
Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Apache Spark

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Valeria Cardellini - SABD 2023/24

MapReduce (MR): limitations
• Programming model

– Hard to implement everything as a MR program

– Multiple MR steps even for simple tasks

• E.g., sorting words by their frequency requires two MR steps

– Lack of control, structures and data types

• Efficiency (recall HDFS)
– High communication cost: compute (map),

communicate (shuffle), compute (reduce)

– Read input and store output from/on disk

– Limited exploitation of main memory

2Valeria Cardellini - SABD 2023/24

MapReduce: limitations

• Lack of native support for iteration
– Each step writes/reads data from disk: I/O overhead

– But real-world applications (e.g., ML algorithms)

require iterating MR steps

• Partial solution: design algorithms that minimize the
number of iterations

• Not feasible for real-time data stream
processing
– MR job requires to scan entire input before

processing it

3Valeria Cardellini - SABD 2023/24

Alternative programming models

• Based on directed acyclic graphs (DAGs)
– Application structured as directed acyclic graph

• DAG node: operation (or task)
• DAG edge: dependency (data flow) between operations

– Spark, Spark Streaming, Flink, Storm, Airflow,

TensorFlow, …

• SQL-based
– Hive, Spark SQL, Trino, Vertica, …

• NoSQL and NewSQL data stores
– HBase, MongoDB, Cassandra, Spanner, …

• Based on Bulk Synchronous Parallel

4Valeria Cardellini - SABD 2023/24

Alternative programming models: BSP
• Bulk Synchronous Parallel (BSP)

– Developed by Leslie Valiant during 1980s

– Considers communication actions en masse
– Suitable for graph analytics at massive scale and

massive scientific computations (e.g., matrix, graph

and network algorithms)

5

- Examples: Google’s

Pregel, Apache Giraph

to perform graph

processing on big data

Valeria Cardellini - SABD 2023/24

Apache Spark

• Unified engine for large-scale data analytics

– Leading platform for batch/streaming data, SQL analytics,
data science and machine learning on clusters of nodes

– Multi-language: Scala, Python, Java and R

• In-memory data storage for fast iterative processing

– At least 10x faster than Hadoop MapReduce

• Suitable for execution of DAGs and powerful

optimization

• Compatible with Hadoop’s storage APIs

– Can read/write to any Hadoop-supported system, including
HDFS and HBase

6Valeria Cardellini - SABD 2023/24

Spark milestones
• Spark project started in 2009

• Developed originally at UC Berkeley’s AMPLab by

Matei Zaharia for his PhD thesis

• Open sourced in 2010, Apache project from 2013

• In 2014, Zaharia founded Databricks

• Current release: 3.5.1

• Top open source project for Big Data processing

7Valeria Cardellini - SABD 2023/24

See Stack Overflow Trends

Programming model different from Mapreduce, why?

• MapReduce simplified Big Data analysis

– But executes jobs in a simple but rigid structure
• Step to process or transform data (map)
• Step to synchronize (shuffle)
• Step to combine results (reduce)

• As soon as MapReduce got popular, users wanted:

– Iterative computations, e.g., graph and ML algorithms
– Interactive ad-hoc queries
– More efficiency
– Faster in-memory data sharing across parallel jobs

(required by both iterative and interactive applications)

8Valeria Cardellini - SABD 2023/24

Spark: In-memory computation
• Key idea: keep and share datasets in main memory

• Distributed in-memory: 10x-100x faster than disk

and network

9Valeria Cardellini - SABD 2023/24

Spark vs Hadoop MapReduce
• Underlying programming paradigm similar to

MapReduce

– Basically “scatter-gather”: scatter data and computation on
multiple cluster nodes that run in parallel processing on
data portions; gather final results

• Spark offers a more general data model

– RDDs, DataSets, DataFrames

• Spark offers a more general and developer-friendly

programming model

– Map -> Transformations in Spark
– Reduce -> Actions in Spark

• Spark is storage agnostic

– Not only HDFS, but also Cassandra, S3, Parquet files, …

Valeria Cardellini - SABD 2023/24 10

Spark stack

11Valeria Cardellini - SABD 2023/24

Spark core

• Provides basic functionalities (including task
scheduling, memory management, fault
recovery, interacting with storage systems)
used by other components

• Provides a data abstraction called resilient
distributed dataset (RDD), a collection of
items distributed across many compute
nodes that can be manipulated in parallel
– Spark Core provides APIs for building and

manipulating these collections

• Written in Scala but APIs for Java, Python
and R

12Valeria Cardellini - SABD 2023/24

Spark as unified analytics engine

• A rich set of integrated higher-level modules
built on top of Spark
– Can be combined seamlessly in the same

application

• Spark SQL
– For SQL and structured data processing

– Supports many data sources (Hive tables, Parquet,

JSON, …)

• Structured Streaming
– For incremental computation and stream

processing

13Valeria Cardellini - SABD 2023/24

PageRank performance (20
iterations, 3.7B edges)

Spark as unified analytics engine

• MLlib
– Scalable ML library

– Many distributed algorithms:

feature extraction,

classification, regression,

clustering, recommendation, …

14Valeria Cardellini - SABD 2023/24

• GraphX
– API for manipulating graphs and

performing graph-parallel computations

– Includes also common graph algorithms

(e.g., PageRank)

