
new Tuple2<>(w, 1));
JavaPairRDD<String, Integer> counts = ones.reduceByKey((x, y) ->

X+y);
counts.saveAsTextFile("output™);

Valeria Cardellini - SABD 2023/24 56

WordCount in Java with chaining

JavaRDD<String> lines

sc.textFile("hdfs://inputfile");
JavaPairRDD<String, Integer> counts = lines
.flatMap(s -> Arrays.asList(SPACE.split(line)).iterator())
.mapToPair(w -> new Tuple2<>(w, 1))
.reduceByKey((x, y) -> X +Vy);

counts.saveAsTextFile("output");

L
- saveAs
'II' TextFile
— — — reduceByKey
textFile flatMap map

Valeria Cardellini - SABD 2023/24 57

Initializing Spark: SparkContext

» First step in Spark program using RDD API: create
SparkContext object

— Represents connection to Spark cluster, can be used to create
RDDs on that cluster

» SparkConf object: configuration for a Spark application
— Used to set various Spark parameters as key-value pairs

SparkConf().setMaster("local").setAppName("My app")

» Only one SparkContext may be active per JVM

- stop() active SparkContext before creating a new one

Valeria Cardellini - SABD 2023/24 58

SparkSession

* From Spark 2.0, SparkSession unifies the different
contexts from different APIls and represents the entry
point into all functionalities in Spark

« Auvailable as variable spark from Spark shell and
PySpark

« Within application: use builder to create and
configure SparkSession

Python

from pyspark.sql import SparkSession

spark = SparkSession \

.builder \ Java
.appName("Python Spark SQL basic example") \ import org.apache.spark.sql.SparkSession;
.config("spark.some.config.option", "some-value") \
.getOrCreate() SparkSession spark = SparkSession
.builder()
.appName("Java Spark SQL basic example")
.config("spark.some.config.option", "some-value")

.getOrCreate();

Valeria Cardellini - SABD 2023/24 59

Pi estimation in Python: using SparkSession

import sys

from random import random

from operator import add Full example in Python using
from pyspark.sql import SparkSession SparkSeSSlon and API RDD

if __name__ == "__main__":

Usage: pi [partitions]
spark = Sparksessio, Create and configure SparkSession
.builder\
.appName ("PythonPi")\
.getOrCreate()

partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
n = 100000 * partitions

Slightly different from slide 48: map

def f(_: int) - float: and reduce rather than filter and count
x = random() * 2 - 1
y = randon() % 2 -1 Access SparkContext from

return 1 if x %k 2 + y %k 2 <= 1 else 0

SparkSession and operate on RDD

count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 % count / n))

spark.stop() github.com/apache/spark/blob/master/examples/src/main/python/pi.py
Valeria Cardellini - SABD 2023/24 60

WordCount in Java: using SparkSession

package org.apache.spark.examples;

import scala.Tuple2;

import org.apache.spark.api.java.JavaPairRDD; Fu” example in Java using

import org.apache.spark.api.java.JavaRDD;

|import org.apache.spark.sql.SparkSession;| SparkseSS|0n and API RDD

import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;

public final class JavaWordCount {
private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) throws Exception {

if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);

}

SparkSession spark = SparkSession
.builder()
.appName ("JavaWordCount™")

“T———— Create and configure SparkSession

.getOrCreate();
Valeria Cardellini - SABD 2023/24 61

WordCount in Java: using SparkSession
Use Dataset Use RDD

JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD();
JavaRDD<String> words = lines.flatMap(s -> Arrays.aslList(SPACE.split(s)).iterator());
JavaPairRDD<String, Integer> ones = words.mapToPair(s —-> new Tuple2<>(s, 1));
JavaPairRDD<String, Integer> counts = ones.reduceByKey((il, i2) -> il + i2);
List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?,?> tuple : output) {

System.out.println(tuple._1() + ": " + tuple._2());

}
spark.stop();

github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/
JavaWordCount.java

Valeria Cardellini - SABD 2023/24 62

Launch applications

» Launch Spark application using bin/spark-submit
script

./bin/spark-submit \
--class <main-class> \
--master <master-url> \
--deploy-mode <deploy-mode> \
-—conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]

See spark.apache.org/docs/latest/submitting-applications.html

Valeria Cardellini - SABD 2023/24 63

Launch applications: main options

« --class: app entry point (e.g.,
org.apache.spark.examples.SparkPi)

