
Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Addressing the Challenges of Data
Stream Processing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Challenges

• Let’s consider how to tackle some key
challenges in DSP systems

1. Optimizing DSP application
2. Placing DSP operators on computing

infrastructure
3. Managing load variations
4. Self-adaptation at runtime
5. Managing stateful operators
6. Fault tolerance

V. Cardellini - SABD 2024/25 1

Challenge 1: Optimizing DSP application

• Apply optimizations on the streaming graph
– At design time (more common) or at runtime

• Operator reordering
– To avoid unnecessary data transfers

• Redundancy elimination

A B B A

A
B

B D

C
A B

D

C

2V. Cardellini - SABD 2024/25

Challenge 1: Optimizing DSP application

• Operator separation

• Operator fusion

A A1 A2

3V. Cardellini - SABD 2024/25

Challenge 1: Optimizing DSP application

• Operator scaling (aka operator fission)

V. Cardellini - SABD 2024/25 4

At the streaming system layer

• DSP application optimization is typically
addressed at DSP application layer, usually
at design time

• What about the streaming system layer?
• What about runtime adaptation?
• Let’s first consider two solutions for improving

performance (e.g., controlling application
latency) at the streaming system layer
– Placing DSP operators
– Managing load variations

V. Cardellini - SABD 2024/25 5

Challenge 2: Placing DSP operators

6V. Cardellini - SABD 2024/25

• Determine, within a set of available distributed
computing nodes, those nodes that should host
and execute each operator instance of a DSP
application

Challenge 2: Placing DSP operators

7V. Cardellini - SABD 2024/25

• Placement: a complex problem
– Trade communication cost against resource utilization

• Challenges to tackle, especially in the Edge-Cloud
continuum
– Non-negligible network latencies

• E.g., geo-distributed resources
– Heterogeneity in computing and networking resources

• E.g., capacity limits , business constraints
– Computing/network resources can be unavailable
– Computational requirements of DSP applications may be

unknown a-priori and change at runtime
– DSP applications are long-running

➡ Need to adapt to internal and external changes

Challenge 2: Design alternatives
• When to place operators

– Initial (static) operator placement
• Can be more expensive and comprehensive

– Can also be at runtime
• Place again all the operators or only a subset

• How to determine the placement
– Mathematical programming

• Optimal operator placement: NP-hard problem
• Does not scale well, but provides a benchmark

– Heuristics
• Majority of policies

– Deep Reinforcement Learning

8V. Cardellini - SABD 2024/25

Placement: Design alternatives
• Who is the decision maker?

– Centralized placement strategies
• Require global view (full resource and network state, application

state, workload information)
✓ Capable of determining optimal global solution
✗Scalability

– Decentralized placement strategies
• Take decision based only on local information
✓ Scalability, better suited for runtime adaptation
✗Optimality is not guaranteed

9V. Cardellini - SABD 2024/25

ODP: Optimal DSP Placement
• We proposed ODP policy

– Centralized policy for optimal placement of DSP applications
– Formulated as Integer Linear Programming (ILP) problem

• Our goals:
– Compute optimal placement (of course!)

– Provide a unified general formulation of the
placement problem for DSP applications (but not only!)

– Consider multiple QoS attributes of applications and
resources

– Provide a benchmark for heuristics

10V. Cardellini - SABD 2024/25

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed
Stream Processing Applications, DEBS ’16
http://www.ce.uniroma2.it/publications/PER2016.pdf

ODP placement policy: model
DSP application

11V. Cardellini - SABD 2024/25

Operators
• Ci: required computing

resources
• Ri: execution time per data unit

Data streams
• li,j: data rate from operator i to j

ODP placement policy: model
Computing and network resources

12V. Cardellini - SABD 2024/25

(Logical) Network links
• du,v: network delay from u to v
• Bu,v: bandwidth from u to v
• Au,v: link availability

Computing resources
• Cu: amount of resources
• Su: processing speed
• Au: resource availability

ODP placement policy: model
Decision variables
• Determine where to map DSP operators and data streams

