
Apache Flink: Hands-on Session
A.A. 2024/25

Matteo Nardelli

Laurea Magistrale in Ingegneria Informatica - II anno

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Matteo Nardelli - SABD 2024/25

The reference Big Data stack

2

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Matteo Nardelli - SABD 2024/25

Apache Flink

• Apache Flink is a framework and distributed processing
engine for stateful computations over unbounded and
bounded data streams.

• Unbounded streams: have a start but no defined end;
must be continuously processed; is not possible to wait
for all data to arrive.

• Stream processing
• Bounded streams: have defined start and end; can be

processed by ingesting all data before computation;
ordered ingestion is not usually required (can be sorted)

• Batch processing

• Flink has been designed to run in all common cluster
environments, perform computations at in-memory speed
and at any scale.

3

Matteo Nardelli - SABD 2024/25

Apache Flink

• Flink is designed to run stateful streaming
applications at any scale.
• Applications are parallelized into possibly thousands of

tasks that are distributed and concurrently executed in a
cluster.

• Leverage In-Memory Performance
• Stateful Flink applications are optimized for local state

access.

4

Matteo Nardelli - SABD 2024/25

Apache Flink

• Key concepts:
• Stream:

• bounded/unbounded;
• real-time/recorded

• State:
• Flink offers state primitives,
• pluggable state backends (e.g., RocksDB),
• exactly-once semantic,
• scalable applications (data partitioning and

distribution)
• Time:

• event-time vs processing-time mode;
• watermark;
• late data handling

5

Matteo Nardelli - SABD 2024/25

Apache Flink: APIs

• Multiple APIs at different levels of abstraction

6

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/overview/

Matteo Nardelli - SABD 2024/25

Apache Flink: ProcessFunction API

ProcessFunction API:
• Low-level stream processing operation
• Handles events by being invoked for each event

received
• Has access to (RuntimeContext):

• Events (stream elements)
• State (fault-tolerant, consistent, only on keyed

stream)
• Timers (event time and processing time, only on

keyed stream)

7

Read more: https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/process_function/

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/process_function/

Matteo Nardelli - SABD 2024/25

Apache Flink: DataStream API

• Data streaming applications: DataStream API
– Supports functional transformations on data

streams, with user-defined state and flexible
windows

– Example: windowed version of WordCount

8

WindowWordCount using Flink's DataStream API

Sliding time window of
10 sec length and 5
sec slide

See https://bit.ly/2AhCEBX

https://bit.ly/2AhCEBX
https://bit.ly/2AhCEBX
https://bit.ly/2AhCEBX

Matteo Nardelli - SABD 2024/25

Apache Flink: DataStream API

DataStream API:
• Provides primitives for many common stream

processing operations:
• Windowing
• Record-at-a-time transformations
• Enriching events

• Based on functions, e.g., map(), reduce(), and
aggregate()

9

DataStream<Tuple2<String, Long>> result = words
 .map(word -> Tuple2.of(word, 1L))
 .returns(Types.TUPLE(Types.STRING, Types.LONG))
 .keyBy(0)
 .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));

Matteo Nardelli - SABD 2024/25

Apache Flink: Table API and SQL

Table API
• Table API and SQL are unified APIs for batch and

stream processing;
• They can be seamlessly integrated with the

DataStream and DataSet APIs;
• They support user-defined scalar, aggregate, and

table-valued functions.
• Relational APIs are designed to ease the definition of

data analytics, data pipelining, and ETL applications

10

Sessionize a clickstream and count the number of clicks per session

SELECT userId, COUNT(*)
FROM clicks
GROUP BY SESSION(clicktime, INTERVAL '30' MINUTE), userId

Matteo Nardelli - SABD 2024/25

Flink: APIs and libraries
• Batch processing applications: DataSet API

– Supports a wide range of data types beyond key/
value pairs and a wealth of operators

11

Core of PageRank algorithm using DataSet API

See https://bit.ly/2zEH3Pk

https://bit.ly/2zEH3Pk
https://bit.ly/2zEH3Pk
https://bit.ly/2zEH3Pk

Matteo Nardelli - SABD 2024/25

Anatomy of a Flink program

12

• Let’s analyze DataStream API
https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html

• Special DataStream class used to represent a
collection of data in a Flink program

• Each Flink program consists of the same basic parts:
1. Obtain one execution environment