• Pandas API on Spark
– For pandas workloads

Logistic regression performance

Spark on top of cluster managers

• Spark can exploit many cluster resource
managers which allocate cluster resources to
run the applications

1. Standalone
– Simple cluster manager included with Spark that

makes it easy to set up a cluster

2. Hadoop YARN
– Hadoop cluster manager

3. Mesos
– Cluster manager from AMPLab

4. Kubernetes

15Valeria Cardellini - SABD 2023/24

Spark architecture

16

• Master/worker architecture

Valeria Cardellini - SABD 2023/24

Spark architecture

17

spark.apache.org/docs/latest/cluster-overview.html

• Main program (called driver program) connects to

cluster manager, which allocates resources

• Worker nodes in which executors run

• Executors are processes that run computations

and store data for the application

Valeria Cardellini - SABD 2023/24

Spark architecture
• Each application consists of a driver program and

executors on the cluster

– Driver program: process which runs user’s main function and
creates SparkContext object

– SparkContext: main entry point for Spark functionality, it tells
Spark how to access a cluster

• Each application gets its own executors, which are

processes which stay up for the duration of the

application and run tasks in multiple threads

– Isolation of concurrent applications

• To run on a cluster:

– SparkContext connects to cluster manager, which allocates
cluster resources

– Once connected, Spark acquires executors on cluster nodes
and sends the application code (e.g., jar) to executors

– Finally, SparkContext sends tasks to executors to run
18Valeria Cardellini - SABD 2023/24

Spark architecture

19Valeria Cardellini - SABD 2023/24

Executor Executor

Resilient Distributed Datasets (RDDs)

• RDDs are the key programming abstraction in
Spark: a distributed memory abstraction

• Immutable, partitioned and fault-tolerant
collection of elements that can be manipulated
in parallel
– Like a LinkedList <MyObjects>

– Stored in main memory across the cluster nodes

• Each worker node that is used to run an application
contains at least one partition of the RDD(s) that is (are)
defined in the application

20Valeria Cardellini - SABD 2023/24

RDDs: distributed and partitioned

• Stored in main memory of the executors running in
the worker nodes (when it is possible) or on node
local disk (if not enough main memory)

• Allow executing in parallel the code invoked on
them
– Each executor of a worker node runs the specified code

on its partition of the RDD
– Partition: atomic chunk of data (a logical division of data)

and basic unit of parallelism
– Partitions of an RDD can be stored on different cluster

nodes

21Valeria Cardellini - SABD 2023/24

RDDs: immutable and fault-tolerant
• Immutable once constructed

– RDD content cannot be modified

– New RDD is created from existing RDD(s)

• Automatically rebuilt on failure (without
replication)
– Track lineage information so to efficiently recompute

missing or lost data due to (node) failures

– For each RDD, Spark knows how it has been

constructed and can rebuild it if a failure occurs

– This information is represented by means of RDD

lineage DAG which keeps track of one or more

operations that lead to the creation of that RDD

22Valeria Cardellini - SABD 2023/24

RDD: Spark management

• Spark manages the split of

RDDs in partitions and

allocates RDDs’ partitions

to cluster nodes

• Spark hides complexity of

fault tolerance

– RDDs are automatically
rebuilt in case of failure
using the RDD lineage DAG,
that defines the logical
execution plan

23Valeria Cardellini - SABD 2023/24

RDD API

• RDD API
– Clean language-integrated API for Scala, Python,

Java, and R

– Can be used interactively from console (Scala and

PySpark)

• RDD suitability
– Best suited for unstructured data

– Provides fine-grained control over physical

distribution of data

• Also higher-level APIs: DataFrame and DataSet

24Valeria Cardellini - SABD 2023/24

Python Spark (PySpark)

• PySpark: Python API for Spark supporting the

collaboration of Spark and Python

• Provides PySpark shell for interactive analysis

• Supports all of Spark’s features such as Spark SQL,

DataFrames, Structured Streaming, MLlib and Spark

Core

25Valeria Cardellini - SABD 2023/24

PySpark: SparkContext

• SparkContext: entry point for low-level API

functionalities, the connection to a Spark cluster

• To create a SparkContext you first need to build

a SparkConf object that contains information about

application

conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)

• SparkConf allows to set various Spark parameters,

among which

– master: URL of cluster to connect to
– appName: name of job to run

• In the shell, SparkContext is already available as sc
See spark.apache.org/docs/latest/api/python

26Valeria Cardellini - SABD 2023/24

• Data flow is composed of any number of data

sources, operators, and data sinks by connecting

their inputs and outputs

• A Directed Acyclic Graph (DAG) in Spark is a set

of nodes and links, where nodes represent the

operations on RDDs and directed links represent

the data dependencies between operations

– Acyclic graph: there are no cycles or loops in the graph
– Generalization of MapReduce model, which has only

two operations (Map and Reduce)