* --master: master URL for cluster (e.g.,
spark://23.195.26.187:7077) (default: 1local)

» --deploy-mode: whether to deploy driver on worker nodes
(cluster) or locally as external client (default: client)

* --conf: Spark configuration property in key=value format

 application-jar: path to jar including app and all
dependencies. Be careful: URL must be globally visible, e.g.,
hdfs:// path ora file:// path that is present on all nodes

* For Python app: pass a .py file in place of application-jar
and add Python .zip, .egg or .py files to the search path using
--py-files

 application-arguments: arguments passed to the main
method of the main class, if any

Valeria Cardellini - SABD 2023/24

Launch applications: example

64

« Launch PageRank in Python passing arguments

./bin/spark-submit \
examples/src/main/python/pagerank.py \
data/mllib/pagerank_data.txt 10

« Launch Pi estimation in Java configuring Spark and
passing argument

./bin/spark-submit --class
org.apache.spark.examples.SparkPi \

--master local \

--deploy-mode client \
--num-executors 2 \

--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
examples/jars/spark-examples*.jar 10

Valeria Cardellini - SABD 2023/24

65

Deploy modes and cluster managers

» Spark supports different deploy modes and cluster
managers, so it can run in different configurations
and environments

Mode Spark driver Spark executor Cluster manager

Local Runs on a single JVM, like a Runs on the same JVM as the Runs on the same host
laptop or single node driver

Standalone Can run on any node in the Each node in the cluster will (an be allocated arbitrarily to any
cluster launch its own executor JYM host in the cluster

YARN (client) Runs on a dlient, not part of the ~ YARN’s NodeManager’s container ~ YARN's Resource Manager works
cluster with YARN's Application Master to
allocate the containers on
NodeManagers for executors

YARN Runs with the YARN Application ~ Same as YARN client mode Same as YARN client mode
(cluster) Master
Kubernetes Runs in a Kubernetes pod Each worker runs withinitsown ~ Kubernetes Master

pod

Valeria Cardellini - SABD 2023/24

Caching and persistence

» By default, RDDs are recomputed each time you run
an action on them

— This can be expensive (in time) if you need to use the RDD
more than once (e.g., iterative algorithms)

* To avoid computing an RDD more than once, ask
Spark to persist (or cache) data for rapid reuse
— To persist RDD, use persist() or cache() methods on it

— When RDD is persisted, each node stores in memory any
partitions of it and reuses them in other actions on that RDD
(or RDDs derived from it): future actions are much faster (more
than 10x)

« Key tool for iterative algorithms and fast interactive use
» Cache and persist also DataFrame and Dataset

Valeria Cardellini - SABD 2023/24

Caching and persistence: storage level

» Using persist() you can specify the storage level for
persisting an RDD
- cache() is equivalent to persist() with default storage level
(MEMORY_ONLY)
« Main storage levels:

— MEMORY_ONLY: if the RDD does not fit in memory, some

partitions will not be cached and will be recomputed on the fly
each time they are needed

- MEMORY_AND_DISK
— DISK_ONLY

« Which storage level is best?

— Try to keep in-memory as much as possible
— Try not to spill to disk unless the functions that computed your
datasets are expensive (e.g., filter a large amount of data)

— Use replicated storage levels only if you want fast fault

recover
Valeria Cardellini - SABD 2023/24 68

Caching and persistence: performance speedup

» Spark outperforms Hadoop by up to 100x in
iterative ML

— Speedup comes from avoiding I/0O and deserialization
costs by storing data in memory

Figure 4. Performance of logistic regression in Hadoop MapReduce vs. Spark for 100GB of

dataon 50 m2.4xlarge EC2 nodes.

