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Why data stream processing?

« Applications such as:

— Sentiment analysis on tweets @ Twitter

— User profiling @Yahoo!

— Tracking of query trend evolution @Google

— Fraud detection in financial transactions

— Real-time advertising

— Healthcare analytics involving loT medical sensors
* Require:

— Continuous processing of unbounded data streams

generated by multiple and distributed sources
— In (near) real-time fashion
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Why data stream processing?

* In the early years data stream processing
(DSP) was considered a solution for very
specific problems (e.g., financial tickers)

 Now we have more general settings
— E.g., social media, Internet of Things
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Why data stream processing?

» Decrease latency to obtain results and improve
data freshness

— Events are processed close to the time they are
generated

— Applications respond to events as they occur
— No delays involved with batch processing
— No data persistence on stable storage
« Simplify data analytics pipelines and underlying
infrastructure
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Data stream

« “Adata stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the
order in which items arrive, nor is it feasible to locally
store a stream in its entirety. Queries over streams
run continuously over a period of time and
incrementally return new results as new data arrive.”

Golab and Ozs, Issues in data stream management, ACM SIGMOD
Rec., 2003.

« A data stream refers to both velocity and variety of
Big data

 Astream is an unbounded sequence of tuples,
where a tuple is an ordered list of values
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Data stream: example

 Data stream related to maritime

traffic in the Mediterranean - ~

@x3b62baab6210a8e69d3e7f9df53d000c83d00Fd0, 2,
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA, 12 \\\

Ox0fe9acdb3675a8a2942fafbd4af6lbc37e44cPec, 146, “— tuples
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO, 88 ////

Oxb35dc6acdc29t2241296c44384fa2bof7044d257, 20,
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA, 66

Each tuple contains the fields:

SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING, TIMESTAMP,
departurePortName,Reported Draught
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Traditional DSP challenges

« Stream data can arrive at high
velocity, with high volumes and § =
highly variable arrival patterns & am

000
— High resource requirements for 0

. 2 4 6 8 10 12 14 16 18 20
prOCGSS| ng Time (days)

3000

Arrival Rate (tuple/s)

* Processing stream data has real-time aspects

— Stream processing applications have QoS
requirements, e.g., end-to-end latency

— Must be able to react to events as they occur
« Faults can happen during processing
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Challenges for DSP in Cloud-Edge continuum

« Goals: increase scalability and reduce latency

 How? Rely not only on Cloud resources but
also on distributed and near-edge computation
(cloud-edge continuum)
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DSP application model
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» A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

» Represented by a directed dataflow graph

— Graph vertices: operators {:} :} £ source
— Graph edges: streams {:.. {:}'/v §spkt
— Graph is often referred to &6

as topology CI' ‘I:} :}

» Graph is typically acyclic: directed acyclic graph (DAG)
— In DAGs, data can only move from upstream tasks to
downstream task

— Most DSP systems support only DAGs, few systems (e.g., Flink)
support also loops

Topology does not usually change during processing
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DSP application model: examples

* DAG for WordCount application in DSP salsa

Input l:{>/s; ):J‘> Count ﬁ@

N \ 4

» DAG for NYC taxi streaming analysis: data streams
from NYC taxis are processed to find the top-10 most
frequent routes during the last 30 minutes

-
— computeRoutelD . RabbitMQ
@—» —_ > =6
datasource  parser ﬁIterByCoorCm‘ mBmedow partialRank globalRank
metronome @ source operator @ sink
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DSP programming model

« Dataflow programming

— Programming paradigm that models a program
as a directed graph of data (dataflow) flowing
between operations

— Pioneered by Jack Dennis and his students at
MIT in the 1960s

« Examples

— Apache NiFi: automates dataflow between
systems

— Apache Flink: stream and batch processing

— Apache Beam: unifies batch and streaming data
processing on top of several execution engines

— TensorFlow: ML library based on dataflow
programming
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DSP programming model

« What to we need?