Spark programming model: DAG

27Valeria Cardellini - SABD 2023/24

• DAG can be visualized using Spark Web UI

– In figure: WordCount DAG

Spark programming model: DAG

28Valeria Cardellini - SABD 2023/24

• DAG is divided into stages

• Stage: set of operations that

do not involve a shuffle of

data, resulting in a more

efficient computation

• As soon as a shuffle of data

is needed (i.e., when a wide
transformation is performed),

the DAG will yield a new

stage

Operations in RDD API

• Spark programs are written in terms of
operations on RDDs

• Programming model based on parallelizable
operations
– Higher-order functions that execute user-defined

functions in parallel

• RDDs are created from external data or other
RDDs

• RDDs are created and manipulated through
operators

See spark.apache.org/docs/latest/rdd-programming-guide.html

29Valeria Cardellini - SABD 2023/24

RDD operations
• RDD operations: higher-order functions

• Two types of RDD operations: transformations and

actions

• Transformations: coarse-grained and lazy

operations that define new RDD based on previous

one(s)

– map, filter, join, union, distinct, …
– lazy: the new RDD representing the result of a computation

is not immediately computed but is materialized on demand
when an action is called

• Actions: operations that kick off a job to execute on

a cluster and return a value to the driver program

after running a computation on RDD or write data to

external storage

– count, collect, save, …
30Valeria Cardellini - SABD 2023/24

Transformations and actions on RDDs

31

• Common transformations and actions on RDDs

- Seq[T]: sequence of elements of type T
spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

spark.apache.org/docs/latest/rdd-programming-guide.html#actions

Valeria Cardellini - SABD 2023/24

How to create RDD
• RDD can be created by:

– Parallelizing existing data collections of the hosting

programming language (e.g., collections and lists of

Scala, Java, Python, or R)

• Number of partitions specified by user
• RDD API: parallelize

– From (large) files stored in HDFS or any other file

system

• One partition per HDFS block
• RDD API: textFile

– Transforming an existing RDD

• Number of partitions depends on transformation type
• RDD API: transformation operations (map, filter,
flatMap)

32Valeria Cardellini - SABD 2023/24

How to create RDD
• Turn an existing collection into an RDD

– sc is Spark context variable
– Important parameter: number of partitions
– Spark will run one task for each partition of the cluster

(typical setting: 2-4 partitions for each CPU in the cluster)
– Spark tries to set the number of partitions automatically
– You can also set it manually by passing it as a second

parameter to parallelize, e.g., sc.parallelize(data, 10)

• Load data from storage (local file system, HDFS, or

S3)

lines = sc.parallelize(["pandas", "i like pandas"])

lines = sc.textFile("/path/input.txt")

Examples in Python
Valeria Cardellini - SABD 2023/24 33

RDD transformations: map and filter

• map: takes as input a function which is applied

to each element of the RDD and maps each

input element to another element

transform each element through a function

nums = sc.parallelize([1, 2, 3, 4])

squares = nums.map(lambda x: x * x) # [1,4,9,16]

select those elements that func returns true

even = squares.filter(lambda num: num % 2 == 0) # [4,16]

Valeria Cardellini - SABD 2023/24 34

• filter: takes as input a function which is applied as

filter to each element of the RDD, selecting only

those elements on which the function returns true

RDD transformations: flatMap

• flatMap: takes as input a function which is

applied to each element of the RDD; can map

each input item to zero or more output items

split input lines into words

lines = sc.parallelize(["hello world", "hi"])

words = lines.flatMap(lambda line: line.split(" "))

#[’hello', ’world', ’hi’]

map each element to zero or more others

ranges = nums.flatMap(lambda x: range(0, x, 1))

[0, 0, 1, 0, 1, 2, 0, 1, 2, 3]

range function in
Python: ordered
sequence of integer
values in range
[start;end) with non-
zero step

Valeria Cardellini - SABD 2023/24 35

RDD transformations: reduceByKey

• reduceByKey: when called on a RDD of

key-value pairs, aggregates values with

the same key using the specified function

• Runs parallel reduce operations, one for

each key in the RDD

x = sc.parallelize([("a", 1), ("b", 1), ("a", 1), ("a", 1),

... ("b", 1), ("b", 1), ("b", 1), ("b", 1)], 3)

apply reduceByKey operation

y = x.reduceByKey(lambda accum, n: accum + n)

[('b', 5), ('a', 3)]

Valeria Cardellini - SABD 2023/24 36

RDD transformations: reduceByKey

• Let’s see the corresponding DAG

Valeria Cardellini - SABD 2023/24 37

Stage 0 Stage 1

RDD transformations: join
• join: performs an inner-join on

the keys of two RDDs

• Only keys that are present in both

RDDs are output

• Join candidates are independently

processed

users = sc.parallelize([(0, "Alex"), (1, "Bert"), (2, "Curt"),
(3, "Don")])

hobbies = sc.parallelize([(0, "writing"), (0, "gym"), (1,
"swimming")])

users.join(hobbies).collect()

[(0, ('Alex', 'writing')), (0, ('Alex', 'gym')), (1,
('Bert', 'swimming'))]

Valeria Cardellini - SABD 2023/24 38

RDD transformations: join

• Let’s see the corresponding DAG

Valeria Cardellini - SABD 2023/24 39

More RDD transformations
• union: returns a new RDD that contains the union of the

elements in the source RDD and the argument
• partitionBy: returns a copy of the RDD partitioned using

the specified partitioner
• mapPartitions: similar to map, but runs separately on

each partition
• distinct: returns a new RDD that contains the distinct

elements of the source RDD
• groupByKey: when called on a key-value pair RDD,

groups the values for each key in the RDD into a single
sequence

• mapValues: passes each value in the key-value pair RDD
through a map function without changing the keys