13V. Cardellini - SABD 2024/25

i

j

xi,u= 1

y(i,j),(u,v)=1

xj,v= 1

u

z

v

w

ODP placement policy: QoS metrics

14V. Cardellini - SABD 2024/25

• Response time
max end-to-end delay between sources and destination

• Application availability
probability that all resources are up and running

• Inter-node traffic
overall network data rate

• Network usage
in-flight bytes

SlinksÎl rate(l)Lat(l)

R

ODP placement policy: formulation

15V. Cardellini - SABD 2024/25

Latency

Availability

Network bandwidth and node
capacity constraints

Assignment and
integer constraints

Tunable knobs to set the
optimal placement goals

ODP placement policy: scalability issue

16V. Cardellini - SABD 2024/25

• Placement is NP-hard: does not scale with
system/application size

• We need heuristics to compute placement
in a feasible amount of time

Centralized placement heuristics

17V. Cardellini - SABD 2024/25

L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS ‘13
http://midlab.diag.uniroma1.it/articoli/ABQ13storm.pdf

• Idea: reduce inter-node communication and balance
CPU load by co-locating communicating tasks

• Approach: use a centralized greedy heuristic to guide
placement
Greedy heuristic steps:

1. Rank operator pairs according to exchanged traffic

2. For each operator pair:

• If neither operator has been assigned yet, then assign both to
the same node

• Otherwise, evaluate the node where the assigned operator is
placed and the least loaded node and choose the configuration
that minimizes inter-process communication

Decentralized placement heuristic

18

P. Pietzuch et al., Network-aware operator placement for stream-processing systems,
ICDE ’06 https://www.doc.ic.ac.uk/~prp/manager/doc/icde06-camera-ready.pdf

SlinksÎl rate(l)Lat(l)

V. Cardellini - SABD 2024/25

• Heuristics goal: reduce network usage
– Network usage metric combines link latencies and exchanged

data rates among DSP operators:

• Idea: exploit spring relaxation
– DSP application regarded as a system of springs, whose

minimum energy configuration corresponds to minimizing
network usage

• Features
– Decentralized policy to minimize network impact

– Adaptive to change in network conditions

Decentralized placement heuristic

19

1. Represent DSP application as an equivalent system of springs

V. Cardellini - SABD 2024/25

Network of springs tries to minimize potential energy E

Streams as springs, that restore a force F = ½ • k • s:
– k (spring constant): exchanged data rate on link
– s (spring extension): latency on link

Decentralized placement heuristic

20

2. Determine operator placement in the cost space by minimizing
the elastic energy of the equivalent system

Lat = s

DR = k

P1

S
P2

V. Cardellini - SABD 2024/25

Decentralized placement heuristic

21

3. Map decision onto physical nodes

V. Cardellini - SABD 2024/25

ODP as benchmark

22V. Cardellini - SABD 2024/25

Distributed placement heuristic that minimizes network usage

Pietzuch et al. :

Optimal Operator Placement for Distributed Stream Processing Applications,
http://www.ce.uniroma2.it/publications/PER2016.pdf

Challenge 3: Manage load variations

• Typical characteristics of stream processing
workloads:
– High data volume and high ingestion rates

• E.g., millions of posts, comments, likes, and shares are
generated every second

– Bursty behavior with sudden spikes in workload
• Traffic volume can spike suddenly during major events, like

breaking news or emergency situations

23V. Cardellini - SABD 2024/25

Challenge 3: Solutions
1. Admission control

– Mechanism that decides whether a new data flow can be
accepted and processed by the system

2. Static reservation
– Pre-allocating specific resources (e.g., CPU, memory) in

advance
– Cons: may lead to over-provisioning and increased cost

3. Load shedding
– Dynamic strategy that selectively drops data tuples when system

load exceeds a threshold (e.g., high CPU usage)
– Cons: reduces accuracy and completeness of output
– Needs careful tuning to minimize impact on quality

