TOR VERGATA Macroarea di Ingegneria

IIIIIIIIIIIIIIIIIIIIIIIIIII Dipartimento di Ingegneria Civile e Ingegneria Informatica

Addressing the Challenges of Data
Stream Processing

Corso di Sistemi e Architetture per Big Data
A.A. 2024/25
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Challenges

» Let's consider how to tackle some key
challenges in DSP systems

1. Optimizing DSP application
Placing DSP operators on computing
infrastructure

Managing load variations
Self-adaptation at runtime
Managing stateful operators
Fault tolerance

N

o ok w

V. Cardellini - SABD 2024/25 1

Challenge 1: Optimizing DSP application

* Apply optimizations on the streaming graph
— At design time (more common) or at runtime

» Operator reordering
— To avoid unnecessary data transfers

B o R N

* Redundancy elimination

=

V. Cardellini - SABD 2024/25 2

Challenge 1: Optimizing DSP application

» Operator separation

- 88

* QOperator fusion
poRolE R

V. Cardellini - SABD 2024/25 3

Challenge 1: Optimizing DSP application

» QOperator scaling (aka operator fission)

=g ml B

V. Cardellini - SABD 2024/25 4

At the streaming system layer

« DSP application optimization is typically
addressed at DSP application layer, usually
at design time

« What about the streaming system layer?
« What about runtime adaptation?

« Let’s first consider two solutions for improving
performance (e.g., controlling application
latency) at the streaming system layer
— Placing DSP operators
— Managing load variations

V. Cardellini - SABD 2024/25 5

Challenge 2: Placing DSP operators

 Determine, within a set of available distributed
computing nodes, those nodes that should host
and execute each operator instance of a DSP
application

V. Cardellini - SABD 2024/25 6

Challenge 2: Placing DSP operators

* Placement: a complex problem
— Trade communication cost against resource utilization

« Challenges to tackle, especially in the Edge-Cloud
continuum
— Non-negligible network latencies
+ E.g., geo-distributed resources
— Heterogeneity in computing and networking resources
* E.g., capacity limits , business constraints
— Computing/network resources can be unavailable

— Computational requirements of DSP applications may be
unknown a-priori and change at runtime

— DSP applications are long-running
&d Need to adapt to internal and external changes

V. Cardellini - SABD 2024/25 7

Challenge 2: Design alternatives

* When to place operators
— Initial (static) operator placement
+ Can be more expensive and comprehensive
— Can also be at runtime
* Place again all the operators or only a subset

* How to determine the placement
— Mathematical programming
* Optimal operator placement: NP-hard problem
* Does not scale well, but provides a benchmark
— Heuristics
* Majority of policies
— Deep Reinforcement Learning

V. Cardellini - SABD 2024/25

Placement: Design alternatives

* Who is the decision maker?

— Centralized placement strategies

» Require global view (full resource and network state, application
state, workload information)

v Capable of determining optimal global solution
X Scalability

— Decentralized placement strategies
» Take decision based only on local information
v Scalability, better suited for runtime adaptation
X Optimality is not guaranteed

V. Cardellini - SABD 2024/25

ODP: Optimal DSP Placement
» We proposed ODP policy

— Centralized policy for optimal placement of DSP applications
— Formulated as Integer Linear Programming (ILP) problem

* Our goals:
— Compute optimal placement (of course!)

— Provide a unified general formulation of the
placement problem for DSP applications (but not only!)

— Consider multiple QoS attributes of applications and
resources
— Provide a benchmark for heuristics

V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed
Stream Processing Applications, DEBS 16

http://www.ce.uniromaZ2.it/publications/PER2016.pdf
V. Cardellini - SABD 2024/25 10

ODP placement policy: model

DSP application
k\NORD\
(RAN
%‘ (RANKINGS)
@ source . operator
Operators Data streams
* C; required computing * \;; data rate from operator j to j

resources
* R;: execution time per data unit

V. Cardellini - SABD 2024/25 11

ODP placement policy: model

Computing and network resources

\ Network) / e
Computing resources (Logical) Network links
» C,: amount of resources * d, . network delay from u to v
» S,: processing speed * B, ,: bandwidth from u to v
« A, resource availability « A,/ link availability
V. Cardellini - SABD 2024/25 12

ODP placement policy: model

Decision variables
* Determine where to map DSP operators and data streams

Xi,u= 1

Yijwy=1

X~ 1

V. Cardellini - SABD 2024/25 13

ODP placement policy: QoS metrics

Response time
max end-to-end delay between sources and destination

R
>
) A :ﬁ:

Application availability

probability that all resources are up and running

Inter-node traffic
overall network data rate

Network usage |
in-flight bytes Zinkse rate(/)Lat(/)

V. Cardellini - SABD 2024/25 14
ODP placement policy: formulation
Tunable knobs to set the max F(z,y,7)
optimal placement goals LA
subject to:
R;
r 2 Z Z ?uxz,u+
Latency Lo
Z Z d(u,v)y(i,j),(u,v) \V/p € ma
(i,5) (u,v)
a(:c, y) = Z Z aumi,u‘}‘
Availability L
Z Z A(w,)Y(i,5), (u)
(i,5) (u,v)
Network bandwidth and node Buw 2 (Z) AGaYaae) T8 E Vies, v € Vres
capacity constraints v
p y Z Cixi,u <Cyu Yu € Vies
Z.’L‘i’u =1 Vi € Vdsp
. Tiu = Y(i,5),(u,v V(’L,J) € Eus U € Vies
Assignment and Z (e ’
integer constraints Tiw = D Y(i) () V(i,7) € Basp,v € Vres
ziu € {0,1} Vi € Vasp, u € Vyes
V. Cardellini - SABD 2024/25 Y(ii),(uw) € {0,1} V(i,J) € Basp, (u,v) € Eges

ODP placement policy: scalability issue

 Placement is NP-hard: does not scale with
system/application size

Resolution Time (s)

105 r T 3 105 £
104 . 4 104 —
103 ’ ; O 103 f
(0]
L Ag L
102 - E 102
C
I 18 I
10" - T 3100 F
2 |
100 = 5 & 100 -
101 - Fat Application 101 Fat Application
b Sequential ApPIication , b Sequential Application
10-2 | | | | 102 | | | |
10 20 30 40 50 0 20 40 60 80 100
DSP Operators Computing Nodes
* We need heuristics to compute placement
in a feasible amount of time
V. Cardellini - SABD 2024/25 16

Centralized placement heuristics

* |dea: reduce inter-node communication and balance
CPU load by co-locating communicating tasks

» Approach: use a centralized greedy heuristic to guide
placement
Greedy heuristic steps:
1. Rank operator pairs according to exchanged traffic
2. For each operator pair:

» If neither operator has been assigned yet, then assign both to
the same node

« Otherwise, evaluate the node where the assigned operator is
placed and the least loaded node and choose the configuration
that minimizes inter-process communication

L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS ‘13

V. Cardellini - SABD 2024/25 17

Decentralized placement heuristic

* Heuristics goal: reduce network usage
— Network usage metric combines link latencies and exchanged
data rates among DSP operators:
zlinksd rate(/)Lat(/)
* Idea: exploit spring relaxation

— DSP application regarded as a system of springs, whose
minimum energy configuration corresponds to minimizing
network usage

» Features
— Decentralized policy to minimize network impact

— Adaptive to change in network conditions

P. Pietzuch et al., Network-aware operator placement for stream-processing systems,
ICDE 06 https://www.doc.ic.ac.uk/~prp/manager/doc/icde06-camera-ready.pdf

V. Cardellini - SABD 2024/25 18

Decentralized placement heuristic

1. Represent DSP application as an equivalent system of springs

g

\\““\

mmmm@% “n‘ !

Iy
II[l" ,/

V. Cardellini - SABD 2024/25 19

Decentralized placement heuristic

2. Determine operator placement in the cost space by minimizing
the elastic energy of the equivalent system

it
IIIIII|IIII|IIIII@H”wu|||||||||||||||||||®“‘
///////,,,® “,
IIIIII“II[/”,,/I’/,

Network of springs tries to minimize potential energy E

E =) DR(l)Lat(l)”

leL

Streams as springs, that restore a force F =% <k s:
— Kk (spring constant): exchanged data rate on link
— s (spring extension): latency on link

V. Cardellini - SABD 2024/25 20

Decentralized placement heuristic

3. Map decision onto physical nodes

iH””@}HHHI“ ‘IH!II\I@““"'
. ,/l//// :
A

V. Cardellini - SABD 2024/25 21

ODP as benchmark

Distributed placement heuristic that minimizes network usage

Pietzuch et al. : min EE(y) =min > Y ;. j)d?, . Y. (wo)
(2,7) (u,v):uzv

I [
S-ODP_EE =—
7000 Pietzuch et al.