• sample: sample a fraction of the data, with or without
replacement

Valeria Cardellini - SABD 2023/24 40

How to pass functions to transformations

• Lambda expressions, for simple functions that can be

written as an expression (see examples)

• Lambdas do not support multi-statement functions or
statements that do not return a value

• Local defs inside the function calling into Spark, for

longer code

• Top-level functions in a module

Valeria Cardellini - SABD 2023/24 41

Transformations and actions

• Transformations are lazy
– Are not computed till an action requires a result to be

returned to the driver program
– Spark can build up the logical transformation plan

• This design enables Spark to perform operations

more efficiently as they can be grouped together

– E.g., if there were multiple filter or map operations, Spark
can fuse them into one operation

– E.g., if Sparks knows that data is partitioned, Sparks can
avoid moving data over the network for groupBy

• We run an action to trigger the computation

– Instructs Spark to compute a result from a series of
transformations

42Valeria Cardellini - SABD 2023/24

Some RDD actions

• collect: returns all the elements of the RDD as a list

• take: returns an array with the first n elements in the

RDD

• count: returns the number of elements in the RDD

nums = sc.parallelize([1, 2, 3, 4])

nums.collect() # [1, 2, 3, 4]

nums.take(3) # [1, 2, 3]

nums.count() # 4

Valeria Cardellini - SABD 2023/24 43

Some RDD actions

• reduce: aggregates the elements in the RDD using

the specified function

• saveAsTextFile: writes the elements of the RDD as

a text file either to the local file system or HDFS

sum = nums.reduce(lambda x, y: x + y)

nums.saveAsTextFile("hdfs://file.txt")

Valeria Cardellini - SABD 2023/24 44

Shuffle operations
• Shuffle: Spark’s mechanism for re-distributing data so

that it is grouped differently across partitions

– Involves copying data across executors and machines,
making shuffle an expensive operation

• Example: with reduceByKey not all values for a single

key necessarily reside on the same partition (or even

the same machine), but they must be co-located to

compute the result by means of an all-to-all operation

Valeria Cardellini - SABD 2023/24 45

• Operations which can cause a shuffle

include

– repartition operations: repartition and
coalesce

– ByKey operations, e.g., reduceByKey and
groupByKey

– join operations, e.g., join and cogroup

Your very first examples in Spark
• After having installed Spark (e.g., Docker official

image), you can run interactively the examples using

PySpark by a terminal window

– sc is SparkContext variable

Valeria Cardellini - SABD 2023/24 46

First examples

• Let’s first analyze some simple examples
using RDD API
– Pi estimation

– WordCount

– Compute average

• More examples: see those distributed with
Spark
– Java

github.com/apache/spark/tree/master/examples/src/main/java/org/a
pache/spark/examples

– Python

github.com/apache/spark/tree/master/examples/src/main/python

47Valeria Cardellini - SABD 2023/24

Pi estimation in Python

def inside(p):
x, y = random.random(), random.random()
return x*x + y*y < 1

samples = sc.parallelize(range(0, NUM_SAMPLES))
within_circle = samples.filter(inside)
count = within_circle.count()
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2023/24 48

Pi estimation in Python with chaining

def inside(p):
x, y = random.random(), random.random()
return x*x + y*y < 1

count = sc.parallelize(range(0, NUM_SAMPLES)) \
.filter(inside).count()

print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2023/24 49

• Transformations and actions can be chained

together

Pi estimation in Scala

Valeria Cardellini - SABD 2023/24 50

val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
val x = math.random
val y = math.random
x*x + y*y < 1

}.count()
println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

• To run Spark shell in Scala

$ spark-shell

WordCount in Python

51Valeria Cardellini - SABD 2023/24

text_file = sc.textFile("hdfs://inputfile")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://output")

WordCount in Python
• Alternative solution: use countByValue

– Action that returns the count of each unique value in the
RDD as a dictionary of (value, count) pairs

– The driver collects the partial results of the partitions and
does the merge itself

• Which solution is better? Depends on dataset size

– Large dataset: use map, reduceByKey and collect to
exploit parallelism of reduceByKey

– Small dataset: countByValue may introduce less network
traffic (one stage less)

Valeria Cardellini - SABD 2023/24 52

text_file = sc.textFile("hdfs://inputfile")
words = text_file.flatMap(lambda line: line.split(" "))
wordCount = words.countByValue()
print(wordCount)

Compute average in Python

Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31),

("Jules", 30), ("TD", 35), ("Brooke", 25)])
Use map and reduceByKey transformations with their lambda
expressions to aggregate and then compute average
agesRDD = (dataRDD
.map(lambda x: (x[0], (x[1], 1)))
.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
.map(lambda x: (x[0], x[1][0]/x[1][1])))

