
(Big) Data Storage Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2023/24

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

V. Cardellini - SABD 2023/24 1

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

Where storage sits in the Big Data stack

V. Cardellini - SABD 2023/24 2

• Example of frameworks and tools in a data lake
architecture

object

Typical server architecture and storage hierarchy

V. Cardellini - SABD 2023/24 3

Storage performance metrics

V. Cardellini - SABD 2023/24 4

Where to store data?
• See “Latency numbers every programmer should know”

(presented by Jeff Dean from Google in 2010, numbers
updated in 2020)

5V. Cardellini - SABD 2023/24

Where to store data?
• “Latency numbers every programmer should know for

the 2020s” www.youtube.com/watch?v=FqR5vESuKe0

6V. Cardellini - SABD 2023/24

Maximum attainable throughput

• Varies significantly by device

– 50 GB/s for RAM

– 3 GB/s for NVMe SSD
• SSD: Solid State Drive

• NVMe: Non-Volatile Memory Express

• NVMe is a storage access and transport protocol for
flash and next-generation SSDs

– 130 MB/s for hard disk

• Assumes large reads (≫1 block)

V. Cardellini - SABD 2023/24 7

Hardware trends over time

• Capacity/$ grows at a fast rate (e.g., doubles

every 2 years)

• Throughput grows at a slower rate (~5% per

year), but new interconnects help

• Latency does not improve much over time

V. Cardellini - SABD 2023/24 8

Data storage: the classic approach
• File

– Group of data, whose structure is defined by file system

• File system
– Controls how data are structured, named, organized, stored

and retrieved from disk

– Single (logical) disk (e.g., HDD/SDD, RAID)

• Relational database
– Organized/structured collection of data (e.g., entities, tables)

• Relational database management system (RDBMS)

– Provides a way to organize and access relational data

– Enables data definition, update, retrieval, administration

V. Cardellini - SABD 2023/24 9

What about Big Data?
Storage capacity and data transfer rate have increased
massively over the years

Let's consider the latency (time needed to transfer data*)

V. Cardellini - SABD 2023/24 10

HDD
Capacity: ~1TB
Throughput: 250MB/s

SSD
Capacity: ~1TB
Throughput: 850MB/s

Data Size HDD SSD
10 GB 40s 12s

100 GB 6m 49s 2m

1 TB 1h 9m 54s 20m 33s

10 TB ? ?
* we consider no overhead

We need to

scale out!

General principles for scalable data storage
• Scalability and high performance

– Need to face continuous growth of data to store

– Use multiple nodes to store data

• Ability to run on commodity hardware
– But hardware failures are the norm rather than the exception

• Reliability and fault tolerance

– Transparent data replication

• Availability

– Data should be available to serve requests when needed

– CAP theorem: trade-off with consistency

V. Cardellini - SABD 2023/24 11

Scalable and resilient data storage solutions
Various forms of storage for Big Data:

• Distributed file systems
– Manage (large) files on multiple nodes

– E.g., Google File System, HDFS, GlusterFS

• NoSQL data stores
– Simple and flexible non-relational data models: key-value,

column family, document, and graph

– Horizontal scalability and fault tolerance

– E.g., Redis, BigTable, Hbase, Cassandra, MongoDB, Neo4J

– Also time series databases built on top of NoSQL (e.g.,:
InfluxDB, KairosDB)

• NewSQL databases
– Add horizontal scalability and fault tolerance to relational model

– E.g., VoltDB, Google Spanner, CockroachDB

V. Cardellini - SABD 2023/24 12

Scalable and resilient data storage solutions

V. Cardellini - SABD 2023/24 13

Whole picture of different storage solutions we consider

Data storage in the Cloud
• Main goals:

– On-demand (elastic) and geographic scale

– Fault tolerance

– Durability (versioned copies)

– Simplified application development and deployment

– Support for cloud-native apps (serverless)

• Public Cloud services for data storage
– Object stores: Amazon S3, Google Cloud Storage, Microsoft

Azure Storage, …

– Relational databases: Amazon RDS, Amazon Aurora, Google
Cloud SQL, Microsoft Azure SQL Database, …

– NoSQL data stores: Amazon DynamoDB, Amazon
DocumentDB, Google Cloud Bigtable, Google Datastore,
Microsoft Azure Cosmos DB, MongoDB Atlas, …

– NewSQL databases: Google Cloud Spanner, …

– Serverless databases: Google Firestore, CockroachDB, …
V. Cardellini - SABD 2023/24 14

Distributed File Systems (DFS)
• Primary support for data management

• Manage data storage across a network of machines

– Usually locally distributed, in some case geo-distributed

• Provide an interface whereby to store information in
the form of files and later access them for read and
write operations

• Several solutions with different design choices
– GFS, HDFS (GFS open-source clone): designed for batch

applications with large files

– Alluxio: in-memory (high-throughput) storage system

– GlusterFS: scalable network file system

– Lustre: open-source, large-scale distributed file system

– Ceph: open-source, distributed object store with Ceph File
System on top

V. Cardellini - SABD 2023/24 15

Case study: Google File System (GFS)
Assumptions and motivations

• System is built from inexpensive commodity hardware
that often fails

– 60,000 nodes, each with 1 failure per year: 7 failures per hour!