6000

8000

5000
4000

3000
2000

Elastic Energy (tuple/s - s2)

1000

0 500 1000 1500 2000 2500 3000

Time (s)
Optimal Operator Placement for Distributed Stream Processing Applications,
http://www.ce.uniroma?Z.it/publications/PER2016.pdf

0

V. Cardellini - SABD 2024/25

Challenge 3: Manage load variations

22

- Typical characteristics of stream processing
workloads:

— High data volume and high ingestion rates

+ E.g., millions of posts, comments, likes, and shares are
generated every second

— Bursty behavior with sudden spikes in workload

 Traffic volume can spike suddenly during major events, like
breaking news or emergency situations

500
400 A
300 |1
200 |
100 |

ol .
0 100 200 300 400 500 600 700

Time (minutes)

Source data rate
(tuples/s)

V. Cardellini - SABD 2024/25

23

Challenge 3: Solutions

1. Admission control

— Mechanism that decides whether a new data flow can be
accepted and processed by the system

2. Static reservation

— Pre-allocating specific resources (e.g., CPU, memory) in
advance

— Cons: may lead to over-provisioning and increased cost

3. Load shedding

— Dynamic strategy that selectively drops data tuples when system
load exceeds a threshold (e.g., high CPU usage)

— Cons: reduces accuracy and completeness of output
— Needs careful tuning to minimize impact on quality

u.{}AA 8 X{} |

V. Cardellini - SABD 2024/25 24

Challenge 3: Solutions

4. Backpressure

— Adaptive rate allocation mechanism to handle bottlenecks in
streaming pipelines

— The upstream operator before a bottleneck stores incoming
data in an internal buffer to slow down data flow

— Can propagate recursively upstream, all the way back to the
data sources

B H

OO n s O 2 O,

X

V. Cardellini - SABD 2024/25 25

Challenge 3: Solutions

5. Redistribute load, that is adjusting the system to
balance workload, for example by:
— changing stream partitioning
— determining new operator placements
— Migrating operators across computing nodes

— Cons: available resources may be insufficient, limiting the
effectiveness of redistribution

V. Cardellini - SABD 2024/25

Challenge 3: Solve through elasticity

- R

26

« A common approach to handle load variations
— Detect operator bottlenecks

— Resolve them through elasticity: dynamically acquire or
release resources as needed

Resources

Capacity

Demand

>

Time

 How?
— Manually: feasible, but inefficient and error-prone

« What is a better approach?

— Enable self-adaptation and adapt application deployment at
runtime using the MAPE loop

V. Cardellini - SABD 2024/25

27

Challenge 4: Self-adapt at runtime

» Many factors may change at runtime, such as:
— Load variations
— QoS of computing resources
— Cost fluctuations due to dynamic pricing
— Network characteristics
— Node mobility
» How to adapt DSP application deployment when
changes occur?

» Solution: enhance DSP systems with runtime
adaptation capabilities

* Possible adaptation action
— Scale-out/in the number of operator replicas
— Migrate operators across different computing nodes

V. Cardellini - SABD 2024/25

Self-adaptive deployment using MAPE

28

« MAPE (Monitor, Analyze, Plan and Execute)

‘ APlannin
b.d Sensor | Effector b .Vd

* Plan phase: decide how to adapt DSP
application deployment

V. Cardellini - SABD 2024/25

29

Adaptation mechanisms for DSP

Adaptation mechanisms)

Overload

—(Backpressure

management
' —(Load shedding

Fault tolerance

[Operator fusion a’;:gzgiz
[Operator reuse |- i
[Operator placementj—— ng:;};::f;:
[Operator scaling]—

[Algorithm adaptation l;)(rizgziilgrgl
[Configuration tuning]— '
[Load distribution |-

(

Stream scheduling]—

V. Cardellini - SABD 2024/25

)
)
)
)

' —(Network adaptation

adaptation m {Repllcatlon

| ' —(Checkpointing
‘Infrastructure .
adaptation -—(Infrastructure scaling)

)

Classifying adaptation solutions for DSP

30

Run-time adaptation

—— Why? (Goals)

——— Who? (Authorities)

How? (Planning)
————— When? (Time)

‘——— Where? (Environment)

V. Cardellini - SABD 2024/25

::.‘Granularity

——— What? (Actions and entities) —E:Mechanisms

':State)
-|:_'/Obj ectives /
i:Metrics

-I::fControl]ing authorities

:Multi-tenancy

—_TMethodologies

—I::\/;I'rigger

.f_'Reactive / Proactive

'System distribution

:;Resource heterogeneity

fEdge deployment

:'Speciﬁc Hardware

31

Scaling data stream processing

« At which layer?

