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The reference Big Data stack
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Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration



Where storage sits in the Big Data stack
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• Example of frameworks and tools in a data lake
architecture

object

Typical server architecture and storage hierarchy
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Storage performance metrics
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Where to store data?
• See “Latency numbers every programmer should know” 

(presented by Jeff Dean from Google in 2010, numbers 
updated in 2020) 
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Where to store data?
• “Latency numbers every programmer should know for 

the 2020s” www.youtube.com/watch?v=FqR5vESuKe0
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Maximum attainable throughput

• Varies significantly by device

– 50 GB/s for RAM

– 3 GB/s for NVMe SSD
• SSD: Solid State Drive

• NVMe: Non-Volatile Memory Express

• NVMe is a storage access and transport protocol for 
flash and next-generation SSDs

– 130 MB/s for hard disk

• Assumes large reads (≫1 block)

V. Cardellini - SABD 2023/24 7



Hardware trends over time

• Capacity/$ grows at a fast rate (e.g., doubles 

every 2 years)

• Throughput grows at a slower rate (~5% per 

year), but new interconnects help

• Latency does not improve much over time
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Data storage: the classic approach
• File

– Group of data, whose structure is defined by file system

• File system
– Controls how data are structured, named, organized, stored 

and retrieved from disk

– Single (logical) disk (e.g., HDD/SDD, RAID)

• Relational database
– Organized/structured collection of data (e.g., entities, tables)

• Relational database management system (RDBMS)

– Provides a way to organize and access relational data

– Enables data definition, update, retrieval, administration
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What about Big Data?
Storage capacity and data transfer rate have increased 
massively over the years

Let's consider the latency (time needed to transfer data*)
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HDD
Capacity: ~1TB
Throughput: 250MB/s

SSD
Capacity: ~1TB
Throughput: 850MB/s

Data Size HDD SSD
10 GB 40s 12s

100 GB 6m 49s 2m

1 TB 1h 9m 54s 20m 33s

10 TB ? ?
* we consider no overhead

We need to

scale out!

General principles for scalable data storage
• Scalability and high performance

– Need to face continuous growth of data to store

– Use multiple nodes to store data

• Ability to run on commodity hardware
– But hardware failures are the norm rather than the exception

• Reliability and fault tolerance 

– Transparent data replication

• Availability

– Data should be available to serve requests when needed

– CAP theorem: trade-off with consistency
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Scalable and resilient data storage solutions
Various forms of storage for Big Data:

• Distributed file systems
– Manage (large) files on multiple nodes

– E.g., Google File System, HDFS, GlusterFS

• NoSQL data stores
– Simple and flexible non-relational data models: key-value, 

column family, document, and graph

– Horizontal scalability and fault tolerance 

– E.g., Redis, BigTable, Hbase, Cassandra, MongoDB, Neo4J

– Also time series databases built on top of NoSQL (e.g.,: 
InfluxDB, KairosDB)

• NewSQL databases
– Add horizontal scalability and fault tolerance to relational model

– E.g., VoltDB, Google Spanner, CockroachDB
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Scalable and resilient data storage solutions
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Whole picture of different storage solutions we consider



Data storage in the Cloud
• Main goals: 

– On-demand (elastic) and geographic scale

– Fault tolerance

– Durability (versioned copies)

– Simplified application development and deployment

– Support for cloud-native apps (serverless)

• Public Cloud services for data storage
– Object stores: Amazon S3, Google Cloud Storage, Microsoft 

Azure Storage, …

– Relational databases: Amazon RDS, Amazon Aurora, Google 
Cloud SQL, Microsoft Azure SQL Database, …

– NoSQL data stores: Amazon DynamoDB, Amazon 
DocumentDB, Google Cloud Bigtable, Google Datastore, 
Microsoft Azure Cosmos DB, MongoDB Atlas, …

– NewSQL databases: Google Cloud Spanner, …

– Serverless databases: Google Firestore, CockroachDB, …
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Distributed File Systems (DFS)
• Primary support for data management

• Manage data storage across a network of machines

– Usually locally distributed, in some case geo-distributed

• Provide an interface whereby to store information in 
the form of files and later access them for read and 
write operations

• Several solutions with different design choices
– GFS, HDFS (GFS open-source clone): designed for batch 

applications with large files

– Alluxio: in-memory (high-throughput) storage system

– GlusterFS: scalable network file system

– Lustre: open-source, large-scale distributed file system

– Ceph: open-source, distributed object store with Ceph File 
System on top
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Case study: Google File System (GFS)
Assumptions and motivations

• System is built from inexpensive commodity hardware 
that often fails

– 60,000 nodes, each with 1 failure per year: 7 failures per hour!

