TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLY STUDL D1 RoMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

DSP Frameworks

Corso di Sistemi e Architetture per Big Data
A.A. 2024/25
Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

DSP frameworks we consider

* Apache Storm
« Apache Flink (plus hands-on lesson)

« Apache Spark Streaming (plus hands-on
lesson)

« Kafka Streaming (hands-on lesson)

* Cloud-based frameworks
— Google Cloud Dataflow
— Amazon Kinesis

V. Cardellini - SABD 2024/25

Apache Storm 2D s1oRm

Open-source, real-time, scalable streaming system
https://storm.apache.org/

A distributed system, which provides an abstraction
layer to execute DSP applications

Many use cases, including real-time analytics, online
ML, continuous computation, distributed RPC, ETL

Fast: 1M tuples/sec. processed per node

Easy to integrate with different sources (e.g.,
messaging systems)

Initially developed by Twitter

Current version: 2.8

V. Cardellini - SABD 2024/25

Storm: topology

« Main Storm’s concept: topology
— Where the application logic is packaged into
— Long-running
— DAG of spouts (sources of streams) and bolts
(operators that do processing as well as data sinks)

— Top-level abstraction submitted to Storm for

execution @

Spout —’

V. Cardellini - SABD 2024/25

Storm: streams and tuples

« Storm uses streams and tuples as its data
model

— Stream: core abstraction in Storm
» Unbounded sequence of tuples

« Storm provides functions for transforming a stream into a
new stream in a distributed and reliable way

» Streams are defined with a schema that names the fields
in the stream'’s tuples
— Tuple: named list of values
» Afield in a tuple can be an object of any type

« Storm supports all primitive types, strings, and byte
arrays as tuple field values

« To use a custom data type, you need to define the
corresponding serializer

V. Cardellini - SABD 2024/25 4

Storm: stream grouping

» Stream grouping defines how to send tuples between
two adjacent nodes in the topology

— Remember of data parallelism: spouts and bolts execute in
parallel (multiple threads of execution) n

» Shuffle grouping

— Tuples are randomly partitioned

A } ™
sl
il

« Field grouping
— Stream is partitioned by the fields specified in the grouping
(e.g., used-id)

il
seeogy =D

V. Cardellini - SABD 2024/25 5

Storm: stream grouping

 All grouping (i.e., broadcast)

— Stream is replicated across all the bolt’s replicas (use with

care)
e

» Global grouping

— Stream goes to a single one of the bolt’s replicas
(specifically, to the replica with the lowest id)

 Direct grouping

— The producer of the tuple decides which replica of the
consumer will receive this tuple

V. Cardellini - SABD 2024/25

Storm: a simple topology

» First example: exclamation

— Spout emits words, each bolt appends "!!'" to its input

https://qithub.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/ExclamationTopology.java

setSpout and setBolt TopologyBuilder builder = new TopologyBuilder();
methods take as input: - " " .
builder.setSpout("words", new TestWordSpout(), 10);
* user-specified id builder.setBolt("exclaiml", new ExclamationBolt(), 3)
« object containing the .shuffleGrouping("words");
processing logic of builder.setBolt("exclaim2", new ExclamationBolt(), 2)
the operator .shuffleGrouping("exclaiml");

» amount of parallelism
for the operator

10 3 2
A g -
“words™: y . "exclaiml": — "exclaim2":
TestWordSpout() ExclamationBolt () ExclamationBolt()
Shuffle Shuffle
grouping grouping

V. Cardellini - SABD 2024/25

Storm: another topology

» Example: WordCount

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentences", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8)
.shuffleGrouping("sentences");

builder.setBolt("count", new WordCount(), 12)
.fieldsGrouping("split", new Fields("word"));

https://qithub.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/\WordCountTopoloqgy.java

« Bolts can be defined in any language

— Bolts written in another language are executed as subprocesses,
and Storm communicates with them using JSON messages over
stdin/stdout

— Communication protocol for Python available in an adapter library
https://streamparse.readthedocs.io

V. Cardellini - SABD 2024/25

Storm: windowing

» Storm supports both sliding and tumbling windows
https://storm.apache.org/releases/current/Windowing.html
* Windows can be based on time duration or event count
— Count-based windows
» Based on tuples count (no relation to clock time)
— Time-based windows
+ Based on time duration

« Bolt that requires windowing support must implement
IWindowedBolt interface

public interface IWindowedBolt extends IComponent {
void prepare(Map stormConf, TopologyContext context, OutputCollector collector);
/%%
% Process tuples falling within the window and optionally emit
* new tuples based on the tuples in the input window.
*/

void execute(TupleWindow inputWindow);
id cl E
YESE SRRantpL) execute is invoked every time the window

activates

}

V. Cardellini - SABD 2024/25

Storm: windowing

 Different window configurations, including
— Sliding windows

withWindow(Count windowLength, Count slidingInterval)
Tuple count based sliding window that slides after “slidingInterval® number of tuples.

withWindow(Duration windowLength, Duration slidingInterval)
Time duration based sliding window that slides after “slidingInterval® time duration.

