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Challenges

• Let’s consider how to tackle some key 
challenges in DSP systems

1. Optimizing DSP application
2. Placing DSP operators on computing 

infrastructure
3. Managing load variations
4. Self-adaptation at runtime
5. Managing stateful operators
6. Fault tolerance
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Challenge 1: Optimizing DSP application

• Apply optimizations on the streaming graph
– At design time (more common) or at runtime

• Operator reordering
– To avoid unnecessary data transfers

• Redundancy elimination
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Challenge 1: Optimizing DSP application

• Operator separation

• Operator fusion
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Challenge 1: Optimizing DSP application

• Operator scaling (aka operator fission)
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At the streaming system layer

• DSP application optimization is typically 
addressed at DSP application layer, usually 
at design time

• What about the streaming system layer?
• What about runtime adaptation?
• Let’s first consider two solutions for improving 

performance (e.g., controlling application 
latency) at the streaming system layer
– Placing DSP operators
– Managing load variations
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Challenge 2: Placing DSP operators 
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• Determine, within a set of available distributed 
computing nodes, those nodes that should host 
and execute each operator instance of a DSP 
application

Challenge 2: Placing DSP operators
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• Placement: a complex problem 
– Trade communication cost against resource utilization

• Challenges to tackle, especially in the Edge-Cloud 
continuum
– Non-negligible network latencies

• E.g., geo-distributed resources
– Heterogeneity in computing and networking resources

• E.g., capacity limits , business constraints
– Computing/network resources can be unavailable
– Computational requirements of DSP applications may be 

unknown a-priori and change at runtime
– DSP applications are long-running

➡ Need to adapt to internal and external changes



Challenge 2: Design alternatives
• When to place operators

– Initial (static) operator placement 
• Can be more expensive and comprehensive

– Can also be at runtime
• Place again all the operators or only a subset

• How to determine the placement
– Mathematical programming

• Optimal operator placement: NP-hard problem
• Does not scale well, but provides a benchmark

– Heuristics
• Majority of policies

– Deep Reinforcement Learning
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Placement: Design alternatives
• Who is the decision maker?

– Centralized placement strategies
• Require global view (full resource and network state, application 

state, workload information)
✓ Capable of determining optimal global solution
✗Scalability

– Decentralized placement strategies
• Take decision based only on local information
✓  Scalability, better suited for runtime adaptation
✗Optimality is not guaranteed
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ODP: Optimal DSP Placement
• We proposed ODP policy

– Centralized policy for optimal placement of DSP applications
– Formulated as Integer Linear Programming (ILP) problem

• Our goals:
– Compute optimal placement (of course!)

– Provide a unified general formulation of the 
placement problem for DSP applications (but not only!)

– Consider multiple QoS attributes of applications and 
resources

– Provide a benchmark for heuristics
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V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal Operator Placement for Distributed 
Stream Processing Applications, DEBS ’16 
http://www.ce.uniroma2.it/publications/PER2016.pdf

ODP placement policy: model
DSP application
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Operators
• Ci: required computing 

resources 
• Ri: execution time per data unit

Data streams
• li,j: data rate from operator i to j



ODP placement policy: model
Computing and network resources
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(Logical) Network links
• du,v: network delay from u to v
• Bu,v: bandwidth from u to v
• Au,v: link availability

Computing resources
• Cu: amount of resources
• Su: processing speed
• Au: resource availability

ODP placement policy: model
Decision variables
• Determine where to map DSP operators and data streams
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ODP placement policy: QoS metrics
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• Response time
max end-to-end delay between sources and destination

• Application availability
probability that all resources are up and running

• Inter-node traffic
overall network data rate

• Network usage
in-flight bytes 

SlinksÎl rate(l)Lat(l) 

R

ODP placement policy: formulation
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Latency

Availability

Network bandwidth and node 
capacity constraints

Assignment and 
integer constraints

Tunable knobs to set the 
optimal placement goals



ODP placement policy: scalability issue
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• Placement is NP-hard: does not scale with 
system/application size

• We need heuristics to compute placement
in a feasible amount of time

Centralized placement heuristics
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L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, DEBS ‘13 
http://midlab.diag.uniroma1.it/articoli/ABQ13storm.pdf

• Idea: reduce inter-node communication and balance 
CPU load by co-locating communicating tasks

• Approach: use a centralized greedy heuristic to guide 
placement
Greedy heuristic steps:

1. Rank operator pairs according to exchanged traffic 

2. For each operator pair:

• If neither operator has been assigned yet, then assign both to 
the same node

• Otherwise, evaluate the node where the assigned operator is 
placed and the least loaded node and choose the configuration 
that minimizes inter-process communication



Decentralized placement heuristic
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P. Pietzuch et al., Network-aware operator placement for stream-processing systems,  
ICDE ’06 https://www.doc.ic.ac.uk/~prp/manager/doc/icde06-camera-ready.pdf

SlinksÎl rate(l)Lat(l) 
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• Heuristics goal: reduce network usage
– Network usage metric combines link latencies and exchanged 

data rates among DSP operators: 

• Idea: exploit spring relaxation
– DSP application regarded as a system of springs, whose 

minimum energy configuration corresponds to minimizing 
network usage 

• Features
– Decentralized policy to minimize network impact

– Adaptive to change in network conditions

Decentralized placement heuristic
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1. Represent DSP application as an equivalent system of springs
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Network of springs tries to minimize potential energy E

Streams as springs, that restore a force F = ½ • k • s:
– k (spring constant): exchanged data rate on link
– s (spring extension): latency on link

Decentralized placement heuristic

20

2. Determine operator placement in the cost space by minimizing 
the elastic energy of the equivalent system

Lat = s

DR = k

P1

S
P2
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Decentralized placement heuristic
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3. Map decision onto physical nodes
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ODP as benchmark
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Distributed placement heuristic that minimizes network usage

Pietzuch et al. : 

Optimal Operator Placement for Distributed Stream Processing Applications, 
http://www.ce.uniroma2.it/publications/PER2016.pdf

Challenge 3: Manage load variations

• Typical characteristics of stream processing 
workloads: 
– High data volume and high ingestion rates 

• E.g., millions of posts, comments, likes, and shares are 
generated every second

– Bursty behavior with sudden spikes in workload
• Traffic volume can spike suddenly during major events, like    

breaking news or emergency situations
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Challenge 3: Solutions
1. Admission control

– Mechanism that decides whether a new data flow can be 
accepted and processed by the system

2. Static reservation
– Pre-allocating specific resources (e.g., CPU, memory) in 

advance 
– Cons: may lead to over-provisioning and increased cost

3. Load shedding
– Dynamic strategy that selectively drops data tuples when system 

load exceeds a threshold (e.g., high CPU usage) 
– Cons: reduces accuracy and completeness of output
– Needs careful tuning to minimize impact on quality 
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Challenge 3: Solutions

4. Backpressure
– Adaptive rate allocation mechanism to handle bottlenecks in 

streaming pipelines
– The upstream operator before a bottleneck stores incoming 

data in an internal buffer to slow down data flow 
– Can propagate recursively upstream, all the way back to the 

data sources
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Challenge 3: Solutions

5. Redistribute load, that is adjusting the system to 
balance workload, for example by: 
– changing stream partitioning
– determining new operator placements
– Migrating operators across computing nodes
– Cons: available resources may be insufficient, limiting the 

effectiveness of redistribution
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Challenge 3: Solve through elasticity
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• A common approach to handle load variations 
– Detect operator bottlenecks
– Resolve them through elasticity: dynamically acquire or 

release resources as needed

• How?
– Manually: feasible, but inefficient and error-prone

• What is a better approach?
– Enable self-adaptation and adapt application deployment at 

runtime using the MAPE loop



Challenge 4: Self-adapt at runtime

• Many factors may change at runtime, such as:
– Load variations
– QoS of computing resources
– Cost fluctuations due to dynamic pricing
– Network characteristics
– Node mobility

• How to adapt DSP application deployment when 
changes occur?

• Solution: enhance DSP systems with runtime 
adaptation capabilities

• Possible adaptation action
– Scale-out/in the number of operator replicas
– Migrate operators across different computing nodes
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Self-adaptive deployment using MAPE

• MAPE (Monitor, Analyze, Plan and Execute) 

• Plan phase: decide how to adapt DSP 
application deployment
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Adaptation mechanisms for DSP
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Classifying adaptation solutions for DSP
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Scaling data stream processing 
• At which layer?