• System stores large files

• Large streaming/contiguous reads, small random 
reads

• Many large, sequential writes that append data

– Concurrent clients can append to same file

• High sustained bandwidth is more important than low 
latency
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Ghemawat et al., The Google File System, Proc. ACM SOSP '03

GFS: Main features
• Distributed file system implemented in user space

• Manages (very) large files: usually multi-GB

• Data parallelism using divide et impera approach: file 
split into fixed-size chunks

• Chunk:
– Fixed size (either 64MB or 128MB)

– Transparent to users

– Stored as plain file on chunk servers

• Write-once, read-many-times pattern
– Efficient append operation: appends data at the end of file 

atomically at least once even in the presence of concurrent 
operations (minimal synchronization overhead)

• Fault tolerance and high availability through chunk 
replication, no data caching
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GFS: Operation environment
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GFS: Architecture

• Master
– Single, centralized entity (to simplify the design)

– Manages file metadata (stored in memory)

• Metadata: access control information, mapping from files to 
chunks, locations of chunks

– Does not store data (i.e., chunks)

– Manages operations on chunks: create, replicate, load balance, 
delete
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GFS: Architecture

• Chunk servers (100s – 1000s)
– Store chunks as files

– Spread across cluster racks

• Clients
– Issue control (metadata) requests to GFS master 

– Issue data requests to GFS chunkservers

– Cache metadata, do not cache data (simplifies system design)
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GFS: Metadata
• Master stores 3 major types of metadata: 

– File and chunk namespace (directory hierarchy)

– Mapping from files to chunks

– Current locations of chunks

• Metadata are stored in memory (64B per chunk)
✓ Fast, easy and efficient to scan the entire state

✗ Number of chunks is limited by amount of master’s memory
"The cost of adding extra memory to the master is a small price to 
pay for the simplicity, reliability, performance, and flexibility gained"

• Master also keeps an operation log where metadata 
changes are recorded
– Log is persisted on master’s disk and replicated for fault 

tolerance 

– Master can recover its state by replaying operation log

– Checkpoints for fast recovery
V. Cardellini - SABD 2023/24 21



GFS: Chunk size

• Chunk size is either 64 MB or 128 MB
– Much larger than typical block sizes

• Why? Large chunk size reduces: 
– Number of interactions between client and master

– Size of metadata stored on master

– Network overhead (persistent TCP connection to chunk 
server)

• Each chunk is stored as a plain Linux file

• Cons
✗ Wasted space due to internal fragmentation

✗ “Small” files consist of a few chunks, which get lots of traffic 
from concurrent clients (can be mitigated by increasing 
replication factor)
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GFS: Fault tolerance and replication

• Master controls and maintains the replication of each 
chunk on several chunk servers
– At least 3 replicas on different chunk servers

– Replication based on primary-backup schema

– Replication degree > 3 for highly requested chunks

• Multi-level placement of replicas
– Different machines, same rack   + availability and reliability

– Different machines, different racks     + aggregated bandwidth

• Data integrity
– Chunk divided in 64KB blocks; 32B checksum for each block

– Checksum kept in memory

– Checksum checked every time app reads data
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GFS: Master operations
• Stores metadata

• Manages and locks namespace
– Namespace represented as a lookup table

– Read lock on internal nodes and read/write lock on leaves: 
read lock allows concurrent mutations in the same directory 
and prevents deletion, renaming or snapshot

• Communicates periodically with each chunk server 
using RPC
– Sends instructions and collects chunk server state 

(heartbeat messages)