— Tumbling windows

withTumblingWindow(BaseWindowedBolt.Count count)
Count based tumbling window that tumbles after the specified count of tuples.

withTumblingWindow(BaseWindowedBolt.Duration duration)
Time duration based tumbling window that tumbles after the specified time duration.

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/SlidingWindowTopology.java

« By default, tuples in the window are stored in memory
until they are processed and expired
X Windows need to fit entirely in memory

« Storm also supports stateful windowing

V. Cardellini - SABD 2024/25

Storm: time and out-of-order tuples

10

» By default, Storm supports processing time
— Time when an event is actually processed by DSP system
— In Storm, the timestamp tracked in the window is the time
when the tuple is processed by the bolt
» Source-generated timestamps are also supported

— It requires that the spout generates a timestamp and includes
it with each tuple it emits

» Qut-of-order tuples are handled through

— Lateness bound (aka time lag): specify max time limit for
tuples with out-of-order timestamps; by default, late tuples are
not processed

— Watermark: defined as the minimum of the latest tuple
timestamps (minus the lag) across all the input streams

* User can change the interval at which watermarks are emitted

V. Cardellini - SABD 2024/25

1

Storm: Stream API

» Alternative interface: provides a typed API for
expressing streaming computations and supports
functional style operations

— Similarly to Spark and Flink, still experimental
https://storm.apache.org/releases/current/Stream-API.html

« Stream APIs include Stream and PairStream (key-
value pair streams)

— Support a wide range of operations, including

» Basic transformations, which produce an output stream
trasnforming the input one (e.g., filter, map, flatMap)

* Windowing

» Aggregations (e.g., reduce, aggregate, reduceByKey,
countByKey)

» Joins
* Output, which produce a result (e.g., print, forEach)
« State management, to save and update state and also to query it

V. Cardellini - SABD 2024/25 12

Storm: Stream AP| example

* The usual WordCount using Stream API

StreamBuilder builder = new StreamBuilder();

builder
// A stream of random sentences with two partitions
.newStream(new RandomSentenceSpout(), new ValueMapper<String>(0), 2)
// a two seconds tumbling window
.window(TumblingWindows.of (Duration.seconds(2)))
// split the sentences to words
.flatMap(s -> Arrays.asList(s.split(" ")))
// create a stream of (word, 1) pairs
.mapToPair(w -> Pair.of(w, 1))
// compute the word counts in the last two second window
.countByKey ()
// print the results to stdout
.print();

https://qgithub.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/org/apache/storm/starter/streams/WindowedWordCount.java

V. Cardellini - SABD 2024/25 13

Storm: architecture

 Master-worker architecture

\
\
\

|
— \ AN
¥ » 14 Y Y
S S S S S S S S S
() () () () (D) Q () () ()
v Y4 4 Y4 a4 a4 v a4 a4
S S S S S o S S S
(@) o o o o o (@] (@] O
2 B = 2 = 2 2 = 2

'\\:@f

/ LAN \
-

V. Cardellini - SABD 2024/25 14

Storm components: master and Zookeeper

 Nimbus
— Master node
— Users submit topologies to it

— Responsible for distributing and coordinating the
topology execution

« Zookeeper

— Nimbus uses a combination of local disk(s) and
Zookeeper to store info about application topology

V. Cardellini - SABD 2024/25 15

Storm components: worker node

« Worker node: computing resource, contains one or
more worker processes

» Worker process: Java process running one or more
executors, belongs to a specific topology

« Executor: thread spawned by a worker process, the
smallest schedulable entity

— May run one or more tasks for the same operator

« Task: operator instance worker process

— Does the actual work for the JAVA PROCESS
operator executor executor
A mathine in 3 Storm cluster may vun one or move THREAD THREAD
worker protesses for one or move topologies. Eath
/—_warktv Process vuns exetutors for a specific topology
task task
Worker Process
One or more exetutors may vun within a single
worker Process, with each executor being 3 task task
thread spawned by the worker protess. Eath
exetutor vuns one or more tasks of the same
| —tomponent (et or beld) task
- ——A task pecforms the actual data processing
V. Cardellini - SABD 2024/25