110 s/iteration

@ Hadoop W Spark

2,500

% 2,000 //.
£ 1500 /’1/St iteration 80 s
= /./
2 1,000 Eirtt it ti
£1 /./ Furtheriterations 1 s
€ 500
=
x . -/ - : = : -
1 5 10 20

Number of Iterations

Source: “Apache Spark: A Unified Engine for Big Data Processing”
Valeria Cardellini - SABD 2023/24 69

Caching and persistence: example

« Let’'s analyze how persistence is used in
iterative algorithms

* Naive implementation of K-means algorithm
github.com/apache/spark/blob/master/examples/src/main/python/kmeans.py

— At each iteration we need to use the RDD
containing the data points to be clustered

— Let’s cache this RDD

data = lines.map(parseVector).cache()

Valeria Cardellini - SABD 2023/24 70

K-means in Spark

» Name of data file, number of clusters K and
convergence threshold are read from command line

Usage: kmeans <file> <k> <convergeDist>

$./bin/spark-submit --master local \
$SPARK_HOME/examples/src/main/python/kmeans.py \
$SPARK_HOME/data/mllib/kmeans data.txt 2 0.1

» Code uses NumPy, the fundamental package for
scientific computing with Python

Valeria Cardellini - SABD 2023/24 71

K-means in Spark

» Let’s first define two utility functions: parseVector
and closestPoint

Convert data into def parseVector(line):

float numbers return np.array([float(x) for x in line.split(' ')])
Return index of the def closestPoint(p, centers):

closest centroid for point bestIndex = ©

p. centers contains the closest = float("+inf")

centroids, where
centers[i]is
the i-th centroid

for 1 in range(len(centers)):
tempDist = np.sum((p - centers[i]) ** 2)
if tempDist < closest:
closest = tempDist
bestIndex = 1

return bestIndex

Valeria Cardellini - SABD 2023/24 72

K-means in Spark

» Read data to be clustered from input file, convert
data into float numbers and then set K and

convergeDist
» Cache the RDD data to improve performance
* Inizialize randomly the cluster centroids kPoints

lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
data = lines.map(parseVector).cache()

K = int(sys.argv[2])

convergeDist = float(sys.argv[3])

. takeSample is an action
kPoints = data.takeSample(False, K, 1) used to retrieve a random

tempDist = 1.0 sample from the RDD (False
means without replacement)

Valeria Cardellini - SABD 2023/24 73

K-means in Spark

* Repeat in a loop until convergence
— Map each data point to its closest centroid
— Calculate new cluster centroids (using average pattern)

while tempDist > convergeDist:
closest = data.map(
lambda p: (closestPoint(p, kPoints), (p, 1)))
pointStats = closest.reduceByKey(
lambda p1_c1, p2_c2: (pl_cl[@] + p2_c2[@], pl_cl[1] + p2_c2[1]))
newPoints = pointStats.map(

lambda st: (st[@], st[1][@] / st[1][1])).collect()

tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints)

for (iK, p) in newPoints:
kPoints[iK] = p

print("Final centers: " + str(kPoints))

Valeria Cardellini - SABD 2023/24

How Spark works on clusters

74

» A Spark application runs as a set of processes
(executors) on the cluster, coordinated by the driver
program of the application

» Executor: process launched for an application on a
worker node, that runs tasks and keeps data in
memory or disk storage

— Each application has its own executors

Worker Node

Executor | Cache

b
Driver Program /——_\‘ Task
Pt “—

SparkContext

Task

g
A

A 4

Cluster Manager

> Worker Node

__‘ Executor | Cache
o

Task Task

/
g
#s

Valeria Cardellini - SABD 2023/24

75

How Spark works at runtime

» Application creates RDDs, transforms them, and runs
actions: this results in a DAG of operations

* DAG is transformed into stages
— Stage: set of tasks without a shuffle in between, contains
pipelined transformations with narrow dependencies
— Each task is a unit of execution that is sent to one executor
and works on a single partition of data

. . . - task
» Actions drive the execution
~stage 1
[:],i, (J
Narrow Dependencies Wide Dependencies D [D 1
S (5 (B AN
2 groupBy [[:]
¢)+ -
S895 o
e i 2=
o=y T
. @@ data shuffle
Valeria Cardellini - SABD 2023/24 - 76

Stage execution

« Spark:
— Creates a task for each partition in RDD
— Schedules and assigns tasks to worker nodes

« All this happens internally (you need to do
anything)

Task 1
Task 2
Task 3

Task 4

[T11]

Valeria Cardellini - SABD 2023/24 77

Summary of Spark components

Coarse grain
« RDD: parallel dataset with partitions

* DAG: logical graph of RDD operations
« Stage: set of tasks that run in parallel

« Task: unit of execution in Spark

Fine grain

Valeria Cardellini - SABD 2023/24

Fault tolerance

« Spark keeps track of the transformations
used to build RDDs (their lineage DAG)