Valeria Cardellini - SABD 2023/24 53

• A common pattern in data analysis

• Let’s aggregate all the ages for each name, group by

name, and then average the ages

Java: Lambda expressions
• Lambda expressions are short blocks of code which

take in parameters and return a value

– Enable to treat functionality as method argument, or code
as data

• Similar to methods (anonymous methods, i.e.,

methods without names), but do not need a name

and can be implemented in the body itself

• Usually passed as parameters to a function

• Arrow operator -> divides the lambda expressions in

two parts

– Left side: parameters required by lambda expression
– Right side: actions of lambda expression

54Valeria Cardellini - SABD 2023/24

Pi estimation in Java with chaining

List<Integer> l = new ArrayList<>(NUM_SAMPLES);
for (int i = 0; i < NUM_SAMPLES; i++) {

l.add(i);
}
long count = sc.parallelize(l).filter(i -> {

double x = Math.random();
double y = Math.random();
return x*x + y*y < 1;

}).count();
System.out.println("Pi is roughly " + 4.0 * count / NUM_SAMPLES);

Valeria Cardellini - SABD 2023/24 55

WordCount in Java

56Valeria Cardellini - SABD 2023/24

• JavaPairRDD: RDD containing key/value pairs

• Spark’s Java API allows to create tuples using

scala.Tuple2 class

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaRDD<String> words = lines.flatMap(line ->

Arrays.asList(SPACE.split(line).iterator());

JavaPairRDD<String, Integer> ones = words.mapToPair(w ->

new Tuple2<>(w, 1));

JavaPairRDD<String, Integer> counts = ones.reduceByKey((x, y) ->

x+y);

counts.saveAsTextFile("output");

WordCount in Java with chaining

57Valeria Cardellini - SABD 2023/24

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaPairRDD<String, Integer> counts = lines

.flatMap(s -> Arrays.asList(SPACE.split(line)).iterator())

.mapToPair(w -> new Tuple2<>(w, 1))

.reduceByKey((x, y) -> x + y);

counts.saveAsTextFile("output");

Initializing Spark: SparkContext

• First step in Spark program using RDD API: create

SparkContext object

– Represents connection to Spark cluster, can be used to create
RDDs on that cluster

• SparkConf object: configuration for a Spark application

– Used to set various Spark parameters as key-value pairs

• Only one SparkContext may be active per JVM

– stop() active SparkContext before creating a new one

58Valeria Cardellini - SABD 2023/24

SparkConf().setMaster("local").setAppName("My app")

SparkSession
• From Spark 2.0, SparkSession unifies the different

contexts from different APIs and represents the entry

point into all functionalities in Spark

• Available as variable spark from Spark shell and

PySpark

• Within application: use builder to create and

configure SparkSession

Valeria Cardellini - SABD 2023/24 59

Java

Python

Pi estimation in Python: using SparkSession

Valeria Cardellini - SABD 2023/24 60

Full example in Python using

SparkSession and API RDD

Access SparkContext from
SparkSession and operate on RDD

Create and configure SparkSession

Slightly different from slide 48: map
and reduce rather than filter and count

github.com/apache/spark/blob/master/examples/src/main/python/pi.py

WordCount in Java: using SparkSession

61Valeria Cardellini - SABD 2023/24

Full example in Java using

SparkSession and API RDD

Create and configure SparkSession

WordCount in Java: using SparkSession

62Valeria Cardellini - SABD 2023/24

Use RDDUse Dataset

github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/examples/
JavaWordCount.java

Launch applications

• Launch Spark application using bin/spark-submit
script

Valeria Cardellini - SABD 2023/24 63

See spark.apache.org/docs/latest/submitting-applications.html

Launch applications: main options
• --class: app entry point (e.g.,

org.apache.spark.examples.SparkPi)
• --master: master URL for cluster (e.g.,

spark://23.195.26.187:7077) (default: local)
• --deploy-mode: whether to deploy driver on worker nodes

(cluster) or locally as external client (default: client)
• --conf: Spark configuration property in key=value format
• application-jar: path to jar including app and all

dependencies. Be careful: URL must be globally visible, e.g.,
hdfs:// path or a file:// path that is present on all nodes

• For Python app: pass a .py file in place of application-jar
and add Python .zip, .egg or .py files to the search path using
--py-files

• application-arguments: arguments passed to the main
method of the main class, if any

Valeria Cardellini - SABD 2023/24 64

Launch applications: example

./bin/spark-submit --class
org.apache.spark.examples.SparkPi \

--master local \
--deploy-mode client \
--num-executors 2 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
examples/jars/spark-examples*.jar 10

Valeria Cardellini - SABD 2023/24 65

./bin/spark-submit \
examples/src/main/python/pagerank.py \
data/mllib/pagerank_data.txt 10

• Launch PageRank in Python passing arguments

• Launch Pi estimation in Java configuring Spark and

passing argument

Deploy modes and cluster managers

• Spark supports different deploy modes and cluster

managers, so it can run in different configurations

and environments

Valeria Cardellini - SABD 2023/24 66

Caching and persistence
• By default, RDDs are recomputed each time you run

an action on them

– This can be expensive (in time) if you need to use the RDD
more than once (e.g., iterative algorithms)

• To avoid computing an RDD more than once, ask

Spark to persist (or cache) data for rapid reuse

– To persist RDD, use persist() or cache() methods on it
– When RDD is persisted, each node stores in memory any

partitions of it and reuses them in other actions on that RDD
(or RDDs derived from it): future actions are much faster (more
than 10x)

• Key tool for iterative algorithms and fast interactive use

• Cache and persist also DataFrame and Dataset

67Valeria Cardellini - SABD 2023/24

Caching and persistence: storage level
• Using persist() you can specify the storage level for

persisting an RDD

– cache() is equivalent to persist() with default storage level
(MEMORY_ONLY)

• Main storage levels:

– MEMORY_ONLY: if the RDD does not fit in memory, some
partitions will not be cached and will be recomputed on the fly
each time they are needed

– MEMORY_AND_DISK
– DISK_ONLY

• Which storage level is best?