2. Load/create initial data

https://ci.apache.org/projects/flink/flink-docs-stable/dev/datastream_api.html

Matteo Nardelli - SABD 2024/25

Anatomy of a Flink program

13

3. Specify transformations on data by calling methods on
DataStream

4. Specify where to put the results of your computations

5. Trigger the program execution by calling execute() on
StreamExecutionEnvironment

Matteo Nardelli - SABD 2024/25

Flink: Lazy evaluation

• Flink programs are executed lazily
– When program’s main method is executed, data

loading and transformations do not happen directly
– Rather, each operation is created and added to

program’s plan
– Operations are actually executed when execution

is explicitly triggered by calling execute() on the
execution environment

14

Matteo Nardelli - SABD 2024/25

Flink: data sources
• Several predefined stream sources accessible from the

StreamExecutionEnvironment
1. File-based:

– E.g., readTextFile(path) to read text files
– Flink splits file reading process into two sub-tasks: directory monitoring

and data reading
• Monitoring is implemented by a single, non-parallel task, while reading is

performed by multiple tasks running in parallel, whose parallelism is equal to
the job parallelism

2. Socket-based
3. Collection-based
4. Custom

– E.g., to read from Kafka fromSource(new KafkaSource<…>(…)) 
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/
datastream/kafka/

– A long list of connectors already exist, e.g., including Cassandra,
DynamoDB, Elasticsearch, RabbitMQ, MongoDB, Pulsar. See: https://
nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/
datastream/overview/

15

https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kafka/
https://nightlies.apache.org/flink/flink-docs-stable/docs/connectors/datastream/kafka/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/overview/

Matteo Nardelli - SABD 2024/25

Flink: DataStream transformations
• Map

DataStream → DataStream
– Example: double the values of the input stream

• FlatMap
DataStream → DataStream
– Example: split sentences to words

16

Matteo Nardelli - SABD 2024/25

Flink: DataStream transformations
• Filter

DataStream → DataStream
– Example: filter out zero values

• KeyBy
DataStream → KeyedStream

– To specify a key that logically partitions a stream into disjoint partitions
– Internally, implemented with hash partitioning
– Different ways to specify keys, the simplest case is grouping tuples on one or

more fields of the tuple
– Examples:

17

Matteo Nardelli - SABD 2024/25

Flink: DataStream transformations

• Reduce
KeyedStream → DataStream
– “Rolling” reduce on a keyed data stream
– Combines the current element with the last reduced value and emits

the new value
– Example: create a stream of partial sums

18

Matteo Nardelli - SABD 2024/25

Flink: DataStream transformations

• Aggregations
KeyedStream → DataStream

– To aggregate on a keyed data stream: min, max, sum, minBy, maxBy
– min returns the minimum value, whereas minBy returns the element that

has the minimum value in this field

• Window
KeyedStream → WindowedStream

19

Matteo Nardelli - SABD 2024/25

Flink: DataStream transformations

• Other transformations available in Flink
– join: joins two data streams on a given key
– union: union of two or more data streams creating a new

stream containing all the elements from all the streams
– split: splits the stream into two or more streams

according to some criterion
– iterate: creates a “feedback” loop in the flow, by

redirecting the output of one operator to some previous
operator

• Useful for algorithms that continuously update a model

See https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/
operators/overview/

20

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/overview/

Matteo Nardelli - SABD 2024/25

Example: streaming window WordCount

21

• Count the words from a web socket in 5 sec windows

// Key by the first element of a Tuple

Matteo Nardelli - SABD 2024/25

Example: streaming window WordCount

22

Matteo Nardelli - SABD 2024/25

Flink: windows support
• Windows can be applied either to keyed streams or to

non-keyed ones
• General structure of a windowed Flink program

23

Matteo Nardelli - SABD 2024/25

Flink: window lifecycle

• First, specify if a stream is keyed or not and define the
window assigner

– Keyed stream allows to perform the windowed computation in
parallel by multiple tasks

– The window is completely removed when the time (event or
processing time) passes its end timestamp plus the user-specified
allowed lateness

• Then, associate to window its trigger, (evictor) and function
– Trigger determines when a window is ready to be processed by the

window function
– Evictor (optional) has the ability to remove elements from a window

after the trigger fires and before and/or after the window function is
applied

– Function specifies the computation to be applied to the window
contents

24

Read more: https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/windows/

Matteo Nardelli - SABD 2024/25

Flink: window assigners

• How elements are assigned to windows
• Support for different window assigners

– Each WindowAssigner comes with a default Trigger
• Built-in assigners for most common use cases:

– Tumbling windows
– Sliding windows
– Session windows
– Global windows

• Except for global windows, they assign elements to
windows based on time, which can either be processing
time or event time

• It is also possible to implement a custom window assigner

25

Matteo Nardelli - SABD 2024/25

Flink: window assigners

• Session windows
– To group elements by sessions of

activity
– Differently from tumbling and sliding

windows, do not overlap and do not
have a fixed start and end time

– A session window closes when a
gap of inactivity occurs

• Global windows
– To assign all elements with the

same key to the same single global
window

– Only useful if you also specify a
custom trigger

26

Matteo Nardelli - SABD 2024/25

Flink: window functions

• Different window functions to specify the computation
on each window

• ReduceFunction
– To incrementally aggregate the elements of a window
– Example: sum up the second fields of the tuples for all elements in a

window

27

Matteo Nardelli - SABD 2024/25

Flink: window functions
• AggregateFunction: generalized version of a ReduceFunction

– Example: compute average of the elements in the window

28

Matteo Nardelli - SABD 2024/25

Flink: window functions
• AggregateFunction

– Example: compute weighted average of the elements in the window

29

Matteo Nardelli - SABD 2024/25

Flink: window functions

• ProcessWindowFunction: gets an Iterable containing all
the elements of the window, and a Context object with access to
time and state information
✓ More flexibility than other window functions
✗ At the cost of performance and resource consumption: elements are

buffered until the window is ready for processing

30

Matteo Nardelli - SABD 2024/25

Flink: window functions

• ProcessWindowFunction: gets an Iterable containing all
the elements of the window, and a Context object with access to
time and state information
✓ More flexibility than other window functions
✗ At the cost of performance and resource consumption: elements are

buffered until the window is ready for processing

• ReduceFunction and AggregateFunction can execute
more efficiently
– Flink can incrementally aggregate the elements for each

window as they arrive

31

Matteo Nardelli - SABD 2024/25

Flink: control events

• Control events: special events injected in the
data stream by operators

• Two types of control events in Flink
⎼ Watermarks
⎼ Checkpoint barriers

32

Matteo Nardelli - SABD 2024/25

Flink: watermarks
• Watermarks mark the progress of event time within a

data stream
• Flow as part of data stream and carry a timestamp t

33

– W(t) declares that event time
has reached time t in that
stream, meaning that there
should be no more elements
with timestamp t’ <= t

– Crucial for out-of-order
streams, where events are not
ordered by their timestamps

Read more: https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/event-time/generating_watermarks/

Matteo Nardelli - SABD 2024/25

Flink: watermarks

• By default, late elements are dropped when the
watermark is past the end of the window

• However, Flink allows to specify a maximum allowed
lateness for window operator
– By how much time elements can be late before they are

dropped (0 by default)
– Late elements that arrive after the watermark has passed the

end of the window but before it passes the end of the window
plus the allowed lateness, are still added to the window

34

Matteo Nardelli - SABD 2024/25

Flink: watermarks

35

• Flink does not provide ordering guarantees after any
form of stream partitioning or broadcasting
– In such case, dealing with out-of-order tuples is left to the

operator implementation

Matteo Nardelli - SABD 2024/25

Flink: application execution
• Data parallelism

– Different operators of the same program may have different
levels of parallelism

– The parallelism of an individual operator, data source, or data
sink can be defined by calling its setParallelism() method

36

Matteo Nardelli - SABD 2024/25

Flink: application execution

• Execution plan can be visualized

37

Matteo Nardelli - SABD 2024/25

Flink: application monitoring
• Built-in monitoring and metrics system
• Allows gathering and exposing metrics to external systems
• Built-in metrics include

– Throughput: in terms of number of records per sec. (per operator/
task)

– Latency
• Support for latency tracking: special markers (called LatencyMarker)

are periodically inserted at all sources in order to obtain a distribution
of latency between sources and each downstream operator

– But do not account for time spent in operator processing (or in
window buffers)

– Assume that all machines clocks are sync
– Used JVM heap/non-heap/direct memory
– Availability, checkpointing

38

Matteo Nardelli - SABD 2024/25

Flink: application monitoring

• Application-specific metrics can be added
– E.g., counters for number of invalid records

• All metrics can be
– queried via Flink’s Monitoring REST API
– visualized in Flink’s Dashboard (Metrics tab)
– or send to external systems (e.g., Graphite and InfluxDB)

39

See https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/metrics.html

https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/metrics.html

