
Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Data Stream Processing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

1V. Cardellini - SABD 2024/25 1

Why data stream processing?

• Applications such as:
- Sentiment analysis on tweets @Twitter
- User profiling @Yahoo!
- Tracking of query trend evolution @Google
- Fraud detection in financial transactions
- Real-time advertising
- Healthcare analytics involving IoT medical sensors

• Require:
- Continuous processing of unbounded data streams

generated by multiple and distributed sources
- In (near) real-time fashion

V. Cardellini - SABD 2024/25 2

Why data stream processing?

• In the early years data stream processing
(DSP) was considered a solution for very
specific problems (e.g., financial tickers)

• Now we have more general settings
- E.g., social media, Internet of Things

V. Cardellini - SABD 2024/25 3

Why data stream processing?

• Decrease latency to obtain results and improve
data freshness
- Events are processed close to the time they are

generated
- Applications respond to events as they occur
- No delays involved with batch processing
- No data persistence on stable storage

• Simplify data analytics pipelines and underlying
infrastructure

4V. Cardellini - SABD 2024/25 4

Data stream

• “A data stream is a real-time, continuous, ordered
(implicitly by arrival time or explicitly by timestamp)
sequence of items. It is impossible to control the
order in which items arrive, nor is it feasible to locally
store a stream in its entirety. Queries over streams
run continuously over a period of time and
incrementally return new results as new data arrive.”
Golab and Özs, Issues in data stream management, ACM SIGMOD
Rec., 2003.

• A data stream refers to both velocity and variety of
Big data

• A stream is an unbounded sequence of tuples,
where a tuple is an ordered list of values

V. Cardellini - SABD 2024/25 5

Data stream: example

V. Cardellini - SABD 2024/25 6

• Data stream related to maritime
traffic in the Mediterranean
0x3b62baab6210a8e69d3e7f9df53d000c83d00fd0,2,
15.247220,37.287770,163,511,01-06-15 0:00,AUGUSTA,12
0x0fe9acdb3675a8a2942fafbd4af61bc37e44c0ec,146,
23.694910,37.313620,13,15,01-06-15 0:00,SALERNO,88
0xb35dc6acdc29f2241296c44384fa2b0f7044d257,20,
15.669920,38.387740,339,339,01-06-15 0:00,MESSINA,66
…

Each tuple contains the fields:
SHIP_ID,SPEED,LON2,LAT2,COURSE,HEADING,TIMESTAMP,
departurePortName,Reported_Draught

tuples

Traditional DSP challenges

• Stream data can arrive at high
velocity, with high volumes and
highly variable arrival patterns
- High resource requirements for

processing

7V. Cardellini - SABD 2024/25

• Processing stream data has real-time aspects
- Stream processing applications have QoS

requirements, e.g., end-to-end latency
- Must be able to react to events as they occur

• Faults can happen during processing

Challenges for DSP in Cloud-Edge continuum

• Goals: increase scalability and reduce latency
• How? Rely not only on Cloud resources but

also on distributed and near-edge computation
(cloud-edge continuum)

V. Cardellini - SABD 2024/25 8

DSP application model

• A DSP application is made of a network of operators
(processing elements) connected by streams, at least
one data source and at least one data sink

• Represented by a directed dataflow graph
– Graph vertices: operators
– Graph edges: streams
– Graph is often referred to

as topology

• Graph is typically acyclic: directed acyclic graph (DAG)
– In DAGs, data can only move from upstream tasks to

downstream task
– Most DSP systems support only DAGs, few systems (e.g., Flink)

support also loops
• Topology does not usually change during processing

V. Cardellini - SABD 2024/25 9

DSP application model: examples

sinkoperatorsource

RabbitMQRedis
computeRouteID

metronome
filterByCoordinates countByWindow globalRankdatasource parser partialRank

• DAG for WordCount application in DSP salsa

• DAG for NYC taxi streaming analysis: data streams
from NYC taxis are processed to find the top-10 most
frequent routes during the last 30 minutes