– Try to keep in-memory as much as possible
– Try not to spill to disk unless the functions that computed your

datasets are expensive (e.g., filter a large amount of data)
– Use replicated storage levels only if you want fast fault

recovery
68Valeria Cardellini - SABD 2023/24

Caching and persistence: performance speedup
• Spark outperforms Hadoop by up to 100x in

iterative ML

– Speedup comes from avoiding I/O and deserialization
costs by storing data in memory

69Valeria Cardellini - SABD 2023/24
Source: “Apache Spark: A Unified Engine for Big Data Processing”

110 s/iteration

1st iteration 80 s

Further iterations 1 s

Caching and persistence: example
• Let’s analyze how persistence is used in

iterative algorithms

• Naïve implementation of K-means algorithm

– At each iteration we need to use the RDD

containing the data points to be clustered

– Let’s cache this RDD

data = lines.map(parseVector).cache()

70Valeria Cardellini - SABD 2023/24

github.com/apache/spark/blob/master/examples/src/main/python/kmeans.py

K-means in Spark

• Name of data file, number of clusters K and

convergence threshold are read from command line

• Code uses NumPy, the fundamental package for

scientific computing with Python

$./bin/spark-submit --master local \

$SPARK_HOME/examples/src/main/python/kmeans.py \

$SPARK_HOME/data/mllib/kmeans_data.txt 2 0.1

Valeria Cardellini - SABD 2023/24 71

K-means in Spark

• Let’s first define two utility functions: parseVector
and closestPoint

Return index of the
closest centroid for point
p. centers contains the
centroids, where
centers[i] is
the i-th centroid

Valeria Cardellini - SABD 2023/24 72

Convert data into
float numbers

K-means in Spark
• Read data to be clustered from input file, convert

data into float numbers and then set K and

convergeDist
• Cache the RDD data to improve performance

• Inizialize randomly the cluster centroids kPoints

Valeria Cardellini - SABD 2023/24 73

takeSample is an action
used to retrieve a random
sample from the RDD (False
means without replacement)

K-means in Spark
• Repeat in a loop until convergence

– Map each data point to its closest centroid
– Calculate new cluster centroids (using average pattern)

Valeria Cardellini - SABD 2023/24 74

How Spark works on clusters
• A Spark application runs as a set of processes

(executors) on the cluster, coordinated by the driver
program of the application

• Executor: process launched for an application on a

worker node, that runs tasks and keeps data in

memory or disk storage

– Each application has its own executors

75Valeria Cardellini - SABD 2023/24

task

How Spark works at runtime

76Valeria Cardellini - SABD 2023/24

stage 1

data shuffle

• Application creates RDDs, transforms them, and runs

actions: this results in a DAG of operations

• DAG is transformed into stages

– Stage: set of tasks without a shuffle in between, contains
pipelined transformations with narrow dependencies

– Each task is a unit of execution that is sent to one executor
and works on a single partition of data

• Actions drive the execution

Stage execution

• Spark:
– Creates a task for each partition in RDD

– Schedules and assigns tasks to worker nodes

• All this happens internally (you need to do
anything)

77Valeria Cardellini - SABD 2023/24

Summary of Spark components

• RDD: parallel dataset with partitions

• DAG: logical graph of RDD operations

• Stage: set of tasks that run in parallel

• Task: unit of execution in Spark

78

Coarse grain

Fine grain

Valeria Cardellini - SABD 2023/24

Fault tolerance

• Spark keeps track of the transformations
used to build RDDs (their lineage DAG)

• Lineage information plus RDD immutability
provide fault tolerance
– Lineage is used to recover lost data of a RDD by

replaying transformations on RDDs

79Valeria Cardellini - SABD 2023/24

Example: RDD lineage DAG
created during log analysis

Application scheduling

• DAG scheduler takes tasks from Spark app and

sends them out to executors to get processed

• When app runs a Spark action (e.g., collect),

scheduler builds a physical execution plan (DAG of

stages) from the logical execution plan (RDD lineage

DAG)

• The scheduler determines the preferred location to

run each task on the basis of data locality

– If a task needs a partition which is available in a node’s
memory, the task is sent to that node