24V. Cardellini - SABD 2024/25

Challenge 3: Solutions

4. Backpressure
– Adaptive rate allocation mechanism to handle bottlenecks in

streaming pipelines
– The upstream operator before a bottleneck stores incoming

data in an internal buffer to slow down data flow
– Can propagate recursively upstream, all the way back to the

data sources

25V. Cardellini - SABD 2024/25

Challenge 3: Solutions

5. Redistribute load, that is adjusting the system to
balance workload, for example by:
– changing stream partitioning
– determining new operator placements
– Migrating operators across computing nodes
– Cons: available resources may be insufficient, limiting the

effectiveness of redistribution

26V. Cardellini - SABD 2024/25

Challenge 3: Solve through elasticity

27V. Cardellini - SABD 2024/25

• A common approach to handle load variations
– Detect operator bottlenecks
– Resolve them through elasticity: dynamically acquire or

release resources as needed

• How?
– Manually: feasible, but inefficient and error-prone

• What is a better approach?
– Enable self-adaptation and adapt application deployment at

runtime using the MAPE loop

Challenge 4: Self-adapt at runtime

• Many factors may change at runtime, such as:
– Load variations
– QoS of computing resources
– Cost fluctuations due to dynamic pricing
– Network characteristics
– Node mobility

• How to adapt DSP application deployment when
changes occur?

• Solution: enhance DSP systems with runtime
adaptation capabilities

• Possible adaptation action
– Scale-out/in the number of operator replicas
– Migrate operators across different computing nodes

28V. Cardellini - SABD 2024/25

Self-adaptive deployment using MAPE

• MAPE (Monitor, Analyze, Plan and Execute)

• Plan phase: decide how to adapt DSP
application deployment

29V. Cardellini - SABD 2024/25

Adaptation mechanisms for DSP

V. Cardellini - SABD 2024/25 30

Classifying adaptation solutions for DSP

V. Cardellini - SABD 2024/25 31

Scaling data stream processing
• At which layer?

– Application layer (i.e., operator scaling)
• i.e., apply SPMD paradigm: concurrent execution of multiple

replicas of the same operator on different partitions of data
stream

• Scale out/in operators by adding/removing operator replicas

– Infrastructure layer
• Scale horizontally computing resources (containers, virtual

machines, physical machines)
• Also scale vertically computing resources (containers, virtual

machines)
32V. Cardellini - SABD 2024/25

Scaling data stream processing

• When and how to scale?
– Open issue, a simple example:

• When: threshold-based (like AWS Auto Scaling)

• How: add/remove one operator replica at time
• Where: determine randomly (or in a round-robin fashion)

location of new replica

• Caution: elasticity overhead is not zero
– Elasticity often requires running new placement decisions to

accommodate additional replicas

– Dynamic scaling can significantly impact stateful operators,
introducing overhead in state migration and synchronization

33V. Cardellini - SABD 2024/25

Scaling: limits of centralized approaches

• Centralized optimization algorithms struggle to scale
with large problem sizes

• Centralized MAPE architectures face scalability
issues in geo-distributed environments

• Although components are distributed, control logic
remains centralized, creating bottlenecks

• Solution for Edge-Cloud Continuum: decentralize the
MAPE loop to distribute control and improve
scalability, i.e., decentralized MAPE

V. Cardellini - SABD 2024/25 34

How to decentralize MAPE control loop?
• Multiple patterns for decentralized control

– Each comes with pros and cons
– Choice depends on system requirements, scalability, and

complexity

V. Cardellini - SABD 2024/25

D. Weyns et al., On patterns for decentralized control in self-adaptive systems,
SEAMS II, 2013 https://ics.uci.edu/~malek/publications/2012aSefSAS.pdf

35

How to decentralize control?