« Lineage information p/lus RDD immutability
provide fault tolerance

— Lineage is used to recover lost data of a RDD by
replaying transformations on RDDs

inputRDD

filter filter

Example: RDD lineage DAG

. . errorsRDD warningsRDD
created during log analysis

union

badLinesRDD

Valeria Cardellini - SABD 2023/24

Application scheduling

» DAG scheduler takes tasks from Spark app and
sends them out to executors to get processed

« When app runs a Spark action (e.g., collect),
scheduler builds a physical execution plan (DAG of
stages) from the logical execution plan (RDD lineage
DAG)

« The scheduler determines the preferred location to
run each task on the basis of data locality

— If a task needs a partition which is available in a node’s
memory, the task is sent to that node

« The scheduler handles failures to compute missing
partitions from each stage until it computes the target
RDD

Valeria Cardellini - SABD 2023/24 80

Spark’s high-level modules

Spark saLl] . SPark MLib § GraphX

Streaming machine graph

structured data eal-time learning processing

Spark Core

Standalone Scheduler NZAVRIN

Valeria Cardellini - SABD 2023/24

APACHE&I

Spark SQL Spa

« Spark module for structured data processing
* Run SQL queries on top of Spark
 Integrated with Spark ecosystem

— Seamlessly mix SQL queries with Spark programs,

using either SQL or DataFrame API
— Apply functions to results of SQL queries, e.g.,

results = spark.sql(

"SELECT * FROM people")
names = results.map(lambda
p: p.name)

« Compatible with Hive, speedup up to 100x

— Hive: data warehouse built on top of Hadoop that
provides data summarization, query, and analysis
with SQL-like interface

Valeria Cardellini - SABD 2023/24

Spark SQL: the beginning

82

* How to extend Hive to run on Spark?

— Shark: modified Hive’s backend to run over Spark,
employing in-memory columnar storage
— Shark limitations

* Only Hive data model
* Query optimizer tied to Hadoop

Hive on Hadoop MapReduce Shark on Spark
Command-line shell Thrift//DBC Command-line shell Thrift/JDBC
D Dri
Physical Plan Physical Plan
Metastore SQL Parser O;()th\‘newrw‘ier SerDes, UDFs Metastore SQL Parser Or?tfriger SerDes, UDFs
Execution Execution
MapReduce Spark
RDBMS (MySQL) Hadoop Storage (HDFS, HBase) RDBMS (MySQL) Hadoop Storage (HDFS, HBase)

Valeria Cardellini - SABD 2023/24

83

Spark SQL: Features

* Borrows from Shark
— Hive data loading, in-memory columnar storage
« Adds:
— RDD-aware query optimizer (Catalyst Optimizer)
— Schema to RDD (DataFrame and Dataset APls)
— Rich language interfaces

User Programs
(Java, Scala, Python)

v v v
Spark SQL DataFrame API

JDBC Console

Catalyst Optimizer

v y
Spark

Resilient Distributed Datasets

Valeria Cardellini - SABD 2023/24 84

Spark SQL: Catalyst optimizer

« Catalyst is based on functional programming
constructs in Scala and designed for

— Easily adding new optimization techniques and features to
Spark SQL

— Enabling developers to extend the optimizer (e.g., adding
data source specific rules, support for new data types)

» Phases of query execution: analysis, logical
optimization, physical planning, and code generation

: Logical Physical Code
Analysis optimization Planning Borariion
SQL Query
sag Selected
Unresolved : Optimized Physical :
Lonicel PlarHLoglcal PlarJ—-[L ogical Plan ll P}Iar:s Prgzl:al RDDs
DataFrame

Catalog

Valeria Cardellini - SABD 2023/24 85

DataFrame and Dataset APlIs

« Higher-level APls than RDD
e Best suited for structured and semi-structured

data

« DataFrames and Datasets have in common
with RDDs:

— Distributed in-memory collection of data

— Immuta

ble

— Can be manipulated in similar ways to RDDs
— Are evaluated lazily
— Can be persisted in memory

