
NoSQL: Redis
A.A. 2024/25

Matteo Nardelli

Laurea Magistrale in
Ingegneria Informatica - II anno

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

2

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Matteo Nardelli - SABD 2024/25

NoSQL data stores
Main features of NoSQL (Not Only SQL) data stores:

− Support flexible schema
− Scale horizontally
− Provide scalability and high availability by storing and

replicating data in distributed systems
− Do not typically support ACID properties, but rather BASE

Simple APIs
− Low-level data manipulation and selection methods
− Queries capabilities are often limited

Data models for NoSQL systems:
− Aggregate-oriented models:

	 key-value, document, and column-family
− Graph-based models

3Matteo Nardelli - SABD 2024/25

Key-value data model
• Simple data model:

• data as a collection of key-value pairs
• Strongly aggregate-oriented

• A set of <key,value> pairs
• Value: an aggregate instance
• A value is mapped to a unique key

• The aggregate is opaque to the database
• Values do not have a known structure
• Just a big blob of mostly meaningless bit

• Access to an aggregate:
• Lookup based on its key

• Richer data models can be implemented on top

4Matteo Nardelli - SABD 2024/25

Key-value data model: example

5Matteo Nardelli - SABD 2024/25

Redis
• REmote DIrectory Server

• An (in-memory) key-value store.

• Redis was the most popular implementation of a key-value database as
of March 2022, according to DB-Engines Ranking (link).

Data Model
• Key: Printable ASCII
• Value:

• Primitives: Strings
• Containers (of strings):

• Hashes
• Lists
• Sets
• Sorted Sets

6

key

String (512MB max)

value

https://redis.io/topics/data-typesMatteo Nardelli - SABD 2024/25

https://db-engines.com/en/ranking/key-value+store

Redis
• REmote DIrectory Server

• An (in-memory) key-value store.

• Redis was the most popular implementation of a key-value database as
of March 2022, according to DB-Engines Ranking (link).

Data Model
• Key: Printable ASCII
• Value:

• Primitives: Strings
• Containers (of strings):

• Hashes
• Lists
• Sets
• Sorted Sets

7

key

field

value

value

field value

field value

https://redis.io/topics/data-typesMatteo Nardelli - SABD 2024/25

https://db-engines.com/en/ranking/key-value+store

Redis
• REmote DIrectory Server

• An (in-memory) key-value store.

• Redis was the most popular implementation of a key-value database as
of March 2022, according to DB-Engines Ranking (link).

Data Model
• Key: Printable ASCII
• Value:

• Primitives: Strings
• Containers (of strings):

• Hashes
• Lists
• Sets
• Sorted Sets

8

key

value1

value

value2

value4 value3

https://redis.io/topics/data-typesMatteo Nardelli - SABD 2024/25

https://db-engines.com/en/ranking/key-value+store

Redis
• REmote DIrectory Server

• An (in-memory) key-value store.

• Redis was the most popular implementation of a key-value database as
of March 2022, according to DB-Engines Ranking (link).

Data Model
• Key: Printable ASCII
• Value:

• Primitives: Strings
• Containers (of strings):

• Hashes
• Lists
• Sets
• Sorted Sets

9

key

value1

value

value2

value4 value3

https://redis.io/topics/data-typesMatteo Nardelli - SABD 2024/25

https://db-engines.com/en/ranking/key-value+store

Redis
• REmote DIrectory Server

• An (in-memory) key-value store.

• Redis was the most popular implementation of a key-value database as
of March 2022, according to DB-Engines Ranking (link).

Data Model
• Key: Printable ASCII
• Value:

• Primitives: Strings
• Containers (of strings):

• Hashes
• Lists
• Sets
• Sorted Sets

10

key

Score 100
value2

value

Score 300
value3

Score 50
value3

Score 300
value1

https://redis.io/topics/data-typesMatteo Nardelli - SABD 2024/25

https://db-engines.com/en/ranking/key-value+store

Hands-on Redis
(Docker image)

Matteo Nardelli - SABD 2024/25

Redis with Dockers

12

• We use a lightweight container with redis preconfigured

• create a small network named redis_network with one redis
server and one client

$ docker pull sickp/alpine-redis

$ docker network create redis_network

$ docker run --rm --network=redis_network --name=redis-server
sickp/alpine-redis

$ docker run --rm --net=redis_network -it sickp/alpine-redis redis-cli
-h redis-server

Matteo Nardelli - SABD 2024/25

Redis with Dockers

13

• Use the command line interface on the client to connect to the
redis server

$ redis-cli -h redis-server [-p (port-number)]