Storm components: supervisor

16

« Each worker node runs a supervisor

« Each supervisor:

— Receives assignments from Nimbus (through
ZooKeeper) and spawns workers based on the
assignment

— Sends to Nimbus (through ZooKeeper) a periodic
heartbeat

— Advertises the topologies that the worker node is
currently running, and any vacancies that are
available to run more topologies

V. Cardellini - SABD 2024/25

17

Storm: running a topology

» User can configure topology parallelism
— Number of worker processes: setNumWorkers method

— Number of executors (threads): parallelism_hint
parameter in setSpout or setBolt

— Number of tasks : setNumTasks method

. . TOPOLOGY
« Parallelism of running |
tOpOIOgy Can be pe:]r_alleli;m pahr_allelizm p::alleli;m
int = int = int =
manually changed / N4
using rebalance s SR,
command ——— \
Eath of the 2 worker
Worker Process processes will spawn
10/ 2 =5 threads
https://storm.apache.org/releases/current/)l
Understanding-the-parallelism-of-a- Ui o e i i
Storm-topology.html el ied :joktasks :fw wat

V. Cardellini - SABD 2024/25

Storm: reliable message processing

« What happens if a bolt fails to process a tuple?

« Storm provides a mechanism by which the originating
spout can replay the failed tuple

— Storm needs to maintain the link between every spout tuple
and its tree of tuples so to detect when the tree of tuples has
been successfully processed: anchoring

— And needs to ack (or fail) the spout tuple appropriately

 If ack is not received within a specified timeout time period, the
tuple processing is considered as failed and the tuple is
replayed
» Storm provides at-least-once semantics
— Best effort semantics if acking is disabled

https://storm.apache.org/releases/current/Guaranteeing-message-
processing.html

V. Cardellini - SABD 2024/25

Storm: application monitoring

« Storm has a built-in monitoring and metrics system

— Built-in and user-defined metrics "bolts": [
- . . {
* Built-in metrics include: uexecutors": 12,
. "emitted": 184580,
- CapaCIty "transferred": 0,
"acked": 184640,
+ # of messages executed * average "executeLatency": "0.048",
execute latency / time window “tasks™: 12,
"executed": 184620,
—_ Latency "processLatency": "0.043",
"boltId": "count",
» For spouts: completeLatency (total “lastError": "*
: "errorLapsedSecs": null,
latency for processing the message) S gy
— Ignore value if acking is disabled "failed": 0

» For bolts: executeLatency (avg time the
bolt spends to run the execute method) and processLatency
(avg time from starting execute to ack)

— JVM memory usage and garbage collection

* Metrics can be queried via Storm’s Ul REST API or reported to
a registered consumer (e.g., Graphite)

https://storm.apache.org/releases/current/STORM-UI-REST-API.html

V. Cardellini - SABD 2024/25

Layers on top of Storm

20

 Trident

— High-level abstraction on top of Storm to provide
exactly-once processing
https://storm.apache.org/releases/current/Trident-API-Overview.html|

- SQL

— To run SQL queries over streaming data
https://storm.apache.org/releases/current/storm-sql.html

V. Cardellini - SABD 2024/25

21

Unbounded vs. bounded streams

« Data can be processed as bounded or
unbounded streams

: <— bounded stream —» :4— bounded stream —»:
| \

()EIIIIIIIIIIEIIIIIII:IM

| <—— unbounded stream

1
1 <+—— unbounded stream

Unbounded streams Bounded streams
— Have a start but no defined end — Have a defined start and end
— Provide data as it is generated — Can be processed by ingesting
— Must be continuously processed all data before performing any
— Not possible to wait for all input computations
data to arrive — Ordered ingestion is not

required because bounded

— Processing them often requires
J q data can always be sorted

that events are ingested in a
specific order
V. Cardellini - SABD 2024/25 22

Batch processing vs. stream processing

 Batched/stateless: scheduled in batches
— Short-lived tasks (Hadoop, Spark)

— Distributed streaming over batches (Spark
Streaming)

« Dataflow/stateful: continuously processed,
typically scheduled once (Storm, Flink)
— Long-lived task execution
— State is kept inside tasks

V. Cardellini - SABD 2024/25 23