— Spark keeps a lineage of transformations

Valeria Cardellini - SABD 2023/24 86
DataFrame and Dataset APls
 DataFrame adds to RDD a schema to describe data
— Unlike RDD, data is organized into a distributed in-memory
table with named columns and schema
— Spark SQL provides APIs to run SQL queries on DataFrame
with a simple SQL-like syntax
« Table-like format of a DataFrame
| Namei Surnamei Addressi Cityi Statei ZIPi
| Johni Doei 120 jefferson st.i Riversidei NJi 08075i
| Jack|McGinnis | 220 hobo Av. | Phila| PA| 09119|
| "John ""Da Man"""| Repici] 120 Jefferson St. | Riverside| NJ| 08075|
| Stephen| Tyler|"7452 Terrace ""A...| SomeTown | SD| 91234
| null|Blankman| null| SomeTown | SD| 00298|
I

"Joan ""the bone"" |

Anne" |

Jet|9th, at Terrace plc|Desert City|

co|

Valeria Cardellini - SABD 2023/24

87

DataFrame and Dataset APlIs

Dataset extends DataFrame providing type-safe,

OO programming interface

— Structured and strongly typed collection of data

— A dataset is a collection of strongly-typed JVM objects in
Scala or a class in Java

DataFrames vs Datasets

— DataFrames are more flexible and efficient in terms of
performance

— Datasets are more type-safe and expressive, but with a
limited set of APls and more memory consumption

DataFrame and Dataset APIs have with similar
interfaces

SparkSession: entry point for both APIs

Valeria Cardellini - SABD 2023/24 88

RDDs vs DataFrames vs Datasets

Feature Spark RDD Spark DataFrame Spark Dataset

Data Immutable distributed Structured data organized into Distributed collection of data with optional
representation collection of data named columns schema

Data processing Fine-grained control High-level abstraction Ease of use and performance

Suitability Developers who require o — Data professionals who need a balance of

Key distinctions

precise control control and convenience

Offers more control, but Offers more convenience, but

Offers a balance of control and convenience
more complex less control

A Tale of Three Apache Spark APls: RDDs vs DataFrames and Datasets, 2016

Valeria Cardellini - SABD 2023/24 89

Dataset AP

» Provides the benefits of RDDs (strong typing, ability
to use lambda functions) with those of Spark SQL’s
optimized execution engine

« Available only in Scala and Java
« Can be constructed from JVM objects

» Can be manipulated using transformations (map,
flatMap, filter, groupBy, ...) and actions

« Lazy, i.e. computation is only triggered when an
action is invoked

— Internally, a logical plan describes the computation required
to produce data. When an action is invoked, Spark query
optimizer optimizes the logical plan and generates a physical
plan for efficient execution

Valeria Cardellini - SABD 2023/24

Dataset API

90

* How to create a Dataset?
— From a file using read function
— From an existing RDD by converting it
— Through transformations applied on existing Datasets

* When creating a Dataset you have to know the
schema (i.e., the data types)
* With JSON and CSV files it is possible to infer the schema

Valeria Cardellini - SABD 2023/24

91

DataFrame API

« DataFrame: a Dataset organized into named columns

« Conceptually equivalent to a table in a relational
database but with richer optimizations
— Like Dataset, it exploits Catalyst optimizer

« Available in Scala, Java, Python, and R
— Can be used in PySpark shell
— In Scala and Java, a DataFrame is represented by a Dataset
of Rows
« Can be manipulated in similar ways to RDDs

 Can be constructed from:

— Structured data files (JSON, CSV, Parquet, Avro, ORC,
protubuf)

— Existing RDDs, either inferring the schema using reflection
or programmatically specifying the schema

— Tables in Hive
Valeria Cardellini - SABD 2023/24 92

DataFrame API: constructing data frames

» Create a DataFrame from an RDD, a list or a pandas
DataFrame

>>> data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), ("Jules", 30),
. ("TD", 35), ("Brooke", 25)1, ["name", "age"l)

>>> data_df.show()

F————— +———+

| name|age|

F————— +———+

|Brooke| 20|

| Denny| 31|

| Jules| 30|

| TD| 35]

|Brooke| 25]

F—————— ———t

Valeria Cardellini - SABD 2023/24 93

DataFrame API: constructing data frames

* Create a DataFrame from a file

— Toload a file into a DataFrame, can use generic read. load
and its options

— Can also specify the data source that will be used along with
any extra options that you would like to pass to data source,
e.g., read.csv, read.json

— CSV file: can infer schema and specify separator (default is
")
df = spark.read.load(
"/opt/spark/examples/src/main/resources/people.csv”,

format="csv", sep=";", inferSchema="true", header="true")