• System stores large files

• Large streaming/contiguous reads, small random
reads

• Many large, sequential writes that append data

– Concurrent clients can append to same file

• High sustained bandwidth is more important than low
latency

V. Cardellini - SABD 2023/24 16

Ghemawat et al., The Google File System, Proc. ACM SOSP '03

GFS: Main features
• Distributed file system implemented in user space

• Manages (very) large files: usually multi-GB

• Data parallelism using divide et impera approach: file
split into fixed-size chunks

• Chunk:
– Fixed size (either 64MB or 128MB)

– Transparent to users

– Stored as plain file on chunk servers

• Write-once, read-many-times pattern
– Efficient append operation: appends data at the end of file

atomically at least once even in the presence of concurrent
operations (minimal synchronization overhead)

• Fault tolerance and high availability through chunk
replication, no data caching

V. Cardellini - SABD 2023/24 17

GFS: Operation environment

V. Cardellini - SABD 2023/24 18

GFS: Architecture

• Master
– Single, centralized entity (to simplify the design)

– Manages file metadata (stored in memory)

• Metadata: access control information, mapping from files to
chunks, locations of chunks

– Does not store data (i.e., chunks)

– Manages operations on chunks: create, replicate, load balance,
delete

V. Cardellini - SABD 2023/24 19

GFS: Architecture

• Chunk servers (100s – 1000s)
– Store chunks as files

– Spread across cluster racks

• Clients
– Issue control (metadata) requests to GFS master

– Issue data requests to GFS chunkservers

– Cache metadata, do not cache data (simplifies system design)
V. Cardellini - SABD 2023/24 20

GFS: Metadata
• Master stores 3 major types of metadata:

– File and chunk namespace (directory hierarchy)

– Mapping from files to chunks

– Current locations of chunks

• Metadata are stored in memory (64B per chunk)
✓ Fast, easy and efficient to scan the entire state

✗ Number of chunks is limited by amount of master’s memory
"The cost of adding extra memory to the master is a small price to
pay for the simplicity, reliability, performance, and flexibility gained"

• Master also keeps an operation log where metadata
changes are recorded
– Log is persisted on master’s disk and replicated for fault

tolerance

– Master can recover its state by replaying operation log

– Checkpoints for fast recovery
V. Cardellini - SABD 2023/24 21

GFS: Chunk size

• Chunk size is either 64 MB or 128 MB
– Much larger than typical block sizes

• Why? Large chunk size reduces:
– Number of interactions between client and master

– Size of metadata stored on master

– Network overhead (persistent TCP connection to chunk
server)

• Each chunk is stored as a plain Linux file

• Cons
✗ Wasted space due to internal fragmentation

✗ “Small” files consist of a few chunks, which get lots of traffic
from concurrent clients (can be mitigated by increasing
replication factor)

V. Cardellini - SABD 2023/24 22

GFS: Fault tolerance and replication

• Master controls and maintains the replication of each
chunk on several chunk servers
– At least 3 replicas on different chunk servers

– Replication based on primary-backup schema

– Replication degree > 3 for highly requested chunks

• Multi-level placement of replicas
– Different machines, same rack + availability and reliability

– Different machines, different racks + aggregated bandwidth

• Data integrity
– Chunk divided in 64KB blocks; 32B checksum for each block

– Checksum kept in memory

– Checksum checked every time app reads data

V. Cardellini - SABD 2023/24 23

GFS: Master operations
• Stores metadata

• Manages and locks namespace
– Namespace represented as a lookup table

– Read lock on internal nodes and read/write lock on leaves:
read lock allows concurrent mutations in the same directory
and prevents deletion, renaming or snapshot

• Communicates periodically with each chunk server
using RPC
– Sends instructions and collects chunk server state

(heartbeat messages)

• Creates, re-replicates and rebalances chunks
– Balances chunk servers’ disk space utilization and load

– Distributes replicas among racks to increase fault tolerance

– Re-replicates a chunk as soon as the number of its available
replicas falls below the replication degree