— Application layer (i.e., operator scaling)

* i.e., apply SPMD paradigm: concurrent execution of multiple
replicas of the same operator on different partitions of data
stream

» Scale out/in operators by adding/removing operator replicas

— Infrastructure layer © © @ o

» Scale horizontally computing resources (containers, virtual
machines, physical machines)

» Also scale vertically computing resources (containers, virtual
machines)
V. Cardellini - SABD 2024/25

Scaling data stream processing

32

 When and how to scale?

— Open issue, a simple example:
* When: threshold-based (like AWS Auto Scaling)
* How: add/remove one operator replica at time
* Where: determine randomly (or in a round-robin fashion)

location of new replica

« Caution: elasticity overhead is not zero

— Elasticity often requires running new placement decisions to
accommodate additional replicas

— Dynamic scaling can significantly impact stateful operators,
introducing overhead in state migration and synchronization

V. Cardellini - SABD 2024/25

33

Scaling: limits of centralized approaches

» Centralized optimization algorithms struggle to scale
with large problem sizes

» Centralized MAPE architectures face scalability
issues in geo-distributed environments

« Although components are distributed, control logic
remains centralized, creating bottlenecks

» Solution for Edge-Cloud Continuum: decentralize the
MAPE loop to distribute control and improve
scalability, i.e., decentralized MAPE

V. Cardellini - SABD 2024/25 34

How to decentralize MAPE control loop?

» Multiple patterns for decentralized control
— Each comes with pros and cons
— Choice depends on system requirements, scalability, and

complexit ' ’
P y S
M— A E
s Y
P e)
Master + \ M—>A >P > E
A— P ¥ } l
r o~ AN I
P o ~ 1 N I
1 I . < ‘M.A.p.g M- AP E
M E see M E M>A E M—>A E
Lx <) = P < P .-
- Worker 1™, " WorkerN "
Figure 1: Hierarchical MAPE: master-worker pattern Figure 2: Hierarchical MAPE: regional pattern Figure 3: Hierarchical MAPE: hierarchical control pattern
M- A P JE M A ~[p1JE ‘M>A‘P>E f-A-E-E
T b [E— [4 1
£
i i F 417
M—> AP E M—>A P E ‘M.A.P»E M-~ AP E
Pl L4 Pl L4 =
Figure 4: Flat MAPESs: coordinated control pattern Figure 5: Flat MAPEs: information sharing pattern

D. Weyns et al., On patterns for decentralized control in self-adaptive systems,
SEAMS II, 2013 https://ics.uci.edu/~malek/publications/2012aSefSAS.pdf

V. Cardellini - SABD 2024/25 35

How to decentralize control?

» Our approach:

— Hierarchical MAPE architecture to enable efficient runtime
adaptation

— Distribute MAPE control loops (one global controller and
multiple local controllers), balancing global coordination with
local autonomy for scalability and responsiveness

i Global view
& [N [1
\A& ‘M—»A—-P E‘ - A P—»é

Local view Local view
A

S

loo=)
V. Cardellini - SABD 2024/25 36

Local elasticity policy

» Let’s focus on local Plan policy that controls the
elasticity of individual DSP operators

» Make decision with a limited local view
— e.g., operator’s resource utilization and input data rate

» Two classes of elasticity policies

— Threshold-based policy (e.g., used by AWS Auto Scaling)
X Requires manual tuning and domain expertise to choose
thresholds

— Reinforcement Learning-based policies

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation
for elastic Data Stream Processing, Future Generation Computer Systems, 2018
http://www.ce.uniromaZ2.it/publications/fgcs2018 dsp.pdf

V. Cardellini - SABD 2024/25 37

Reinforcement Learning in a nutshell

» A branch of ML dealing with sequential decision-making

» Agent interacts with environment through actions and
receives feedback in the form of reward (paid cost)

» Goal: learn to act as to maximize (minimize) long-term
reward (cost)

» Trial-and-error experience

RL agent

State Actions
Reward

Environment

V. Cardellini - SABD 2024/25

Reinforcement Learning in a nutshell

38

 We consider different classes of RL
algorithms:

— Baseline model-free learning algorithms (e.g., Q-
learning)