• The scheduler handles failures to compute missing

partitions from each stage until it computes the target

RDD

80Valeria Cardellini - SABD 2023/24

Spark’s high-level modules

81Valeria Cardellini - SABD 2023/24

Spark SQL

82

• Spark module for structured data processing

• Run SQL queries on top of Spark

• Integrated with Spark ecosystem
– Seamlessly mix SQL queries with Spark programs,

using either SQL or DataFrame API

– Apply functions to results of SQL queries, e.g.,

• Compatible with Hive, speedup up to 100x
– Hive: data warehouse built on top of Hadoop that

provides data summarization, query, and analysis

with SQL-like interface
Valeria Cardellini - SABD 2023/24

Spark SQL: the beginning

• How to extend Hive to run on Spark?
– Shark: modified Hive’s backend to run over Spark,

employing in-memory columnar storage

– Shark limitations

• Only Hive data model
• Query optimizer tied to Hadoop

83Valeria Cardellini - SABD 2023/24

Hive on Hadoop MapReduce Shark on Spark

Spark SQL: Features
• Borrows from Shark

– Hive data loading, in-memory columnar storage

• Adds:
– RDD-aware query optimizer (Catalyst Optimizer)

– Schema to RDD (DataFrame and Dataset APIs)

– Rich language interfaces

84Valeria Cardellini - SABD 2023/24

Spark SQL: Catalyst optimizer
• Catalyst is based on functional programming

constructs in Scala and designed for

– Easily adding new optimization techniques and features to
Spark SQL

– Enabling developers to extend the optimizer (e.g., adding
data source specific rules, support for new data types)

• Phases of query execution: analysis, logical

optimization, physical planning, and code generation

Valeria Cardellini - SABD 2023/24 85

DataFrame and Dataset APIs

• Higher-level APIs than RDD

• Best suited for structured and semi-structured
data

• DataFrames and Datasets have in common
with RDDs:
– Distributed in-memory collection of data

– Immutable

– Can be manipulated in similar ways to RDDs

– Are evaluated lazily

– Can be persisted in memory

– Spark keeps a lineage of transformations

Valeria Cardellini - SABD 2023/24 86

DataFrame and Dataset APIs
• DataFrame adds to RDD a schema to describe data

– Unlike RDD, data is organized into a distributed in-memory
table with named columns and schema

– Spark SQL provides APIs to run SQL queries on DataFrame
with a simple SQL-like syntax

• Table-like format of a DataFrame

Valeria Cardellini - SABD 2023/24 87

DataFrame and Dataset APIs
• Dataset extends DataFrame providing type-safe,

OO programming interface

– Structured and strongly typed collection of data
– A dataset is a collection of strongly-typed JVM objects in

Scala or a class in Java

• DataFrames vs Datasets

– DataFrames are more flexible and efficient in terms of
performance

– Datasets are more type-safe and expressive, but with a
limited set of APIs and more memory consumption

• DataFrame and Dataset APIs have with similar

interfaces

• SparkSession: entry point for both APIs

Valeria Cardellini - SABD 2023/24 88

RDDs vs DataFrames vs Datasets

Valeria Cardellini - SABD 2023/24 89

A Tale of Three Apache Spark APIs: RDDs vs DataFrames and Datasets, 2016

Dataset API
• Provides the benefits of RDDs (strong typing, ability

to use lambda functions) with those of Spark SQL’s

optimized execution engine

• Available only in Scala and Java

• Can be constructed from JVM objects

• Can be manipulated using transformations (map,

flatMap, filter, groupBy, ...) and actions

• Lazy, i.e. computation is only triggered when an

action is invoked

– Internally, a logical plan describes the computation required
to produce data. When an action is invoked, Spark query
optimizer optimizes the logical plan and generates a physical
plan for efficient execution

Valeria Cardellini - SABD 2023/24 90

Dataset API
• How to create a Dataset?

– From a file using read function
– From an existing RDD by converting it
– Through transformations applied on existing Datasets

• When creating a Dataset you have to know the

schema (i.e., the data types)

• With JSON and CSV files it is possible to infer the schema

Valeria Cardellini - SABD 2023/24 91

DataFrame API
• DataFrame: a Dataset organized into named columns

• Conceptually equivalent to a table in a relational

database but with richer optimizations

– Like Dataset, it exploits Catalyst optimizer

• Available in Scala, Java, Python, and R

– Can be used in PySpark shell
– In Scala and Java, a DataFrame is represented by a Dataset

of Rows

• Can be manipulated in similar ways to RDDs

• Can be constructed from:

– Structured data files (JSON, CSV, Parquet, Avro, ORC,
protubuf)

– Existing RDDs, either inferring the schema using reflection
or programmatically specifying the schema

– Tables in Hive
92Valeria Cardellini - SABD 2023/24

DataFrame API: constructing data frames

• Create a DataFrame from an RDD, a list or a pandas

DataFrame

Valeria Cardellini - SABD 2023/24 93

DataFrame API: constructing data frames
• Create a DataFrame from a file

– To load a file into a DataFrame, can use generic read.load
and its options

– Can also specify the data source that will be used along with
any extra options that you would like to pass to data source,
e.g., read.csv, read.json

– CSV file: can infer schema and specify separator (default is
",")

94

df = spark.read.load(
"/opt/spark/examples/src/main/resources/people.csv",
format="csv", sep=";", inferSchema="true", header="true")

See
github.com/apache/spark/blob/master/examples/src/main/python/sql/datasource.py

Valeria Cardellini - SABD 2023/24

DataFrame API: loading CSV file

• Can infer schema from CSV file

Valeria Cardellini - SABD 2023/24 95

Parquet file format
• An efficient columnar data storage format

parquet.apache.org

• Supported by many other data processing

frameworks, regardless of data model or

programming language choice

– Hive, Impala, ...