V. Cardellini - SABD 2023/24 24

GFS: Master operations

• Garbage collection

– File deletion logged by master

– Deleted file is renamed to a hidden name with deletion
timestamp, so that real deletion is postponed and file can be
easily recovered in a limited timespan

• Stale replica detection

– Chunk replicas may become stale if a chunk server fails or
misses updates to chunk

– For each chunk, the master keeps a chunk version number

– Chunk version number updated at each chunk mutation

– Master removes stale replicas during garbage collection

V. Cardellini - SABD 2023/24 25

GFS: Interface
• Files are organized in directories

– But no data structure to represent directory

• Files are identified by their pathname

– Bu no alias support

• GFS supports traditional file system operations (but
not Posix-compliant)

– create, delete, open, close, read, and write

• Supports also 2 special operations:
– snapshot: makes a copy of file or directory tree at low cost

(based on copy-on-write techniques)

– record append: allows multiple clients to append data to
the same file concurrently, without overwriting one
another’s data

V. Cardellini - SABD 2023/24 26

GFS: Read operation

V. Cardellini - SABD 2023/24 27

• Read operation
- Data flow is decoupled from control flow

1) Client sends read(file name, chunk index) to master

2) Master replies with chunk handle (globally unique ID of chunk), chunk
version number (to detect stale replica), and chunk locations

3) Client sends read(chunk handle, byte range) to the closest chunk
server among those serving the chunk

4) Chunk server replies with chunk data

1

2

3

4

GFS: Mutation operation
• Mutations are write or append

– Mutations are performed at all
chunk's replicas in the same order

• Based on lease mechanism:
– Goal: minimize management

overhead at master

– Master grants chunk lease to
primary replica

– Primary picks a serial order for all
mutations to chunk

– All replicas follow this order when
applying mutations

– Primary replies to client, see 7)

– Leases renewed using periodic
heartbeat messages between
master and chunk servers

V. Cardellini - SABD 2023/24 28

• Data flow is decoupled from
control flow

• Client sends data to any of
the chunk servers identified
by master, which in turn
pushes data to the other
chunk servers in a chained
fashion so to fully utilize
network bandwidth

GFS: Atomic append

• Client sends only data (without specifying offset)

• GFS appends data to file at least once atomically (i.e.,
as one continuous sequence of bytes)

– At offset chosen by GFS

– Works with multiple concurrent writers

– At least once: applications must cope with possible
duplicates

• Append operations heavily used by Google's
distributed apps

– E.g., files often serve as multiple-producers/single-consumer
queue or contain results merged from many clients
(MapReduce)

V. Cardellini - SABD 2023/24 29

GFS: Consistency model

• Changes to namespace (e.g., file creation) are
atomic
– Managed exclusively by GFS master with locking

guarantee

• Changes to data are ordered as chosen by primary
replica, but chunk server failures can cause
inconsistency

• GFS has a “relaxed” model for data: eventual
consistency
– Simple and efficient to implement

V. Cardellini - SABD 2023/24 30

GFS performance (in 2003)

31

• Read performance is satisfactory (80-100 MB/s)

• But reduced write performance (30 MB/s) and relatively
slow (5 MB/s) in appending data to existing files

V. Cardellini - SABD 2023/24

GFS problems

V. Cardellini - SABD 2023/24 32

Main problem with GFS architecture?

Single master
Single point of failure (SPOF)

Scalability bottleneck

GFS problems: Single master
• Solutions adopted to overcome issues related

to single master

– Overcome SPOF: by having multiple “shadow”
masters that provide read-only access when the
primary master is down

– Overcome scalability bottleneck: by reducing
interaction between master and clients

• Master stores only metadata (not data)

• Clients can cache metadata

• Large chunk size

• Chunk lease: master delegates the authority of
coordinating the mutations to primary replica

• Overall, simple solutions

V. Cardellini - SABD 2023/24 33

GFS summary
• GFS success

– Used by Google to support search service and other services

– Availability and recoverability on commodity hardware

– High throughput by decoupling control and data

– Supports massive data sets and concurrent appends

• GFS problems (besides single master)
– All metadata stored in master memory

• “Limited” scalability: approximately 50M files, 10PB

– Semantics not transparent to apps

– Slow automatic failover (~ 10 sec.)