— Model-based learning algorithms that exploit what

is known or can be estimated about system
dynamics

Sutton and Barto, Reinforcement Learning: An Introduction, 2020
http://incompleteideas.net/book/RLbook2020.pdf

V. Cardellini - SABD 2024/25

39

RL-based local elasticity policy

Monitored

Stgte Adaptation
t Action

* At each step the RL agent performs an —
action, looking at current state s; Paid cox

» Chosen action a; causes payment of |1 sessen)

immediate cost ¢; and transition to a new
state s;.4

« To minimize expected long-term (discounted) cost, RL
agent estimates Q(s, a)
— Q-function: expected long-run cost of taking action a in state s

Adaptation Agent

Algorithm 1 RL-based Operator Elastic Control Algorithm

1: Initialize the Q functions

2: loop

3 choose a scaling action a; (based on current estimates of Q)
4: observe the next state s;,; and the incurred cost ¢;
5

6

update the Q(s;, a;) functions based on the experience
: end loop

V. Cardellini - SABD 2024/25 40

RL-based local elasticity policy: Q-learning

* Q-learning: baseline model-free RL algorithm

» Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current
estimates of Q-function stored in Q-table) by greedily
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its
knowledge about system

* We consider e-greedy action selection method Q-table
State/Action a as
S1 0(51, 31) Q(Sl, 32) vee
2 Q(Sz, 31) Q(Sz, 32) .
Sn Q(sn,a1) [Q(sn, 22) [...

* Q-learning: update step of Q-function

a’ € A(si+1)

Q(si,a) < (1 —a)Q (s, a) + [Ci +y min Q(Si;1, a’):|

V. Cardellini - SABD 2024/25 41

RL-based local elasticity policy:
advanced RL techniques

* We have also exploited advanced RL techniques in
order to deal with large state space (e.g., due to
heterogeneous computing resources)

— Function Approximation
— Deep Learning

— Goal: build approximate representations of state space and
achieve near-optimal solutions with reduced memory
demand

» Let’s consider the high-level ideas

* To learn more about:

— Our tutorial at Performance 2021: Reinforcement Learning for Run
Time Performance Management in the Cloud/Edge
http://www.ce.uniroma?Z.it/courses/sabd2223/papers/csur2022.pdf

— Russo Russo et al., Hierarchical Auto-Scaling Policies for Data
Stream Processing on Heterogeneous Resources, ACM TAAS,
2023 http://www.ce.uniromaZ2.it/publications/TAAS2023.pdf

V. Cardellini - SABD 2024/25

Auto-scaling on heterogeneous nodes:
increasing complexity and realism

42

* \We consider a heterogeneous computing
infrastructure
— Nodes with different types/amount of resources

* RL agent must decide not only how many replicas to
run but also which types of nodes to host them

Homogeneous Heterogeneous

>

Y

Replication
Replication

Y

V. Cardellini - SABD 2024/25

43

How to formulate?

5 Monitored
* Nresource types: Tres = {5 i@ [0 } N Adaptation

« State s = (k, A)
— k; = #replicas on nodes of type i
— A =input data rate

» Actions A(s)={(5,1): 0e{—-1,+1}, T €T s}u{do—nothing}
« Cost = w,sresource cost + w,.sperformance + w,

reconfiguration
a=(-1,L) I@
1 s/ = ([2,0,0], V)
Gy Gy AL T _)
s=([2,0,1], A ~* : : .
ERE a=(+1,M) (5) - @
s = ([2,1,1],X)
V. Cardellini - SABD 2024/25 44

Standard RL algorithm falls short

* Q-learning falls short in heterogeneous DSP context
X Too much memory to store tabular representation of Q-

function State/Action a a» v
S1 Q(Sl, 31) Q(Sl, 32)
X Very slow convergence 2 o) g2 -

Sn Q(sn, a1) | Q(sn, a2) ‘

100 GB QL :
0.3 QL+PDS Q-learning
10GB Optimal Offline —a- -
— 0.25
g 18 // - 02
g 100 MB / S :
2 1omB A 2 0.15
g 1MB < 0.1
D
b '
100 KB 005
1 2 4 6 8 10 0
Available Node Types 100 200 300 400

i Time S 1,000
Note: each operator has its own Q-table! ime Steps (x1,000)

V. Cardellini - SABD 2024/25 45

How to improve?

* We exploit multiple solutions

1. Separate the known from the unknown, inject partial model

knowledge (i.e., post-decision states) and learn only the
unknown part

— Do we really need to learn everything from scratch?