See
github.com/apache/spark/blob/master/examples/src/main/python/sqgl/datasource.py

Valeria Cardellini - SABD 2023/24

94
>>> df = spark.read.csv("/data/address.csv", header=True)
>>> df.show()
| Name| Surname| Address | City]| State| ZIP|
[John| Doe | 120 jefferson st.| Riverside | NJ| 08075|
[Jack|McGinnis | 220 hobo Av. | Phila| PA| 09119|
| "John ""Da Man"""| Repici| 120 Jefferson St. | Riverside | NJ| 08075|
[Stephen| Tyler|"7452 Terrace ""A...| SomeTown | SD| 91234
| NULL |Blankman | NULL | SomeTown | SD| 00298|
|

"Joan ""the bone""| Anne" | Jet|9th, at Terrace plc|Desert City| Cco|

* Can infer schema from CSV file

>>> df.printSchemal()

root
|-— Name: string (nullable = true)
|-- Surname: string (nullable = true)
|-— Address: string (nullable = true)
|-— City: string (nullable = true)
|-- State: string (nullable = true)
|-- ZIP: string (nullable = true)

Valeria Cardellini - SABD 2023/24 95

Parquet file format

» An efficient columnar data storage format
parquet.apache.org

» Supported by many other data processing
frameworks, regardless of data model or
programming language choice

— Hive, Impala, ...

* Interoperable with other data storage formats

— Auvro, Thrift, Protocol Buffers, ...

Row layout
Logical table
representation [at[ot [et[az[oe[c2[as]oaca]as [oa[ca[as [os]es]
o
:; :; 2 Column layout
RERE [a1[a2[a3[a4]as o1 |v2|oa|ba[os[et |2 ea]ea]es]
- v L tc"codﬁg
as |[bs | s

[encodedownk | encodedchunk | encodedonunk |

Valeria Cardellini - SABD 2023/24

96
Parquet file format
» Supports efficient compression and encoding
schemes

« Example: Parquet vs. CSV
Dataset Size on Amazon S3 Query Run time Data Scanned Cost
Data stored as CSV files 1TB 236 seconds 1.15TB $5.75
Data stored in Apache Parquet format* 130 GB 6.78 seconds 2.51GB $0.01
Savings / Speedup 87% less with Parquet 34x faster 99% less data scanned 99.7% savings

» Spark SQL provides support for reading and writing
Parquet files

» Schema of original data is automatically preserved

 Like protobuf, Avro, and Thrift, Parquet also supports
schema evolution

Valeria Cardellini - SABD 2023/24 97

DataFrame API: using Parquet

peopleDF = spark.read.json("examples/src/main/resources/people.json")

DataFrames can be saved as Parquet files, maintaining the schema information.
peopleDF.write.parquet("people.parquet")

Read in the Parquet file created above.

Parquet files are self-describing so the schema is preserved.
The result of loading a parquet file is also a DataFrame.
parquetFile = spark.read.parquet("people.parquet")

Parquet files can also be used to create a temporary view and then used in SQL statements.
parquetFile.createOrReplaceTempView("parquetFile")

teenagers = spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenagers.show()

+————- + v
| name| Spark SQL can automatically infer the schema of a JSON
e + dataset and load it as a Dataset[Row]. This conversion
|Justin| can be done using SparkSession.read.json()

+————— +

See spark.apache.org/docs/latest/sqgl-data-sources-parquet.html

Valeria Cardellini - SABD 2023/24 98

From DataFrame to RDD and viceversa

« To convert DataFrame to RDD when greater control
is needed, call .rdd method on DataFrame object

* Reverse conversion can be done by calling
spark.createDataFrame() on an existing RDD

Valeria Cardellini - SABD 2023/24 99

DataFrame API: benefits

» Let’s consider expressivity and simplicity

« Example: aggregate all the ages for each name,
group by name, and then average the ages

— With RDDs (see slide 53), we instruct Spark how to
aggregate keys and compute averages using lambda
functions: hard to read and cryptic

— With DataFrames, we instruct Spark what to do

from import avg

Create a DataFrame

data_df = spark.createDataFrame([("Brooke", 20), ("Denny",
31), ("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name",

"age"])
Group the same names together, aggregate their ages,
and compute an average

avg df = data_df.groupBy("name").agg(avg("age"))

Show the results of the final execution

avg df.show()