– Application layer (i.e., operator scaling)
• i.e., apply SPMD paradigm: concurrent execution of multiple 

replicas of the same operator on different partitions of data 
stream

• Scale out/in operators by adding/removing operator replicas

– Infrastructure layer
• Scale horizontally computing resources (containers, virtual 

machines, physical machines)
• Also scale vertically computing resources (containers, virtual 

machines)
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Scaling data stream processing 

• When and how to scale?
– Open issue, a simple example:

• When: threshold-based (like AWS Auto Scaling) 

• How: add/remove one operator replica at time 
• Where: determine randomly (or in a round-robin fashion) 

location of new replica 

• Caution: elasticity overhead is not zero
– Elasticity often requires running new placement decisions to 

accommodate additional replicas

– Dynamic scaling can significantly impact stateful operators, 
introducing overhead in state migration and synchronization
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Scaling: limits of centralized approaches

• Centralized optimization algorithms struggle to scale 
with large problem sizes

• Centralized MAPE architectures face scalability 
issues in geo-distributed environments

• Although components are distributed, control logic 
remains centralized, creating bottlenecks

• Solution for Edge-Cloud Continuum: decentralize the 
MAPE loop to distribute control and improve 
scalability, i.e., decentralized MAPE
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How to decentralize MAPE control loop?
• Multiple patterns for decentralized control 

– Each comes with pros and cons
– Choice depends on system requirements, scalability, and 

complexity
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D. Weyns et al., On patterns for decentralized control in self-adaptive systems, 
SEAMS II, 2013 https://ics.uci.edu/~malek/publications/2012aSefSAS.pdf
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How to decentralize control?

• Our approach: 
– Hierarchical MAPE architecture to enable efficient runtime 

adaptation
– Distribute MAPE control loops (one global controller and 

multiple local controllers), balancing global coordination with 
local autonomy for scalability and responsiveness

Global view

Local view
…
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Local view

Local elasticity policy

• Let’s focus on local Plan policy that controls the 
elasticity of individual DSP operators

• Make decision with a limited local view
– e.g., operator’s resource utilization and input data rate

• Two classes of elasticity policies
– Threshold-based policy (e.g., used by AWS Auto Scaling)

✗Requires manual tuning and domain expertise to choose 
thresholds

– Reinforcement Learning-based policies 
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V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo, Decentralized self-adaptation 
for elastic Data Stream Processing, Future Generation Computer Systems, 2018 
http://www.ce.uniroma2.it/publications/fgcs2018_dsp.pdf



• A branch of ML dealing with sequential decision-making
• Agent interacts with environment through actions and 

receives feedback in the form of reward (paid cost)
• Goal: learn to act as to maximize (minimize) long-term 

reward (cost)
• Trial-and-error experience 

Environment

ActionsState

Reward

RL agent

Reinforcement Learning in a nutshell
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Reinforcement Learning in a nutshell

• We consider different classes of RL 
algorithms:
– Baseline model-free learning algorithms (e.g., Q-

learning)
– Model-based learning algorithms that exploit what 

is known or can be estimated about system 
dynamics
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Sutton and Barto, Reinforcement Learning: An Introduction, 2020 
http://incompleteideas.net/book/RLbook2020.pdf



RL-based local elasticity policy

• At each step the RL agent performs an 
action, looking at current state st

• Chosen action at causes payment of 
immediate cost ct and transition to a new 
state st+1
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Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost

• To minimize expected long-term (discounted) cost, RL 
agent estimates Q(s, a)
– Q-function: expected long-run cost of taking action a in state s

RL-based local elasticity policy: Q-learning

• Q-learning: baseline model-free RL algorithm
• Given current state, the agent chooses next action

1. Either exploiting its knowledge about system (i.e., current 
estimates of Q-function stored in Q-table) by greedily 
selecting the action that minimizes the estimated future costs

2. Or exploring by selecting a random action to improve its 
knowledge about system
• We consider ε-greedy action selection method

• Q-learning: update step of Q-function 
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Q-table



RL-based local elasticity policy: 
advanced RL techniques

• We have also exploited advanced RL techniques in 
order to deal with large state space (e.g., due to 
heterogeneous computing resources)
– Function Approximation 
– Deep Learning
– Goal: build approximate representations of state space and 

achieve near-optimal solutions with reduced memory 
demand

• Let’s consider the high-level ideas
• To learn more about: 

– Our tutorial at Performance 2021: Reinforcement Learning for Run 
Time Performance Management in the Cloud/Edge 
http://www.ce.uniroma2.it/courses/sabd2223/papers/csur2022.pdf