» We know which is the impact of scaling actions on the current
deployment

» We know whether a reconfiguration cost is paid after a certain
action

* We can estimate performance-related costs through a model

QL ——

0.3 QL+PDS
Optimal Offline —a- -
0.25
0.2

0.15 / Partial model knowledge

0.1
0.05 t
0

100 200 300 400
Time Steps (x1,000)

Avg. Cost

V. Cardellini - SABD 2024/25

How to improve?

46

* We exploit multiple solutions

2. Resort to non-linear function approximation (deep
Q network)

3. Combine all together

DQL —e—
0.3 DQL+PDS —&—

0.25
0.2

Function approximation
e M /
0.1

0.05 Pl\ks—a—a—a—g_a_ < Partial model knowledge
0

100 200 300 400 +
Time Steps (x1,000) Function approximation

Avg. Cost

V. Cardellini - SABD 2024/25

47

Reconfiguration overhead

» Deployment reconfiguration has a non-negligible

cost

— Can negatively impact application performance in the short

term

— Application freezing times caused by operator migration
and scaling, especially with stateful operators

* Solution:

— Trigger reconfiguration only when needed

— Take into account reconfiguration overhead into decision-
making policy

V. Cardellini - SABD 2024/25

Challenge 5: Stateful operators

48

src

« State complicates things...

— Dynamic scaling: state must be partitioned, transferred, and

rebalanced across replicas

— Operator re-placement: requires state migration
— Recovery from failure: stateful operators need mechanisms

[x](x] [7]

like checkpointing

[2](2] (]

Node 1

V. Cardellini - SABD 2024/25

snk

src

snk

Node 2

=

Loss of state!

49

Approaches for stateful migration

* Not all streaming systems support migration of
stateful operators

— Some do not support it at all, others yes (including research
prototypes and production systems like Spark Streaming)

— In Flink: can migrate stateful operators through savepoints
and checkpoints

» Requirements for stateful operator migration
— Safety
» Ensure operational consistency during and after migration
* Prevent data loss or duplicate processing
— Application transparency
* Do not require application logic changes
* Maintain seamless operation from developer’s perspective
— Reduced footprint
» Limited impact on performance and resource usage

* Aim for fast, efficient state transfer and minimal downtime
V. Cardellini - SABD 2024/25

Stateful operator migration

« Migrating stateful operators
1. Pause-and-resume approach
2. Parallel track approach

« Pause-and-resume approach
X Application latency peak during migration

Terminate migrating task
3 and start it on new node

I ¥

Node 1

EE]E]E] ,@ [3](2] [a] SEn

Stop migra
1Stop tasgk\mg\g‘ave stat
4

Node 2 In memory 5 Resume stream processing
data store

19°)

V. Cardellini - SABD 2024/25

Stateful operator migration

2. Parallel track approach

— Old and new operator instances run concurrently
until their state is synchronized

v/ No latency peak

X More complex: requires mechanisms for
synchronizing the two instances

V. Cardellini - SABD 2024/25

Stateful operators: other issues

52

* How to identify which portion of state to migrate?
Possible approaches:
— Expose an API to let the user manually manage the state

— Support only partitioned stateful operators

» Store independent state for each sub-stream identified by a
partitioning key

» Automatically determine, on the basis of a partitioning key, the
optimal number of state partitions

* How to balance the load among multiple stateful
replicas? Possible approaches:
— Use consistent hashing
— Use partial key grouping

* Use two hash functions where a key can be sent to two
different replicas instead of one

— Only in research prototypes

V. Cardellini - SABD 2024/25

53

Challenge 6: Guaranteing fault tolerance

DSP applications are long-running, making failures

inevitable

Possible solutions:

— Active replication: run multiples copies to ensure availability

— Checkpointing: periodically save state to recover from failures
(e.q., Flink)

— Replay logs

Solutions with different trade-offs between runtime cost

during normal operation and recovery time

Large-scale deployments complicate things

— Network partitions and CAP theorem

V. Cardellini - SABD 2024/25

References

54

* M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog
of stream processing optimizations, ACM Comput. Surv., 2014
https://hirzels.com/martin/papers/csur14-streamopt.pdf

» V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Run-
time adaptation of data stream processing systems: The state of

the art, ACM Comput. Surv., 2022
http://www.ce.uniromaZ2.it/courses/sabd2223/papers/csur2022.pdf

V. Cardellini - SABD 2024/25

55