Matteo Nardelli - SABD 2024/25

Atomic Operations: Strings

14

Main operations, implemented in an atomic manner:

redis> GET key
redis> SET key value [EX expiration-period-secs]
redis> APPEND key value
redis> EXISTS key
redis> DEL key
redis> KEYS pattern # use SCAN in production

Details on Redis commands: https://redis.io/commands/

set if key does not exist
redis> SETNX key value
Get old value and set a new one
redis> GETSET key value
Set a timeout after which the key will be deleted
redis> EXPIRE key seconds

Matteo Nardelli - SABD 2024/25

Atomic Operations: Hashes

15

Main operations, implemented in an atomic manner:

redis> HGET key field
redis> HSET key field value
redis> HEXISTS key field
redis> HDEL key field

Details on Redis commands: https://redis.io/commands/

Get all field names of the hash stored at key
redis> HKEYS key
Get all values of the hash stored at key
redis> HVALS key

Matteo Nardelli - SABD 2024/25

Case Study (1)

16

• Problem: We need to implement a recommendation system for a
radio station that suggests the next song according to the history of
played songs for the same genre. To this end, we need to trace the
number of reproductions (a counter) for each genre played by the
user.

Matteo Nardelli - SABD 2024/25

Case Study (2)

17

• Problem: We need to implement a recommendation system for a
radio station that suggests the next song according to the history of
played songs for the same genre. To this end, we need to trace the
number of reproductions (a counter) for each genre played by the
user.

• Solution: To store the counter per genre, we can resort to a
hashmap. To store such a data structure for each userX, we simply
save it under the key "userXcounter".

Matteo Nardelli - SABD 2024/25

Case Study (3)

18

redis> HSET user1counter rock 1
redis> HGET user1counter rock
redis> HEXISTS user1counter classic
redis> HGET user1counter classic
redis> HSET user1counter rock 4
redis> HGET usr1counter rock
redis> HSET user1counter jazz 2
redis> HSET user1counter pop 1
redis> HEXISTS user1counter classic
redis> HDEL user1counter classic
redis> HEXISTS user1counter classic

Matteo Nardelli - SABD 2024/25

Case Study (4)

19

redis> HKEYS user1counter
1) “rock”
2) “jazz”
3) “pop”

redis> HVALS user1counter
1) “4”
2) “2”
3) “1”

Matteo Nardelli - SABD 2024/25

Atomic Operations: Sets

20

Main operations, implemented in an atomic manner:

Add a value to the set stored at key
redis> SADD key value
Remove the value from the set stored at key
redis> SREM key value
Get the cardinality of the set stored at key
redis> SCARD key
Remove and return a random member of the set
redis> SPOP key

Details on Redis commands: https://redis.io/commands/

Union, Difference, Intersection between sets
redis> SUNION keyA keyB
redis> SDIFF keyA keyB
redis> SINTER keyA keyB

Matteo Nardelli - SABD 2024/25

Case Study (5)

21

• Problem: We also need to store which bands/singers play a specific
genre.
• We assume that a band can play several genres.
• We might be interested in selecting bands belonging to multiple

genres, or in identifying a selection of bands that play the same
kind of music.

• Solution: we need to keep trace of a set of singers for each musical
genre.

Matteo Nardelli - SABD 2024/25

Case Study (6)

21

• Problem: We also need to store which bands/singers play a specific
genre.
• We assume that a band can play several genres.
• We might be interested in selecting bands belonging to multiple

genres, or in identifying a selection of bands that play the same
kind of music.

• Solution: We can resort to "sets" and save each bands/singers under
a key representing the specific musical genre.

Matteo Nardelli - SABD 2024/25

Case Study (7)

23

redis> SADD rock "pink floyd"
redis> SADD rock "queen"
redis> SADD rock "nirvana"
redis> SADD rock "baustelle"
redis> SADD jazz "paolo conte"
redis> SADD pop "paolo conte"
redis> SADD pop "baustelle"
redis> SCARD rock # 4
redis> SCARD Rock # 0
redis> SADD pop "mozart"
redis> SREM pop "mozart"

Matteo Nardelli - SABD 2024/25

Case Study (8)

24

redis> SDIFF rock pop
1) “pink floyd”
2) “queen”
3) “nirvana”

redis> SUNION rock jazz
1) “pink floyd”
2) “queen”
3) “nirvana”
4) “baustelle”
5) “paolo conte”

Matteo Nardelli - SABD 2024/25

Case Study (9)

25

• Problem: The recommendation system might learn from the user
behavior upon the suggested songs. Therefore, we need to identify
the number of reproduction of the suggested genre, so that, in the
future, we can suggest the top-K genres that have been suggested
and listened by the user.