- Dataflow composition: create the topology
associated with the DAG for a DSP
application

- Dataflow manipulation: use processing
elements (i.e., operators) to perform data
transformations

V. Cardellini - SABD 2024/25 12

Dataflow composition: How to define a DSP application

« EXxplicit way: describe topology
— Explicitly defines operators (built-in or user-defined) and how
they are connected in the DAG
— Used in many DSP systems (e.g., Flink, Storm, Spark
Streaming)
» Implicit way: use formal language
— Declarative languages that specify query result (SQL-like)
« Streams Processing Language (SPL) in IBM Cloud Pak

https://community.ibm.com/community/user/viewdocument/resou
rces-for-streams-developers

« SQL support in Flink provided by Apache Calcite
https://calcite.apache.org

— Procedural languages that specify composition of operators
* e.g., SQuAI (Stream Query Algebra) used in
Aurora/Borealis
» The first offers more flexibility, the latter more rigor and
expressiveness
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Dataflow manipulation

* How streaming data is manipulated by the
operators in the DAG?
» QOperator properties:
— Operator type
— Operator state
— Windowing
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DSP operator

« Self-contained processing element that

— Transforms one or more input streams into another
stream
— Can execute a generic user-defined code
» Algebraic operation (filter, aggregate, join, ..)

» User-defined and possibly complex operation (e.g., part-of-
speech-tagging, machine learning algorithm)

— Multiple operators execute at the same time on
different streams

Processing operators, e.g. filter, aggregate

l \

Source o Operator Sink
operator n operator
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DSP operator: types

Edge adaptation: converting data from
external sources into tuples that can be
consumed by downstream operators

Aggregation: collecting and summarizing a
subset of tuples from one or more streams

Splitting: partitioning a stream into muiltiple
streams

Merging: combining multiple input streams
(e.g., join)
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DSP operator: types

Logical and mathematical operations:
applying different logical processing,
relational processing, and mathematical
functions to tuple attributes

Sequence manipulation: reordering,
delaying, or altering the temporal properties
of stream

Custom data manipulations: applying data
mining, machine learning, ...
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DSP operator: state

» QOperator can be either stateless or stateful

« Stateless: processing depends only on current
input
— Operator knows nothing about state and thus
processes tuples independently of each other,

independently of prior history or even from tuple
arrival order

— E.g., filter, map

— Easily parallelizable

— No synchronization in a multi-threaded context

— Easy restart upon failures (no need to recover state)
— In a nutshell: easy to manage
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DSP operator: state

« Stateful: keeps some sort of state (i.e.,
information across multiple tuples) that
operator can read and modify during execution,

« Examples of stateful operator
— Aggregation or summary of tuples per minute/hour

— When an application searches for certain patterns,
the state will store the sequence of events
encountered so far

— When training a machine learning model over a
stream of data points, the state holds the current
version of the model parameters

« State makes management more complex
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DSP operator: state

« State may be stored in different ways:
- Entirely stored within in-memory :

L In-Memory State —of-
data structures and replicated to {i} :ﬁ}.j
disk only for fault tolerance @ f@.w

memo g, a5 @O)@0E
- Hybrid solution: partially stored in memory for improved
performance and flushed to disk to scale in size
- Stored on external storage service (e.g., Redis)
« State is mostly private to operator but in some system
can be shared between operators
— Shared state makes execution even more complex

1L Qut-of-Core State
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Windowing

« Window: buffer associated with an operator input port
that retains incoming tuples, allowing computation to
be applied on the set of tuples in the buffer
— E.g., to find the most frequently purchased items over the last

hour

« Window is characterized by:

— Size: amount of data that should be buffered before triggering
the operator execution

+ Statically defined: time-based (e.g., 30 seconds) or count-based
(e.g., the last 100 tuples)

* Dynamically defined: session-based, where the window is
defined by session boundaries

— Sliding interval: how the window moves forward
+ Time-based or count-based
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Windowing: patterns

« Different windowing patterns by combining window
size and sliding interval

— Sliding window: window size and sliding interval are different,
single tuples may be included in multiple consecutive windows