Valeria Cardellini - SABD 2023/24 100

Spark Streaming

« To analyze streaming data
— Ingested and analyzed in micro-batches

» Uses a high-level abstraction called Dstream
(discretized stream) which represents a continuous
stream of data
— Represented as a sequence of RDDs

 Internally, it works as:

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

 See hands-on lesson
» Structured Spark Streaming

— New generation Spark’s stream processing engine built on the
Spark SQL engine

Valeria Cardellini - SABD 2023/24 101

Spark MLIib
« Spark Mllib: Spark library for machine learning

— Includes 2 packages:
e spark.mllib: MLIib RDD-based API (maintenance mode)
e spark.ml: MLIlib DataFrame-based API to support a variety of
data types

* Provides common ML algorithms

— Classification (e.g., logistic regression), regression, clustering
(e.g., K-means), recommendation (e.g., collaborative filtering),
decision trees, random forests, and more

* Provides also utilities

— For ML: feature transformations, model evaluation and hyper-
parameter tuning

— For distributed linear algebra (e.g., PCA) and statistics (e.qg.,
summary statistics, hypothesis testing)

Valeria Cardellini - SABD 2023/24 102

Spark MLIib: logistic regression example

» Logistic regression: popular method to predict a
categorical response
— Binomial and multinomial

« Dataset of labels and features

» Load training data and fit model using binomial
logistic regression ML package

from pyspark.ml.classification import LogisticRegression

Load training data
training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

T ——— _ LIBSVM format

lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

D R T
F1T The moael

1rModel = 1lr.fit(training)

Print the coefficients and intercept for logistic regression
print("Coefficients: " + str(lrModel.coefficients))
print("Intercept: " + str(lrModel.intercept))

Valeria Cardellini - SABD 2023/24 103

Spark MLlIlib: K-means

* MLIib implementation of K-means includes a
parallelized variant of K-means++ called Kmeans||

— K-means++ goal: find K initial cluster centroids by spreading
them out so as to improve solution quality and convergence
» 1st cluster centroid is chosen uniformly from data points

+ Each subsequent centroid is chosen from the remaining data
points with probability proportional to its squared distance from
the point's closest existing cluster centroid

— Since K-means++ is sequential (it needs K passes over the
data), Spark uses its parallel variant Kmeans||

* K-means input is feature vector
» K-means output is predicted cluster centers

Bahmani et al, Scalable k-means++, Proc. VLDB Endow., 2012.
theory.stanford.edu/~sergei/papers/vidb12-kmpar.pdf

Valeria Cardellini - SABD 2023/24 104

Spark ML: k-means example

from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator

Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt")

Trains a k-means model.
kmeans = KMeans().setK(2).setSeed(1)

model = kmeans.fit(dataset)

Make predictions
predictions = model.transform(dataset)

Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()

silhouette = evaluator.evaluate(predictions)

print("Silhouette with squared euclidean distance = " + str(silhouette))

Shows the result. Silhouette is used to study the separation distance

centers = model.clusterCenters() between resulting clusters.

LA EEnres S Silhouette plot displays a measure of how close each

for center in centers: point in one cluster is to points in the neighboring
L) clusters and provides a way to assess the number of

clusters visually.
Valeria Cardellini - SABD 2023/24 y 105

Combining processing tasks with Spark

|t is easy to seamlessly combine different
Spark libraries in the same application

« Example in Scala combining SQL, ML and
streaming libraries in Spark

— Read historical Twitter data using Spark SQL
— Train a K-means clustering model using MLIib

— Apply the model to a new stream of tweets in
order to predict language from location

Valeria Cardellini - SABD 2023/24 106

Combining processing tasks with Spark

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old tweets")

// Train a K-means model using ML1lib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream

TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

Valeria Cardellini - SABD 2023/24 107

References

e Zaharia et al., Spark: Cluster Computing with Working Sets,
HotCloud’10.

» Zaharia et al., Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing, NSDI’12.

» Zaharia et al., Apache Spark: A Unified Engine For Big Data
Processing”, Commun. ACM, 2016.

« Ambrust et al., Spark SQL: Relational Data Processing in Spark,
ACM SIGMOD’15.

« Damiji et al., Learning Spark - Lightning-Fast Big Data Analysis,
2nd edition, O’Reilly, 2020.

Valeria Cardellini - SABD 2023/24 108