• Interoperable with other data storage formats

– Avro, Thrift, Protocol Buffers, ...

Valeria Cardellini - SABD 2023/24 96

Parquet file format

Valeria Cardellini - SABD 2023/24 97

• Supports efficient compression and encoding

schemes

• Example: Parquet vs. CSV

• Spark SQL provides support for reading and writing

Parquet files

• Schema of original data is automatically preserved

• Like protobuf, Avro, and Thrift, Parquet also supports

schema evolution

DataFrame API: using Parquet

Valeria Cardellini - SABD 2023/24 98

See spark.apache.org/docs/latest/sql-data-sources-parquet.html

Spark SQL can automatically infer the schema of a JSON
dataset and load it as a Dataset[Row]. This conversion
can be done using SparkSession.read.json()

From DataFrame to RDD and viceversa

• To convert DataFrame to RDD when greater control

is needed, call .rdd method on DataFrame object

• Reverse conversion can be done by calling

spark.createDataFrame() on an existing RDD

Valeria Cardellini - SABD 2023/24 99

DataFrame API: benefits
• Let’s consider expressivity and simplicity

• Example: aggregate all the ages for each name,

group by name, and then average the ages

– With RDDs (see slide 53), we instruct Spark how to
aggregate keys and compute averages using lambda
functions: hard to read and cryptic

– With DataFrames, we instruct Spark what to do

Valeria Cardellini - SABD 2023/24 100

from pyspark.sql.functions import avg
Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny",
31), ("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name",
"age"])
Group the same names together, aggregate their ages,
and compute an average
avg_df = data_df.groupBy("name").agg(avg("age"))
Show the results of the final execution
avg_df.show()

Spark Streaming
• To analyze streaming data

– Ingested and analyzed in micro-batches

• Uses a high-level abstraction called Dstream

(discretized stream) which represents a continuous

stream of data

– Represented as a sequence of RDDs

• Internally, it works as:

• See hands-on lesson

• Structured Spark Streaming

– New generation Spark’s stream processing engine built on the
Spark SQL engine

101Valeria Cardellini - SABD 2023/24

Spark MLlib
• Spark Mllib: Spark library for machine learning

– Includes 2 packages:
• spark.mllib: MLlib RDD-based API (maintenance mode)
• spark.ml: MLlib DataFrame-based API to support a variety of

data types

• Provides common ML algorithms

– Classification (e.g., logistic regression), regression, clustering
(e.g., K-means), recommendation (e.g., collaborative filtering),
decision trees, random forests, and more

• Provides also utilities

– For ML: feature transformations, model evaluation and hyper-
parameter tuning

– For distributed linear algebra (e.g., PCA) and statistics (e.g.,
summary statistics, hypothesis testing)

Valeria Cardellini - SABD 2023/24 102

Spark MLlib: logistic regression example
• Logistic regression: popular method to predict a

categorical response

– Binomial and multinomial

• Dataset of labels and features

• Load training data and fit model using binomial

logistic regression

103

LIBSVM format

ML package

Valeria Cardellini - SABD 2023/24

Spark MLlib: K-means
• MLlib implementation of K-means includes a

parallelized variant of K-means++ called Kmeans||

– K-means++ goal: find K initial cluster centroids by spreading
them out so as to improve solution quality and convergence

• 1st cluster centroid is chosen uniformly from data points
• Each subsequent centroid is chosen from the remaining data

points with probability proportional to its squared distance from
the point's closest existing cluster centroid

– Since K-means++ is sequential (it needs K passes over the
data), Spark uses its parallel variant Kmeans||

• K-means input is feature vector

• K-means output is predicted cluster centers

Valeria Cardellini - SABD 2023/24 104

Bahmani et al, Scalable k-means++, Proc. VLDB Endow., 2012.
theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf

Spark ML: k-means example

Valeria Cardellini - SABD 2023/24 105

Silhouette is used to study the separation distance
between resulting clusters.

Silhouette plot displays a measure of how close each
point in one cluster is to points in the neighboring
clusters and provides a way to assess the number of
clusters visually.

Combining processing tasks with Spark

Valeria Cardellini - SABD 2023/24 106

• It is easy to seamlessly combine different
Spark libraries in the same application

• Example in Scala combining SQL, ML and
streaming libraries in Spark
– Read historical Twitter data using Spark SQL

– Train a K-means clustering model using MLlib

– Apply the model to a new stream of tweets in

order to predict language from location

Combining processing tasks with Spark

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

Valeria Cardellini - SABD 2023/24 107

References

• Zaharia et al., Spark: Cluster Computing with Working Sets,
HotCloud’10.

• Zaharia et al., Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing, NSDI’12.

• Zaharia et al., Apache Spark: A Unified Engine For Big Data
Processing”, Commun. ACM, 2016.

• Ambrust et al., Spark SQL: Relational Data Processing in Spark,
ACM SIGMOD’15.

• Damji et al., Learning Spark - Lightning-Fast Big Data Analysis,
2nd edition, O’Reilly, 2020.

108Valeria Cardellini - SABD 2023/24