• Creates, re-replicates and rebalances chunks
– Balances chunk servers’ disk space utilization and load

– Distributes replicas among racks to increase fault tolerance

– Re-replicates a chunk as soon as the number of its available 
replicas falls below the replication degree
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GFS: Master operations

• Garbage collection

– File deletion logged by master

– Deleted file is renamed to a hidden name with deletion 
timestamp, so that real deletion is postponed and file can be 
easily recovered in a limited timespan

• Stale replica detection

– Chunk replicas may become stale if a chunk server fails or 
misses updates to chunk

– For each chunk, the master keeps a chunk version number

– Chunk version number updated at each chunk mutation

– Master removes stale replicas during garbage collection
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GFS: Interface
• Files are organized in directories

– But no data structure to represent directory

• Files are identified by their pathname

– Bu no alias support

• GFS supports traditional file system operations (but 
not Posix-compliant)

– create, delete, open, close, read, and write

• Supports also 2 special operations:
– snapshot: makes a copy of file or directory tree at low cost 

(based on copy-on-write techniques)

– record append: allows multiple clients to append data to  
the same file concurrently, without overwriting one 
another’s data
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GFS: Read operation
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• Read operation
- Data flow is decoupled from control flow

1) Client sends read(file name, chunk index) to master

2) Master replies with chunk handle (globally unique ID of chunk), chunk 
version number (to detect stale replica), and chunk locations

3) Client sends read(chunk handle, byte range) to the closest chunk 
server among those serving the chunk

4) Chunk server replies with chunk data

1

2

3

4



GFS: Mutation operation
• Mutations are write or append

– Mutations are performed at all 
chunk's replicas in the same order

• Based on lease mechanism:
– Goal: minimize management 

overhead at master

– Master grants chunk lease to 
primary replica

– Primary picks a serial order for all 
mutations to chunk

– All replicas follow this order when 
applying mutations

– Primary replies to client, see 7)

– Leases renewed using periodic 
heartbeat messages between 
master and chunk servers
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• Data flow is decoupled from 
control flow

• Client sends data to any of 
the chunk servers identified 
by master, which in turn 
pushes data to the other 
chunk servers in a chained 
fashion so to fully utilize 
network bandwidth

GFS: Atomic append

• Client sends only data (without specifying offset)

• GFS appends data to file at least once atomically (i.e., 
as one continuous sequence of bytes)

– At offset chosen by GFS

– Works with multiple concurrent writers

– At least once: applications must cope with possible 
duplicates

• Append operations heavily used by Google's 
distributed apps

– E.g., files often serve as multiple-producers/single-consumer 
queue or contain results merged from many clients 
(MapReduce)
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GFS: Consistency model

• Changes to namespace (e.g., file creation) are 
atomic
– Managed exclusively by GFS master with locking 

guarantee

• Changes to data are ordered as chosen by primary 
replica, but chunk server failures can cause 
inconsistency

• GFS has a “relaxed” model for data: eventual 
consistency
– Simple and efficient to implement
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GFS performance (in 2003)

31

• Read performance is satisfactory (80-100 MB/s)

• But reduced write performance (30 MB/s) and relatively 
slow (5 MB/s) in appending data to existing files
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GFS problems
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Main problem with GFS architecture?

Single master
Single point of failure (SPOF)

Scalability bottleneck

GFS problems: Single master
• Solutions adopted to overcome issues related 

to single master 

– Overcome SPOF: by having multiple “shadow” 
masters that provide read-only access when the 
primary master is down

– Overcome scalability bottleneck: by reducing 
interaction between master and clients

• Master stores only metadata (not data) 

• Clients can cache metadata

• Large chunk size 

• Chunk lease: master delegates the authority of 
coordinating the mutations to primary replica

• Overall, simple solutions
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GFS summary
• GFS success

– Used by Google to support search service and other services

– Availability and recoverability on commodity hardware

– High throughput by decoupling control and data

– Supports massive data sets and concurrent appends

• GFS problems (besides single master)
– All metadata stored in master memory

• “Limited” scalability: approximately 50M files, 10PB

– Semantics not transparent to apps

– Slow automatic failover (~ 10 sec.)