V. Cardellini - SABD 2024/25 10

DSP programming model
• Dataflow programming

– Programming paradigm that models a program
as a directed graph of data (dataflow) flowing
between operations

– Pioneered by Jack Dennis and his students at
MIT in the 1960s

• Examples
– Apache NiFi: automates dataflow between

systems
– Apache Flink: stream and batch processing
– Apache Beam: unifies batch and streaming data

processing on top of several execution engines
– TensorFlow: ML library based on dataflow

programming

V. Cardellini - SABD 2024/25 11

DSP programming model

• What to we need?
• Dataflow composition: create the topology

associated with the DAG for a DSP
application

• Dataflow manipulation: use processing
elements (i.e., operators) to perform data
transformations

V. Cardellini - SABD 2024/25 12

Dataflow composition: How to define a DSP application

• Explicit way: describe topology
– Explicitly defines operators (built-in or user-defined) and how

they are connected in the DAG
– Used in many DSP systems (e.g., Flink, Storm, Spark

Streaming)
• Implicit way: use formal language

– Declarative languages that specify query result (SQL-like)
• Streams Processing Language (SPL) in IBM Cloud Pak

https://community.ibm.com/community/user/viewdocument/resou
rces-for-streams-developers

• SQL support in Flink provided by Apache Calcite
https://calcite.apache.org

– Procedural languages that specify composition of operators
• e.g., SQuAl (Stream Query Algebra) used in

Aurora/Borealis
• The first offers more flexibility, the latter more rigor and

expressiveness

V. Cardellini - SABD 2024/25 13

Dataflow manipulation

• How streaming data is manipulated by the
operators in the DAG?

• Operator properties:
- Operator type
- Operator state
- Windowing

V. Cardellini - SABD 2024/25 14

DSP operator

• Self-contained processing element that
- Transforms one or more input streams into another

stream
- Can execute a generic user-defined code

• Algebraic operation (filter, aggregate, join, ..)
• User-defined and possibly complex operation (e.g., part-of-

speech-tagging, machine learning algorithm)

- Multiple operators execute at the same time on
different streams

V. Cardellini - SABD 2024/25 15

DSP operator: types

• Edge adaptation: converting data from
external sources into tuples that can be
consumed by downstream operators

• Aggregation: collecting and summarizing a
subset of tuples from one or more streams

• Splitting: partitioning a stream into multiple
streams

• Merging: combining multiple input streams
(e.g., join)

16V. Cardellini - SABD 2024/25

DSP operator: types

• Logical and mathematical operations:
applying different logical processing,
relational processing, and mathematical
functions to tuple attributes

• Sequence manipulation: reordering,
delaying, or altering the temporal properties
of stream

• Custom data manipulations: applying data
mining, machine learning, ...

V. Cardellini - SABD 2024/25 17

DSP operator: state

• Operator can be either stateless or stateful
• Stateless: processing depends only on current

input
- Operator knows nothing about state and thus

processes tuples independently of each other,
independently of prior history or even from tuple
arrival order

- E.g., filter, map
- Easily parallelizable
- No synchronization in a multi-threaded context
- Easy restart upon failures (no need to recover state)
- In a nutshell: easy to manage

V. Cardellini - SABD 2024/25 18

DSP operator: state
• Stateful: keeps some sort of state (i.e.,

information across multiple tuples) that
operator can read and modify during execution,

• Examples of stateful operator
- Aggregation or summary of tuples per minute/hour
- When an application searches for certain patterns,

the state will store the sequence of events
encountered so far

- When training a machine learning model over a
stream of data points, the state holds the current
version of the model parameters

• State makes management more complex

V. Cardellini - SABD 2024/25 19

V. Cardellini - SABD 2024/25 20

− Entirely stored within in-memory
data structures and replicated to
disk only for fault tolerance

− Entirely stored on non-volatile
memory (e.g., disk)

DSP operator: state

• State may be stored in different ways:

− Hybrid solution: partially stored in memory for improved
performance and flushed to disk to scale in size

− Stored on external storage service (e.g., Redis)

