
Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP Frameworks

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP frameworks we consider

• Apache Storm 
• Apache Flink (plus hands-on lesson)
• Apache Spark Streaming (plus hands-on 

lesson)
• Kafka Streaming (hands-on lesson)
• Cloud-based frameworks

– Google Cloud Dataflow 
– Amazon Kinesis

1V. Cardellini - SABD 2024/25



Apache Storm

• Open-source, real-time, scalable streaming system 
https://storm.apache.org/

• A distributed system, which provides an abstraction 
layer to execute DSP applications

• Many use cases, including real-time analytics, online 
ML, continuous computation, distributed RPC, ETL

• Fast: 1M tuples/sec. processed per node
• Easy to integrate with different sources (e.g., 

messaging systems)
• Initially developed by Twitter
• Current version: 2.8

2V. Cardellini - SABD 2024/25

Storm: topology

• Main Storm’s concept: topology 
– Where the application logic is packaged into
– Long-running
– DAG of spouts (sources of streams) and bolts

(operators that do processing as well as data sinks)
– Top-level abstraction submitted to Storm for 

execution

3V. Cardellini - SABD 2024/25



Storm: streams and tuples

• Storm uses streams and tuples as its data 
model
– Stream: core abstraction in Storm

• Unbounded sequence of tuples 
• Storm provides functions for transforming a stream into a 

new stream in a distributed and reliable way
• Streams are defined with a schema that names the fields 

in the stream's tuples

– Tuple: named list of values
• A field in a tuple can be an object of any type
• Storm supports all primitive types, strings, and byte 

arrays as tuple field values
• To use a custom data type, you need to define the 

corresponding serializer

V. Cardellini - SABD 2024/25 4

Storm: stream grouping
• Stream grouping defines how to send tuples between 

two adjacent nodes in the topology
– Remember of data parallelism: spouts and bolts execute in 

parallel (multiple threads of execution)

• Shuffle grouping
– Tuples are randomly partitioned

• Field grouping
– Stream is partitioned by the fields specified in the grouping 

(e.g., used-id)

V. Cardellini - SABD 2024/25 5



Storm: stream grouping

• All grouping (i.e., broadcast)
– Stream is replicated across all the bolt’s replicas (use with 

care)

• Global grouping
– Stream goes to a single one of the bolt’s replicas 

(specifically, to the replica with the lowest id)

• Direct grouping
– The producer of the tuple decides which replica of the 

consumer will receive this tuple

V. Cardellini - SABD 2024/25 6

Storm: a simple topology
• First example: exclamation

– Spout emits words, each bolt appends "!!!" to its input
https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java

V. Cardellini - SABD 2024/25 7

setSpout and setBolt
methods take as input: 

• user-specified id

• object containing the 
processing logic of 
the operator

• amount of parallelism 
for the operator

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()

"words": 
TestWordSpout()"words": 

TestWordSpout()

10

"exclaim1": 
ExclamationBolt()

"exclaim1": 
ExclamationBolt()"exclaim1": 

ExclamationBolt()

3

"exclaim1": 
ExclamationBolt()

"exclaim2": 
ExclamationBolt()

2

Shuffle 
grouping

Shuffle 
grouping



Storm: another topology

• Example: WordCount

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/WordCountTopology.java

• Bolts can be defined in any language
– Bolts written in another language are executed as subprocesses, 

and Storm communicates with them using JSON messages over 
stdin/stdout

– Communication protocol for Python available in an adapter library 
https://streamparse.readthedocs.io

V. Cardellini - SABD 2024/25 8

Storm: windowing

9

• Storm supports both sliding and tumbling windows 
https://storm.apache.org/releases/current/Windowing.html

• Windows can be based on time duration or event count
– Count-based windows

• Based on tuples count (no relation to clock time)
– Time-based windows 

• Based on time duration

• Bolt that requires windowing support must implement 
IWindowedBolt interface

V. Cardellini - SABD 2024/25

execute is invoked every time the window 
activates



Storm: windowing

10

• Different window configurations, including
– Sliding windows

– Tumbling windows

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/SlidingWindowTopology.java

• By default, tuples in the window are stored in memory 
until they are processed and expired
✗ Windows need to fit entirely in memory

• Storm also supports stateful windowing
V. Cardellini - SABD 2024/25

Storm: time and out-of-order tuples

11

• By default, Storm supports processing time
– Time when an event is actually processed by DSP system
– In Storm, the timestamp tracked in the window is the time 

when the tuple is processed by the bolt

• Source-generated timestamps are also supported
– It requires that the spout generates a timestamp and includes 

it with each tuple it emits

• Out-of-order tuples are handled through 
– Lateness bound (aka time lag): specify max time limit for 

tuples with out-of-order timestamps; by default, late tuples are 
not processed

– Watermark: defined as the minimum of the latest tuple 
timestamps (minus the lag) across all the input streams

• User can change the interval at which watermarks are emitted

V. Cardellini - SABD 2024/25



Storm: Stream API
• Alternative interface: provides a typed API for 

expressing streaming computations and supports 
functional style operations
– Similarly to Spark and Flink, still experimental
https://storm.apache.org/releases/current/Stream-API.html