– Client’s delay when recovering from a failed chunk server

– Performance not good for all services

• GFS designed for high throughput but not appropriate for latency-
sensitive services like Gmail
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Colossus: successor of GFS 
• Next-generation Google DFS (since 2010)

• Designed for a wide variety of Google services (YouTube, 
Maps, Photos, search ads, …)

• Can handle EB of storage, tens of thousands of servers

• Distributed masters, chunk servers replaced by D servers

• Scalable metadata layer, built on top of Bigtable

• Error-correcting codes (e.g., Reed-Solomon)

• Mix of high-speed flash memory and disks for storage

• Client-driven encoding and replication

• Google Cloud services built on top of Colossus
– Cloud Storage (object store) and Cloud Firestore (NoSQL data 

store)
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Colossus under the hood: a peek into Google’s scalable storage system, 2021.
www.youtube.com/watch?v=q4WC_6SzBz4



Colossus: key components
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HDFS

• Hadoop Distributed File System (HDFS)
– Open-source user-level distributed file system 

– Written in Java

– GFS clone: shares many features with GFS 
(including pros and cons!)

• Master/worker architecture

• Large files, data parallelism

• Commodity, low-cost hardware

• Highly fault tolerant and throughput oriented

– Integrated with processing frameworks and ingestion 
tools, e.g., Hadoop MapReduce, Spark, Flink, NiFi

37

Shafer et al., The Hadoop Distributed Filesystem: Balancing Portability and 
Performance, Proc. ISPASS 2010
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HDFS: Design principles

• Large data sets: typical file size is GBs or TBs

• Write-once, read-many-times access pattern to files

– E.g., MapReduce apps, web crawlers

• Commodity, low-cost hardware

– HDFS is designed to work without noticeable interruption to 
users even when failures occur

• Portability across heterogeneous hardware and 
software platforms
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HDFS: Architecture

• Master/workers, nodes in a HDFS cluster:
– One NameNode (master in GFS)

– Multiple DataNodes (chunk servers in GFS)
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HDFS: File management
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• Data parallelism: each file is split into blocks (chunks 
in GFS) which are stored on DataNodes

• Large size blocks (default 64 MB), we know why

HDFS: Block replication
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• NameNode periodically receives heartbeat and  
blockreport from each DataNode

- Blockreport: list of all blocks on a given DataNode



HDFS: File read
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Source: “Hadoop: The definitive guide”

• NameNode is used to get block location
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HDFS: File write
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Source: “Hadoop: The definitive guide”

• Clients ask NameNode for a list of suitable DataNodes

• This list forms a chain: first DataNode stores a copy of 
the block, then forwards it to the second, and so on
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Enhancements in HDFS 3.x
• High availability 

– Single NameNode is SPOF: added support for >= 2 
NameNodes (1 active and >=1 standby)

hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html

• Erasure coding can be used as alternative storage 
strategy to replication in order to provide fault tolerance
✓ Same level of fault tolerance with less storage overhead:  from 

200% with replication degree equal to 3 to 50%

✗ Increase in network and processing overhead

– Two codes available: XOR and Reed-Solomon

– Erasure coding can be enabled on a per directory basis
blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
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HDFS: security

• HDFS initially lacked robust security mechanisms

• Recent versions have introduced features like 
authentication (based on Kerberos and LDAP), 
authorization (based on ACLs), and encryption (both 
data at rest and data in transit)

• Can be integrated with Apache Ranger, which provides 
comprehensive security across Hadoop ecosystem
⎯ Centralized security administration 

⎯ Fine-grained authorization 

⎯ Support for different authorization methods (role-based AC, 
attribute-based AC, etc.)