– Client’s delay when recovering from a failed chunk server

– Performance not good for all services

• GFS designed for high throughput but not appropriate for latency-
sensitive services like Gmail

34V. Cardellini - SABD 2023/24

Colossus: successor of GFS
• Next-generation Google DFS (since 2010)

• Designed for a wide variety of Google services (YouTube,
Maps, Photos, search ads, …)

• Can handle EB of storage, tens of thousands of servers

• Distributed masters, chunk servers replaced by D servers

• Scalable metadata layer, built on top of Bigtable

• Error-correcting codes (e.g., Reed-Solomon)

• Mix of high-speed flash memory and disks for storage

• Client-driven encoding and replication

• Google Cloud services built on top of Colossus
– Cloud Storage (object store) and Cloud Firestore (NoSQL data

store)

V. Cardellini - SABD 2023/24 35

Colossus under the hood: a peek into Google’s scalable storage system, 2021.
www.youtube.com/watch?v=q4WC_6SzBz4

Colossus: key components

V. Cardellini - SABD 2023/24 36

HDFS

• Hadoop Distributed File System (HDFS)
– Open-source user-level distributed file system

– Written in Java

– GFS clone: shares many features with GFS
(including pros and cons!)

• Master/worker architecture

• Large files, data parallelism

• Commodity, low-cost hardware

• Highly fault tolerant and throughput oriented

– Integrated with processing frameworks and ingestion
tools, e.g., Hadoop MapReduce, Spark, Flink, NiFi

37

Shafer et al., The Hadoop Distributed Filesystem: Balancing Portability and
Performance, Proc. ISPASS 2010

V. Cardellini - SABD 2023/24

HDFS: Design principles

• Large data sets: typical file size is GBs or TBs

• Write-once, read-many-times access pattern to files

– E.g., MapReduce apps, web crawlers

• Commodity, low-cost hardware

– HDFS is designed to work without noticeable interruption to
users even when failures occur

• Portability across heterogeneous hardware and
software platforms

V. Cardellini - SABD 2023/24 38

HDFS: Architecture

• Master/workers, nodes in a HDFS cluster:
– One NameNode (master in GFS)

– Multiple DataNodes (chunk servers in GFS)

39V. Cardellini - SABD 2023/24

HDFS: File management

40V. Cardellini - SABD 2023/24

• Data parallelism: each file is split into blocks (chunks
in GFS) which are stored on DataNodes

• Large size blocks (default 64 MB), we know why

HDFS: Block replication

41V. Cardellini - SABD 2023/24

• NameNode periodically receives heartbeat and
blockreport from each DataNode

- Blockreport: list of all blocks on a given DataNode

HDFS: File read

42

Source: “Hadoop: The definitive guide”

• NameNode is used to get block location

V. Cardellini - SABD 2023/24

HDFS: File write

43

Source: “Hadoop: The definitive guide”

• Clients ask NameNode for a list of suitable DataNodes

• This list forms a chain: first DataNode stores a copy of
the block, then forwards it to the second, and so on

V. Cardellini - SABD 2023/24

Enhancements in HDFS 3.x
• High availability

– Single NameNode is SPOF: added support for >= 2
NameNodes (1 active and >=1 standby)

hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html

• Erasure coding can be used as alternative storage
strategy to replication in order to provide fault tolerance
✓ Same level of fault tolerance with less storage overhead: from

200% with replication degree equal to 3 to 50%

✗ Increase in network and processing overhead

– Two codes available: XOR and Reed-Solomon

– Erasure coding can be enabled on a per directory basis
blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/

V. Cardellini - SABD 2023/24 44

HDFS: security

• HDFS initially lacked robust security mechanisms

• Recent versions have introduced features like
authentication (based on Kerberos and LDAP),
authorization (based on ACLs), and encryption (both
data at rest and data in transit)

• Can be integrated with Apache Ranger, which provides
comprehensive security across Hadoop ecosystem
⎯ Centralized security administration

⎯ Fine-grained authorization

⎯ Support for different authorization methods (role-based AC,
attribute-based AC, etc.)

⎯ Centralize auditing of user access and administrative actions

• Data governance can be provided by third-party tools,
e.g., Cloudera Navigator

V. Cardellini - SABD 2023/24 45

Another distributed file system: GlusterFS

• Linux-based, open source distributed file

system www.gluster.org

• Designed to be highly scalable

– Scaling to several PB (up to 72 brontobytes!)
• Brontobyte = 1027 or 290 bytes

V. Cardellini - SABD 2023/24 46

GlusterFS: Features

• Global namespace

– Issue: metadata is a bottleneck

– Solution: avoid centralized metadata server
• No special node(s) with special knowledge of where files

are or should be

– Solution: use consistent hashing (similarly to Chord)
• Benefits of distributed hashing (robustness, load balancing,

…)

• Clustered and highly available storage

• Built-in replication and geo-replication

• Self-healing

• Ability to re-balance data

V. Cardellini - SABD 2023/24 47

GlusterFS: Architecture

• Four main concepts:

– Trusted Storage Pool: trusted network of servers
that will host storage resources

– Bricks: storage units which consist of a server
and directory path (i.e., server:/export)

• Bricks correspond to Chord’s nodes

• Files are mapped to bricks by calculating a hash

– Volumes: collection of bricks with a common
redundancy requirement

– Translators: modules that are chained together to
move data from point a to point b

• Translator converts requests from users into requests for
storage

V. Cardellini - SABD 2023/24 48

A layer of indirection

V. Cardellini - SABD 2023/24 49

• Motivations

– Write throughput is limited by disk and network bandwidth

– Fault tolerance by replicating data across servers,
but synchronous replication slows down write ops

– Performance and cost trend: RAM is key to fast data
processing and gets cheaper over time

• Idea

– Add a layer of indirection between computation and storage

– Store data in RAM: faster than DFS and object stores,
decoupling computation and storage

✗RAM is volatile

Alluxio
• Distributed in-memory storage system www.alluxio.io

• Adds a data access layer between storage and
computation

– Interposed between persistent storage layer (e.g., HDFS,
AWS S3, …) and processing frameworks for analytics and AI
(e.g., Spark, Flink, TensorFlow, …)

• Goal: storage unification and abstraction

– Brings data from storage closer to applications

V. Cardellini - SABD 2023/24 50

– Enables applications to
connect to different
storage systems through
a common interface and a
global namespace

Alluxio
• History

– Originated from Tachyon project at AMPLab (UC
Berkeley)

– Evolved as data orchestration technology for analytics and
AI for the cloud

• Features

– High read/write throughput, at memory speed

– Commonly used as distributed shared caching service

– How to address RAM volatility? Avoid replication and use
re-computation (lineage) to achieve fault tolerance

• One copy of data in memory (fast)

• Upon failure, re-compute data using lineage: keep track of
executed ops and, in case of failure, recover lost output by
re-executing ops that created the output

• Borrowed from Spark

V. Cardellini - SABD 2023/24 51

Alluxio: Architecture

• Master-worker architecture (like GFS, HDFS)

• Replicated masters, multiple workers

– Passive standby approach to ensure master fault
tolerance

– Consensus: Zookeeper, Raft

V. Cardellini - SABD 2023/24 52

Alluxio: Architecture

53

Workers
– Manage local storage (RAM, SSD,

HDD)

– Access to “under storage” (e.g.,
HDFS, S3), not managed by Alluxio

– Periodically heartbeat to primary
master

Master
– Stores metadata of storage system

– Responds to client requests

– Tracks lineage information

– Computes checkpoint order

– Secondary master(s) for fault
tolerance

docs.alluxio.io/os/user/stable/en/overview/Architecture.html
V. Cardellini - SABD 2023/24

Alluxio: Lineage and persistence
Alluxio consists of two (logical) layers:

• Lineage layer: tracks the sequence of operations that have
created a particular data output

– Write-once semantics: data is immutable once written

– Frameworks using Alluxio track data dependencies and recompute
them when a failure occurs

– API for managing and accessing lineage information

• Persistence layer: persists data onto storage, used to perform
asynchronous checkpoints

– Efficient checkpointing algorithm

• Avoids checkpointing temporary files

• Checkpoints hot files first (i.e., the most read files)

• Bounds re-computation time
V. Cardellini - SABD 2023/24 54

File set A File set B
task

dependency

Task reads file set A
and writes file set B

Data storage so far: Summing up
• Google File System and HDFS

– Master/worker architecture

– Decouples metadata from data

– Single master (bottleneck): limits interactions and file system
size

– Designed for batch applications: large chunks, no data caching

• GlusterFS

– No centralized metadata server

– Consistent hashing

• Alluxio

– In-memory storage system

– Master/worker architecture

– No replication: tracks changes (lineage), recovers data using
checkpoints and re-computations

V. Cardellini - SABD 2023/24 55

References

• Ghemawat et al., The Google File System, Proc. ACM SOSP
'03, 2003

• Hildebrand and Serenyi, Colossus under the hood: a peek into
Google’s scalable storage system, 2021

• Video on Colossus: A peek behind the VM at the Google
Storage infrastructure, 2020

• Shafer et al., The Hadoop Distributed Filesystem: Balancing
Portability and Performance, Proc. ISPASS '10, 2010

• Li, Alluxio: A Virtual Distributed File System, PhD Thesis,
Berkeley Univ., 2018

• Li et al., Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks, Proc. ACM SoCC '14, 2014

V. Cardellini - SABD 2023/24 56