— Tumbling (or fixed) window: sliding interval is equal to window
size, consecutive windows do not overlap

Count-based sliding window Count-based tumbling window
(size:2; slide:1) (size:2; slide:2)

to ‘vl Vol vs || Vg | Vs | Ve to fvi|vollvs|vs|vs|ve

b v ve | Vs ‘|V4 Vs | Ve b vy v vs|ve|vs | Ve
—

bo|\vy|v, |‘V3 Vy |V5 Ve b vy | Vo | Vs |Va|Vs | Ve
e——
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Windowing: patterns
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Windowing: patterns

« Window can be also dynamically defined: session

window

— Dynamic size of window length, depending on inputs

— Starts with an input and expands itself if the following input
has been received within the gap duration

— Closes when there’s no input received within the gap duration

after receiving the latest input

— Enables to group events until there are no new events for
specified time duration (inactivity)

user 1
user 2

Session windows

user 3
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window 1 window 2 window 3 window 4
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window 1 window 2 window 3 window 4
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time

Windowing: emit

» Once a trigger determines that a window is ready for
processing, it fires, i.e., emits the results of the current

window

« Example: tumbling/sliding time window of 1 minute

that sums the values

Tumbling window of 1 minute that sums
the values

Input 90 9,68 47,38,42 1,3, 2 )

Tumbling windows —>|9, 6, 8, 4,|| 7, 3, 8, 4,|| 2,1, 3, 2|

Output —> 27 22 8
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Sliding window of 1 minute that
sums the values every half minute

Input—>0 9,6 8 4,7,3,8, 421,38, 2 )

Sliding windows —> |9, 6, 8, 4,

I
8
25

Output—> 27 22 22 15



Windowing: which pattern?

» Choosing the appropriate window type requires careful
consideration of data and processing requirements

* A few rules of thumb

— Use tumbling windows to segment a data stream into distinct,
non-overlapping segments, and perform computiation on each
segment

— Keep in mind that sliding windows can produce overlapping
results

» Sliding windows are ideal for use cases where you need to
closely monitor changes over time or compare them to previous
readings

— Consider that windows can span long periods (such as days,
weeks, or months), thus accumulating very large state

* Depending on DSP system, sliding windows may be more
memory-consuming
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Windowing: out-of-order tuples

» Qut-of-order tuples: tuples in a DSP system may arrive
later than expected relative to the order they should
appear

« Why? Network delays, asynchronous data sources,
latency issues, computing delays, specific operations
on streams (e.g., join)

 Issues caused by out-of-order tuples
- Incorrect computation
- State inconsistency
- Increased complexity: additional logic in DSP system to

handle them, which can increase computational complexity
and memory usage

Stream (in order) Stream (out of order)

1 I 1 1
[21]} [18][17][15] [1a]}[1s] [so] o] [9]7] (21] [39]} (22][12][17] [14]}[12] [o 5]
Event Event

N

Event timestamp Event timestamp
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Windowing: out-of-order tuples

» How can DSP system handle out-of-order tuples?
Multiple solutions, including:

Discard

2. Buffer and reorder

—_—

- Systems can buffer out-of-order tuples temporarily until they

are able to fit into the correct window

- Systems can reorder tuples as they arrive, can be complex
and memory-intensive

3. Admit late data without reordering up to a lateness
bound

4. Use watermarks

- Special markers to track progress of data processing: "no
tuple older than this timestamp will arrive"
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“Hello World”: a variant of WordCount

28

» Goal: emit top-k words in terms of occurrence when
there is a rank update

Words source Words counter Sorter

C (word) ‘m(word,counter‘O (rank) ‘

» Which operators can be a performance bottleneck?

* How to scale DSP application in order to sustain a
traffic load increase?