Matteo Nardelli - SABD 2024/25

Case Study (10)

26

• Problem: The recommendation system might learn from the user
behavior upon the suggested songs. Therefore, we need to identify
the number of reproduction of the suggested genre, so that, in the
future, we can suggest the top-K genres that have been suggested
and listened by the user.

• Solution: We can use the "sorted sets" to store the number of
reproduction of songs per genre, so that the data structure can
automatically determines the top-K elements.

Matteo Nardelli - SABD 2024/25

Atomic Operations: Sorted Sets

27

Sorted Sets: non repeating collections of strings.
A score is associated to each value. Values of a set are ordered, from
the smallest to the greatest score. Scores may be repeated.

Main operations, implemented in an atomic manner:

Add a value to the set stored at key
redis> ZADD key score value
Remove the value from the set stored at key
redis> ZREM key value
Get the cardinality of the set stored at key
redis> ZCARD key
Return the score of a value in the set stored at key
redis> ZSCORE key value

Details on Redis commands: https://redis.io/commands/
Matteo Nardelli - SABD 2024/25

Atomic Operations: Sorted Sets

28

redis> ZCARD urepr
redis> ZADD urepr 1 rock
redis> ZADD urepr 1 jazz
redis> ZADD urepr 1 pop
redis> ZCARD urepr # 3
redis> ZREM urepr pop
redis> ZCARD urepr # 2
redis> ZSCORE urepr jazz # 1

Matteo Nardelli - SABD 2024/25

Atomic Operations: Sorted Sets

29

Returns the rank of value in the sorted set.  
The rank is 0-based.
redis> ZRANK key value

Returns the values in a range of the ranking (start and stop are 0-based
indexes; -k stands for the k element from the end of the rank)
redis> ZRANGE key start stop [WITHSCORES]
Like ZRANGE but uses the score instead of the index
redis> ZRANGEBYSCORE key min max

Increments by increment the score of value
redis> ZINCRBY key increment value

Details on Redis commands: https://redis.io/commands/

The presence of a score enables to rank or to retrieve the elements as
well as changing their order during the lifetime of the sorted set

Matteo Nardelli - SABD 2024/25

Case Study (11)

30

redis> ZRANK urepr pop
redis> ZRANK urepr rock # 1
redis> ZINCRBY urepr 3 rock # score:4
redis> ZINCRBY urepr 1 pop # score:1
redis> ZCARD urepr # 3
redis> ZRANK urepr pop # 1
redis> ZRANK urepr rock # 2
redis> ZRANGE urepr 0 1

1) “jazz”
2) “pop”

redis> ZRANGE urepr 0 -1
1) “jazz”
2) “pop”
3) “rock”

Matteo Nardelli - SABD 2024/25

Atomic Operations: Lists

31

Lists are ordinary linked lists; they enable to push and pop values at
both sides or in an exact position

Main operations, implemented in an atomic manner:

Push value at the head/tail of the list in key
redis> LPUSH/RPUSH key value [value]
Remove and return the head/tail of the list in key
redis> LPOP/RPOP key
Get the length of the list
redis> LLEN key
Returns the specified elements of the list (0-based) index
redis> LRANGE key start stop

A B B C D
LPOP

LPUSH

RPUSH

RPOP

LSET

Matteo Nardelli - SABD 2024/25

Case Study (13)

26

• Problem: The music player needs to store the playlist for the user.
• The playlist can be populated by the user by adding tracks while

navigating the music store, or it can be populated by the
recommendation system.

• While the music is playing, tracks are popped out from the
playlist.

Matteo Nardelli - SABD 2024/25

Case Study (14)

26

• Problem: The music player needs to store the playlist for the user.
• The playlist can be populated by the user by adding tracks while

navigating the music store, or it can be populated by the
recommendation system.

• While the music is playing, tracks are popped out from the
playlist.

• Solution: We can store in-memory the playlist by using a "list" data
structure.

Matteo Nardelli - SABD 2024/25

Case Study (15)

32

redis> RPUSH uplay "time"
redis> RPUSH uplay "money"
redis> LPUSH uplay "glory days"
redis> LLEN uplay # 3
redis> LRANGE uplay 0 -1

1) “glory days”
2) “time”
3) “money”

redis> LRANGE uplay -2 -1
1) “time”
2) “money”

Matteo Nardelli - SABD 2024/25

Atomic Operations: Lists

33

Removes the first count occurrences of elements equal to
value from the list stored at key

redis> LREM key count value

Details on Redis commands: https://redis.io/commands/

Sets the list element at (0-based) index to value.

redis> LSET key index value

count > 0	 remove elements equal to value moving from head to tail
count < 0	 remove elements equal to value moving from tail to head
count = 0	 remove all elements equal to value.

Matteo Nardelli - SABD 2024/25