⎯ Centralize auditing of user access and administrative actions

• Data governance can be provided by third-party tools, 
e.g., Cloudera Navigator
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Another distributed file system: GlusterFS

• Linux-based, open source distributed file 

system www.gluster.org

• Designed to be highly scalable

– Scaling to several PB (up to 72 brontobytes!)
• Brontobyte = 1027 or 290 bytes
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GlusterFS: Features

• Global namespace

– Issue: metadata is a bottleneck

– Solution: avoid centralized metadata server
• No special node(s) with special knowledge of where files 

are or should be

– Solution: use consistent hashing (similarly to Chord)
• Benefits of distributed hashing (robustness, load balancing, 

…)

• Clustered and highly available storage

• Built-in replication and geo-replication

• Self-healing

• Ability to re-balance data
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GlusterFS: Architecture

• Four main concepts: 

– Trusted Storage Pool: trusted network of servers 
that will host storage resources

– Bricks: storage units which consist of a server 
and directory path (i.e., server:/export)

• Bricks correspond to Chord’s nodes

• Files are mapped to bricks by calculating a hash

– Volumes: collection of bricks with a common 
redundancy requirement 

– Translators: modules that are chained together to 
move data from point a to point b

• Translator converts requests from users into requests for 
storage
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A layer of indirection
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• Motivations

– Write throughput is limited by disk and network bandwidth

– Fault tolerance by replicating data across servers, 
but synchronous replication slows down write ops

– Performance and cost trend: RAM is key to fast data 
processing and gets cheaper over time

• Idea

– Add a layer of indirection between computation and storage

– Store data in RAM: faster than DFS and object stores, 
decoupling computation and storage

✗RAM is volatile



Alluxio
• Distributed in-memory storage system www.alluxio.io

• Adds a data access layer between storage and 
computation

– Interposed between persistent storage layer (e.g., HDFS, 
AWS S3, …) and processing frameworks for analytics and AI 
(e.g., Spark, Flink, TensorFlow, …)

• Goal: storage unification and abstraction

– Brings data from storage closer to applications 
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– Enables applications to 
connect to different 
storage systems through 
a common interface and a 
global namespace

Alluxio 
• History

– Originated from Tachyon project at AMPLab (UC 
Berkeley)

– Evolved as data orchestration technology for analytics and 
AI for the cloud

• Features

– High read/write throughput, at memory speed

– Commonly used as distributed shared caching service

– How to address RAM volatility? Avoid replication and use 
re-computation (lineage) to achieve fault tolerance

• One copy of data in memory (fast)

• Upon failure, re-compute data using lineage: keep track of 
executed ops and, in case of failure, recover lost output by 
re-executing ops that created the output

• Borrowed from Spark
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Alluxio: Architecture

• Master-worker architecture (like GFS, HDFS)

• Replicated masters, multiple workers

– Passive standby approach to ensure master fault 
tolerance

– Consensus: Zookeeper, Raft
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Alluxio: Architecture

53

Workers
– Manage local storage (RAM, SSD, 

HDD)

– Access to “under storage” (e.g., 
HDFS, S3), not managed by Alluxio

– Periodically heartbeat to primary 
master 

Master
– Stores metadata of storage system

– Responds to client requests

– Tracks lineage information 

– Computes checkpoint order

– Secondary master(s) for fault 
tolerance

docs.alluxio.io/os/user/stable/en/overview/Architecture.html
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Alluxio: Lineage and persistence
Alluxio consists of two (logical) layers: 

• Lineage layer: tracks the sequence of operations that have 
created a particular data output

– Write-once semantics: data is immutable once written

– Frameworks using Alluxio track data dependencies and recompute
them when a failure occurs

– API for managing and accessing lineage information

• Persistence layer: persists data onto storage, used to perform 
asynchronous checkpoints

– Efficient checkpointing algorithm

• Avoids checkpointing temporary files

• Checkpoints hot files first (i.e., the most read files)

• Bounds re-computation time
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File set A File set B
task

dependency

Task reads file set A 
and writes file set B

Data storage so far: Summing up
• Google File System and HDFS

– Master/worker architecture

– Decouples metadata from data

– Single master (bottleneck): limits interactions and file system 
size

– Designed for batch applications: large chunks, no data caching

• GlusterFS

– No centralized metadata server

– Consistent hashing

• Alluxio

– In-memory storage system

– Master/worker architecture

– No replication: tracks changes (lineage), recovers data using 
checkpoints and re-computations
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