V. Cardellini - SABD 2024/25
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“Hello World™: a variant of WordCount

« The usual approach: replicate operators whenever
possible

« Use data parallelism (aka operator fission) and redesign
application by splitting sorting into two stages: multiple
intermediate sorters followed by a final sorter

» To partition the downstream flow across multiple replicas,

use key-based partitioning, so that operator state is also
partitioned among replicas

Words counter

Words source

o &) (worg Couny Intermediate sorter

€r)

(ranks) ~ Final sorter

(final rank)
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Example of DSP application: DEBS'14 GC

https://debs.org/grand-challenges/2014
* Real-time analytics over high volume sensor data: analysis

of energy consumption measurements for smart homes

— Smart plugs deployed in households and equipped with sensors that
measure values related to power consumption

* Input data stream: id, timestamp, value,

‘-;':h'* = property, plug id, household id, house_id,
2T e.g., 2967740693, 1379879533, 82.042, 0, 1, 0, 12
$irr * Query 1. make load forecasts based on current

load measurements and historical data
— Output data stream:
ts, house_id, predicted load
* Query 2: find outliers concerning energy
consumption

— Output data stream:

ts_start, ts_stop, household_id, percentage
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Example of DSP application: DEBS'15 GC

https://debs.org/grand-challenges/2015

* Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

» Data stream composed of tuples

» Each tuple includes: pickup and drop-off points
(longitude and latitude), corresponding timestamps plus
information related to payment

07290D3599E7AOD62097A346EFCC1FB5,E7750A37CABO7DODFFOAF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
00:02:00,120,0.44,-73.956528,40.716976, -
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50
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Example of DSP application: DEBS'15 GC

* Query 1: identify top-10 most frequent routes during the
last 30 minutes

» Query 2: identify areas that are currently most profitable
for taxi drivers

« Both queries rely on sliding window operators
— Continuously evaluate query results

P e e e e e e e e = e

1111111111

lstamiord

I
300x3001
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Example of DSP application: DEBS'16 GC

https://debs.org/grand-challenges/2016

e Real-time analytics for a dynamic (evolving) social-
network graph

e Query 1: identify the posts that currently trigger the most
activity in the social network

e Query 2: identify large communities that are currently
involved in a topic 5

« Require continuous analysis
of dynamic graph considering
multiple streams that reflect
graph updates
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Distributed DSP system

 Distributed system that executes DSP applications
— Continuously calculates results for long-standing queries
— Over potentially infinite data streams
— Using stateless or stateful operators
« System nodes may be heterogeneous
— Computing capacity, network bandwidth, ...
* Must be highly optimized and with minimal overhead
so to deliver real-time response
« Must manage a number of issues
— Place operators on computing nodes (application deployment)
— Hide node and operator failures

V. Cardellini - SABD 2024/25
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Distributed DSP system

 Traditionally runs in a locally distributed cluster
within a data center (also Cloud-based) §S/F&EETZ#E

* Assumptions:

— Scale out
Commodity servers
Data-parallelism (operator parallelism) is king

— Designed to handle failures

« Newer environments: edge computing and Cloud-
edge continuum

SENsSors central

E m b, | ) analytics
actuators@ O @
\ @ ()4.0‘( topology @

Things Edge Stream Processing Cloud
‘ @ source < sink O operation —P data row‘
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Top DSP frameworks

All having a distributed architecture
Apache Storm

Apache Flink

Apache Spark Streaming

Kafka Streams

Cloud-based services
— Amazon Kinesis https://aws.amazon.com/kinesis

— Azure Stream Analytics
https://azure.microsoft.com/products/stream-analytics

— Google Cloud Dataflow

https://cloud.google.com/products/dataflow
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Distributed DSP systems: processing models

* Processing models:
— One-at-a-time: each individual incoming tuple is processed
sequentially, one by one, as it arrives
» E.g, Apache Storm
— Windowed (or micro-batched): multiple tuples are grouped in a
buffer before being processed
* E.g, Apache Spark Streaming

* One-at-a-time: pros and cons

Limited context: no global or
historical view of data

Low latency: immediate
processing upon tuple arrival

Not easy to perform aggregations
over time/count

Simple state management: often
stateless or minimal

No temporal grouping (e.g.,
trends)