• Stream APIs include Stream and PairStream (key-
value pair streams)
– Support a wide range of operations, including 

• Basic transformations, which produce an output stream 
trasnforming the input one (e.g., filter, map, flatMap)

• Windowing
• Aggregations (e.g., reduce, aggregate, reduceByKey, 
countByKey)

• Joins
• Output, which produce a result (e.g., print, forEach)
• State management, to save and update state and also to query it

V. Cardellini - SABD 2024/25 12

Storm: Stream API example

• The usual WordCount using Stream API

V. Cardellini - SABD 2024/25 13

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/streams/WindowedWordCount.java



Storm: architecture

14V. Cardellini - SABD 2024/25

• Master-worker architecture

Storm components: master and Zookeeper

• Nimbus
– Master node
– Users submit topologies to it
– Responsible for distributing and coordinating the 

topology execution

• Zookeeper
– Nimbus uses a combination of local disk(s) and 

Zookeeper to store info about application topology

V. Cardellini - SABD 2024/25 15



worker process

executor executor
THREAD THREAD

JAVA PROCESS

task

task

task

task

task

Storm components: worker node
• Worker node: computing resource, contains one or 

more worker processes
• Worker process: Java process running one or more 

executors, belongs to a specific topology 
• Executor: thread spawned by a worker process, the 

smallest schedulable entity
– May run one or more tasks for the same operator

16

• Task: operator instance
– Does the actual work for the 

operator

V. Cardellini - SABD 2024/25

Storm components: supervisor

• Each worker node runs a supervisor

• Each supervisor:
– Receives assignments from Nimbus (through 

ZooKeeper) and spawns workers based on the 
assignment

– Sends to Nimbus (through ZooKeeper) a periodic 
heartbeat

– Advertises the topologies that the worker node is 
currently running, and any vacancies that are 
available to run more topologies

V. Cardellini - SABD 2024/25 17



Storm: running a topology
• User can configure topology parallelism

– Number of worker processes: setNumWorkers method
– Number of executors (threads): parallelism_hint

parameter in setSpout or setBolt
– Number of tasks : setNumTasks method

V. Cardellini - SABD 2024/25 18

• Parallelism of running 
topology can be 
manually changed 
using rebalance
command

https://storm.apache.org/releases/current/
Understanding-the-parallelism-of-a-
Storm-topology.html

Storm: reliable message processing

• What happens if a bolt fails to process a tuple?
• Storm provides a mechanism by which the originating 

spout can replay the failed tuple
– Storm needs to maintain the link between every spout tuple 

and its tree of tuples so to detect when the tree of tuples has 
been successfully processed: anchoring

– And needs to ack (or fail) the spout tuple appropriately
• If ack is not received within a specified timeout time period, the 

tuple processing is considered as failed and the tuple is 
replayed

• Storm provides at-least-once semantics
– Best effort semantics if acking is disabled

https://storm.apache.org/releases/current/Guaranteeing-message-
processing.html

V. Cardellini - SABD 2024/25 19



Storm: application monitoring

20
https://storm.apache.org/releases/current/STORM-UI-REST-API.html

• # of messages executed * average 
execute latency / time window

– Latency
• For spouts: completeLatency (total 

latency for processing the message)
– Ignore value if acking is disabled

• For bolts: executeLatency (avg time the

• Storm has a built-in monitoring and metrics system
– Built-in and user-defined metrics

• Built-in metrics include:
– Capacity

bolt spends to run the execute method) and processLatency
(avg time from starting execute to ack)

⎼ JVM memory usage and garbage collection
• Metrics can be queried via Storm’s UI REST API or reported to 

a registered consumer (e.g., Graphite)

V. Cardellini - SABD 2024/25

Layers on top of Storm

• Trident
– High-level abstraction on top of Storm to provide 

exactly-once processing
https://storm.apache.org/releases/current/Trident-API-Overview.html

• SQL
– To run SQL queries over streaming data
https://storm.apache.org/releases/current/storm-sql.html

V. Cardellini - SABD 2024/25 21



Unbounded vs. bounded streams

V. Cardellini - SABD 2024/25 22

Bounded streams
– Have a defined start and end
– Can be processed by ingesting 

all data before performing any 
computations

– Ordered ingestion is not 
required because bounded 
data can always be sorted

• Data can be processed as bounded or 
unbounded streams

Unbounded streams
– Have a start but no defined end
– Provide data as it is generated
– Must be continuously processed
– Not possible to wait for all input 

data to arrive
– Processing them often requires 

that events are ingested in a 
specific order

Batch processing vs. stream processing

• Batched/stateless: scheduled in batches
– Short-lived tasks (Hadoop, Spark)
– Distributed streaming over batches (Spark 

Streaming)

• Dataflow/stateful: continuously processed, 
typically scheduled once (Storm, Flink)
– Long-lived task execution
– State is kept inside tasks

V. Cardellini - SABD 2024/25 23