• Our approach:
– Hierarchical MAPE architecture to enable efficient runtime

adaptation
– Distribute MAPE control loops (one global controller and

multiple local controllers), balancing global coordination with
local autonomy for scalability and responsiveness

Global view

Local view
…

V. Cardellini - SABD 2024/25 36

Local view

Local elasticity policy

• Let’s focus on local Plan policy that controls the
elasticity of individual DSP operators

• Make decision with a limited local view
– e.g., operator’s resource utilization and input data rate

• Two classes of elasticity policies
– Threshold-based policy (e.g., used by AWS Auto Scaling)

✗Requires manual tuning and domain expertise to choose
thresholds

– Reinforcement Learning-based policies

V. Cardellini - SABD 2024/25 37

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation
for elastic Data Stream Processing, Future Generation Computer Systems, 2018
http://www.ce.uniroma2.it/publications/fgcs2018_dsp.pdf

• A branch of ML dealing with sequential decision-making
• Agent interacts with environment through actions and

receives feedback in the form of reward (paid cost)
• Goal: learn to act as to maximize (minimize) long-term

reward (cost)
• Trial-and-error experience

Environment

ActionsState

Reward

RL agent

Reinforcement Learning in a nutshell

V. Cardellini - SABD 2024/25 38

Reinforcement Learning in a nutshell

• We consider different classes of RL
algorithms:
– Baseline model-free learning algorithms (e.g., Q-

learning)
– Model-based learning algorithms that exploit what

is known or can be estimated about system
dynamics

V. Cardellini - SABD 2024/25 39

Sutton and Barto, Reinforcement Learning: An Introduction, 2020
http://incompleteideas.net/book/RLbook2020.pdf

RL-based local elasticity policy

• At each step the RL agent performs an
action, looking at current state st

• Chosen action at causes payment of
immediate cost ct and transition to a new
state st+1

V. Cardellini - SABD 2024/25 40

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

• To minimize expected long-term (discounted) cost, RL
agent estimates Q(s, a)
– Q-function: expected long-run cost of taking action a in state s

RL-based local elasticity policy: Q-learning

• Q-learning: baseline model-free RL algorithm
• Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current
estimates of Q-function stored in Q-table) by greedily
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its
knowledge about system
• We consider ε-greedy action selection method

• Q-learning: update step of Q-function

V. Cardellini - SABD 2024/25 41

Q-table

RL-based local elasticity policy:
advanced RL techniques

• We have also exploited advanced RL techniques in
order to deal with large state space (e.g., due to
heterogeneous computing resources)
– Function Approximation
– Deep Learning
– Goal: build approximate representations of state space and

achieve near-optimal solutions with reduced memory
demand

• Let’s consider the high-level ideas
• To learn more about:

– Our tutorial at Performance 2021: Reinforcement Learning for Run
Time Performance Management in the Cloud/Edge
http://www.ce.uniroma2.it/courses/sabd2223/papers/csur2022.pdf

– Russo Russo et al., Hierarchical Auto-Scaling Policies for Data
Stream Processing on Heterogeneous Resources, ACM TAAS,
2023 http://www.ce.uniroma2.it/publications/TAAS2023.pdf

V. Cardellini - SABD 2024/25 42

• We consider a heterogeneous computing
infrastructure
– Nodes with different types/amount of resources

• RL agent must decide not only how many replicas to
run but also which types of nodes to host them

Auto-scaling on heterogeneous nodes:
increasing complexity and realism

Homogeneous Heterogeneous

V. Cardellini - SABD 2024/25 43

• N resource types: Tres = { }
• State s = (k, λ)

– ki = #replicas on nodes of type i
– λ = input data rate

• Actions A(s)={(δ,τ): δ∈{−1,+1}, τ ∈Tres}∪{do−nothing}
• Cost = wres resource cost + wperf performance + wrcf

reconfiguration

How to formulate?

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

V. Cardellini - SABD 2024/25 44

• Q-learning falls short in heterogeneous DSP context
✗ Too much memory to store tabular representation of Q-

function
✗ Very slow convergence

Standard RL algorithm falls short

U
se

d
 M

e
m

o
ry

 [
lo

g
]

Available Node Types

100 KB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

 1 2 4 6 8 10

Note: each operator has its own Q-table!