– Russo Russo et al., Hierarchical Auto-Scaling Policies for Data 
Stream Processing on Heterogeneous Resources, ACM TAAS, 
2023 http://www.ce.uniroma2.it/publications/TAAS2023.pdf 

V. Cardellini - SABD 2024/25 42

• We consider a heterogeneous computing 
infrastructure
– Nodes with different types/amount of resources

• RL agent must decide not only how many replicas to 
run but also which types of nodes to host them 

Auto-scaling on heterogeneous nodes: 
increasing complexity and realism

Homogeneous Heterogeneous
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• N resource types: Tres = {                } 
• State s = (k, λ)

– ki = #replicas on nodes of type i
– λ = input data rate

• Actions A(s)={(δ,τ): δ∈{−1,+1}, τ ∈Tres}∪{do−nothing}
• Cost = wres resource cost + wperf performance + wrcf

reconfiguration

How to formulate?

Adaptation Agent

Managed System

Adaptation
Action

Monitored
State

Paid cost
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• Q-learning falls short in heterogeneous DSP context
✗ Too much memory to store tabular representation of Q-

function 
✗ Very slow convergence

Standard RL algorithm falls short
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Note: each operator has its own Q-table! 
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Q-learning



Partial model knowledge

How to improve?
• We exploit multiple solutions
1. Separate the known from the unknown, inject partial model 

knowledge (i.e., post-decision states) and learn only the 
unknown part
– Do we really need to learn everything from scratch?

• We know which is the impact of scaling actions on the current 
deployment

• We know whether a reconfiguration cost is paid after a certain 
action

• We can estimate performance-related costs through a model
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• We exploit multiple solutions
2. Resort to non-linear function approximation (deep 

Q network)
3. Combine all together

How to improve?

Function approximation

Partial model knowledge

+
Function approximation
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Reconfiguration overhead

• Deployment reconfiguration has a non-negligible 
cost
– Can negatively impact application performance in the short 

term
– Application freezing times caused by operator migration 

and scaling, especially with stateful operators

• Solution: 
– Trigger reconfiguration only when needed
– Take into account reconfiguration overhead into decision-

making policy
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Challenge 5: Stateful operators

• State complicates things…
– Dynamic scaling: state must be partitioned, transferred, and 

rebalanced across replicas
– Operator re-placement: requires state migration
– Recovery from failure: stateful operators need mechanisms 

like checkpointing

Loss of state!
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Approaches for stateful migration
• Not all streaming systems support migration of 

stateful operators
– Some do not support it at all, others yes (including research 

prototypes and production systems like Spark Streaming)
– In Flink: can migrate stateful operators through savepoints 

and checkpoints

• Requirements for stateful operator migration
– Safety

• Ensure operational consistency during and after migration
• Prevent data loss or duplicate processing

– Application transparency
• Do not require application logic changes
• Maintain seamless operation from developer’s perspective

– Reduced footprint
• Limited impact on performance and resource usage
• Aim for fast, efficient state transfer and minimal downtime
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Stateful operator migration
• Migrating stateful operators

1. Pause-and-resume approach
2. Parallel track approach 

• Pause-and-resume approach
✗Application latency peak during migration

Stop migrating 
task Save state

Terminate migrating task 
and start it on new node

Restore state

Resume stream processing

V. Cardellini - SABD 2024/25 51



Stateful operator migration

2. Parallel track approach
– Old and new operator instances run concurrently 

until their state is synchronized
✓No latency peak
✗More complex: requires mechanisms for 

synchronizing the two instances
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Stateful operators: other issues
• How to identify which portion of state to migrate? 

Possible approaches:
– Expose an API to let the user manually manage the state
– Support only partitioned stateful operators

• Store independent state for each sub-stream identified by a 
partitioning key

• Automatically determine, on the basis of a partitioning key, the 
optimal number of state partitions

• How to balance the load among multiple stateful 
replicas? Possible approaches:
– Use consistent hashing
– Use partial key grouping

• Use two hash functions where a key can be sent to two 
different replicas instead of one

– Only in research prototypes
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Challenge 6: Guaranteing fault tolerance

• DSP applications are long-running, making failures 
inevitable

• Possible solutions: 
– Active replication: run multiples copies to ensure availability
– Checkpointing: periodically save state to recover from failures 

(e.g., Flink)
– Replay logs

• Solutions with different trade-offs between runtime cost 
during normal operation and recovery time

• Large-scale deployments complicate things
– Network partitions and CAP theorem
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