Real-time responsiveness, e.g.,
alerts

No built-in tolerance for out-of-
order tuples

Efficient for simple event-driven
logic
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Distributed DSP systems: processing models

» Windowed: pros and cons

Supports complex analytics (e.g.,
average, trends)

Stateful processing: retains data
over time/counts

Temporal awareness: enables
time-sensitive logic

Handles out-of-order tuples (in
some systems)
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Higher latency: waits for window
to fire

More memory-consuming
Increased complexity: requires

managing window logic, including
trigger and eviction
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Distributed DSP systems: evolution

1st gen: From DBs to DSMSs 2nd gen: Scale-Out Data Streaming 3rd gen: Serverless Apps

- HW Accel.
- Synopses - Out-of-Order - Edge Nodes

- Continuous - Sliding windows - Scalability - State Management - Fyll SQL

Queries - CEP - Best-Effort - Proc. Guarantees - Sfate
- Inverted DBs Processing - Reconfiguration Queries
- Stream SQL - Cloud Apps
- Serverless
Aurora/Borealis - Actors S-Query
1

I STREAM Twitter Storm Apex - Transactions

Spark

Streaming | Flink/Beam (B bzt et

Tapestry Esper
I

NiagaraCQ Wb e sS4 . o Portals
Oracle CQL Naiad  Samza ll\)/llilvtvlheel/ I\:Iaterlallze Eroye
Map Reduce S Store | aaro, Stateful Functions
TelegraphCQ T Kafka Streams l RisingWave
r. 1
’92-°00 ’00-03 ‘04 ’10-°12 13219 "20- '22-

« Early systems were designed as extensions of relational execution
engines plus windows

« Modern systems have evolved considering completeness and
ordering (e.g., out-of-order computation) and witnessed
architectural paradigm shifts (e.g., processing guarantees,
reconfiguration and state management)

» Recent shift towards general event-driven architectures, actor-like
programming models and microservices, and growing use of hw

accelerators
Fragkoulis et al., A Survey on the Evolution of Stream Processing Systems, 2024 40

Data-intensive systems: a common view

« Distributed data-intensive systems for batch and
stream processing share some common
characteristics in terms of architecture

f Belver 2 Distributed computing infrastructure
register jobs i N N :
start | Program iinvocation|: | X a8

g % &data_|: [[("Worker ) | [ Worker
. e = =3 e 2
Clients : State State :
% § o]
s | “Q ) "Q I |
Sources § 5
>~ 8 A databus é

Margara et al., A Model and Survey of Distributed Data-Intensive Systems, 2023
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Data-intensive systems: a common view

» Applications (i.e., jobs) and their lifecycle
— Job lifecycle includes: definition using API, compilation into
an execution plan, deployment, and execution

— Jobs are compiled into elementary units of execution (i.e.,
tasks) and run on slots offered by worker nodes

— Each task can be replicated (data parallelism)

— Tasks must be deployed onto the slots of the underlying
infrastructure through a placement algorithm

.......................................................

Distributed computing infrastructure

u »H : Worker Worker )
Task A Task B -Task E X
: | State (portion) | State (portion) | :
: [ Slot % Slot [ Slot J :
Task A Task B ‘

Jobs Executlon [ Tas = J

e ™)
Jobs Jobs : Slot Slot Slot :
compilation deployment | Task A Task B Task E |
Driver program i State (portion) j f State (portion) j
. Worker '
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» Akidau, Streaming 101: The world beyond batch,

2015 https://www.oreilly.com/radar/the-world-beyond-batch-streaming-
101

» Kleppman, Designing Data-Intensive Applications,
chapter 11

« Margara et al., A model and survey of distributed data-

intensive systems, ACM Comp. Surv., 2023
https://dl.acm.org/doi/pdf/10.1145/3604801

» Fragkoulis et al., A survey on the evolution of stream

processing systems, VLDB J., 2024
https://link.springer.com/article/10.1007/s00778-023-00819-8
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