V. Cardellini - SABD 2024/25 45

Q-learning

Partial model knowledge

How to improve?
• We exploit multiple solutions
1. Separate the known from the unknown, inject partial model

knowledge (i.e., post-decision states) and learn only the
unknown part
– Do we really need to learn everything from scratch?

• We know which is the impact of scaling actions on the current
deployment

• We know whether a reconfiguration cost is paid after a certain
action

• We can estimate performance-related costs through a model

V. Cardellini - SABD 2024/25 46

• We exploit multiple solutions
2. Resort to non-linear function approximation (deep

Q network)
3. Combine all together

How to improve?

Function approximation

Partial model knowledge

+
Function approximation

V. Cardellini - SABD 2024/25 47

Reconfiguration overhead

• Deployment reconfiguration has a non-negligible
cost
– Can negatively impact application performance in the short

term
– Application freezing times caused by operator migration

and scaling, especially with stateful operators

• Solution:
– Trigger reconfiguration only when needed
– Take into account reconfiguration overhead into decision-

making policy

48V. Cardellini - SABD 2024/25

Challenge 5: Stateful operators

• State complicates things…
– Dynamic scaling: state must be partitioned, transferred, and

rebalanced across replicas
– Operator re-placement: requires state migration
– Recovery from failure: stateful operators need mechanisms

like checkpointing

Loss of state!
49V. Cardellini - SABD 2024/25

Approaches for stateful migration
• Not all streaming systems support migration of

stateful operators
– Some do not support it at all, others yes (including research

prototypes and production systems like Spark Streaming)
– In Flink: can migrate stateful operators through savepoints

and checkpoints

• Requirements for stateful operator migration
– Safety

• Ensure operational consistency during and after migration
• Prevent data loss or duplicate processing

– Application transparency
• Do not require application logic changes
• Maintain seamless operation from developer’s perspective

– Reduced footprint
• Limited impact on performance and resource usage
• Aim for fast, efficient state transfer and minimal downtime

50V. Cardellini - SABD 2024/25

Stateful operator migration
• Migrating stateful operators

1. Pause-and-resume approach
2. Parallel track approach

• Pause-and-resume approach
✗Application latency peak during migration

Stop migrating
task Save state

Terminate migrating task
and start it on new node

Restore state

Resume stream processing

V. Cardellini - SABD 2024/25 51

Stateful operator migration

2. Parallel track approach
– Old and new operator instances run concurrently

until their state is synchronized
✓No latency peak
✗More complex: requires mechanisms for

synchronizing the two instances

V. Cardellini - SABD 2024/25 52

Stateful operators: other issues
• How to identify which portion of state to migrate?

Possible approaches:
– Expose an API to let the user manually manage the state
– Support only partitioned stateful operators

• Store independent state for each sub-stream identified by a
partitioning key

• Automatically determine, on the basis of a partitioning key, the
optimal number of state partitions

• How to balance the load among multiple stateful
replicas? Possible approaches:
– Use consistent hashing
– Use partial key grouping

• Use two hash functions where a key can be sent to two
different replicas instead of one

– Only in research prototypes

53V. Cardellini - SABD 2024/25

Challenge 6: Guaranteing fault tolerance

• DSP applications are long-running, making failures
inevitable

• Possible solutions:
– Active replication: run multiples copies to ensure availability
– Checkpointing: periodically save state to recover from failures

(e.g., Flink)
– Replay logs

• Solutions with different trade-offs between runtime cost
during normal operation and recovery time

• Large-scale deployments complicate things
– Network partitions and CAP theorem

54V. Cardellini - SABD 2024/25

References

• M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog
of stream processing optimizations, ACM Comput. Surv., 2014
https://hirzels.com/martin/papers/csur14-streamopt.pdf

• V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Run-
time adaptation of data stream processing systems: The state of
the art, ACM Comput. Surv., 2022
http://www.ce.uniroma2.it/courses/sabd2223/papers/csur2022.pdf

V. Cardellini - SABD 2024/25 55