• State is mostly private to operator but in some system
can be shared between operators
- Shared state makes execution even more complex

Windowing

• Window: buffer associated with an operator input port
that retains incoming tuples, allowing computation to
be applied on the set of tuples in the buffer
- E.g., to find the most frequently purchased items over the last

hour

• Window is characterized by:
- Size: amount of data that should be buffered before triggering

the operator execution
• Statically defined: time-based (e.g., 30 seconds) or count-based

(e.g., the last 100 tuples)
• Dynamically defined: session-based, where the window is

defined by session boundaries
- Sliding interval: how the window moves forward

• Time-based or count-based

V. Cardellini - SABD 2024/25 21

Windowing: patterns
• Different windowing patterns by combining window

size and sliding interval
- Sliding window: window size and sliding interval are different,

single tuples may be included in multiple consecutive windows
- Tumbling (or fixed) window: sliding interval is equal to window

size, consecutive windows do not overlap

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

v1 v2 v3 v4 v5t0 v6

v1 v2 v3 v4 v5t1 v6

v1 v2 v3 v4 v5t2 v6

Count-based sliding window
(size:2; slide:1)

Count-based tumbling window
(size:2; slide:2)

V. Cardellini - SABD 2024/25 22

V. Cardellini - SABD 2024/25 23

Windowing: patterns

Tumbling windows

Sliding windows

V. Cardellini - SABD 2024/25 24

Windowing: patterns

Session windows

• Window can be also dynamically defined: session
window
- Dynamic size of window length, depending on inputs
- Starts with an input and expands itself if the following input

has been received within the gap duration
- Closes when there’s no input received within the gap duration

after receiving the latest input
- Enables to group events until there are no new events for

specified time duration (inactivity)

V. Cardellini - SABD 2024/25 25

Windowing: emit

• Once a trigger determines that a window is ready for
processing, it fires, i.e., emits the results of the current
window

• Example: tumbling/sliding time window of 1 minute
that sums the values

Tumbling window of 1 minute that sums
the values

Sliding window of 1 minute that
sums the values every half minute

V. Cardellini - SABD 2024/25 26

Windowing: which pattern?

• Choosing the appropriate window type requires careful
consideration of data and processing requirements

• A few rules of thumb
- Use tumbling windows to segment a data stream into distinct,

non-overlapping segments, and perform computiation on each
segment

- Keep in mind that sliding windows can produce overlapping
results

• Sliding windows are ideal for use cases where you need to
closely monitor changes over time or compare them to previous
readings

- Consider that windows can span long periods (such as days,
weeks, or months), thus accumulating very large state

• Depending on DSP system, sliding windows may be more
memory-consuming

V. Cardellini - SABD 2024/25 27

Windowing: out-of-order tuples
• Out-of-order tuples: tuples in a DSP system may arrive

later than expected relative to the order they should
appear

• Why? Network delays, asynchronous data sources,
latency issues, computing delays, specific operations
on streams (e.g., join)

• Issues caused by out-of-order tuples
− Incorrect computation
− State inconsistency
− Increased complexity: additional logic in DSP system to

handle them, which can increase computational complexity
and memory usage

V. Cardellini - SABD 2024/25 28

Windowing: out-of-order tuples
• How can DSP system handle out-of-order tuples?
• Multiple solutions, including:
1. Discard
2. Buffer and reorder

− Systems can buffer out-of-order tuples temporarily until they
are able to fit into the correct window

− Systems can reorder tuples as they arrive, can be complex
and memory-intensive

3. Admit late data without reordering up to a lateness
bound

4. Use watermarks
− Special markers to track progress of data processing: "no

tuple older than this timestamp will arrive"

“Hello World”: a variant of WordCount

• Goal: emit top-k words in terms of occurrence when
there is a rank update

Words source Words counter Sorter
(word) (word, counter) (rank)

• Which operators can be a performance bottleneck?
• How to scale DSP application in order to sustain a

traffic load increase?

29V. Cardellini - SABD 2024/25

“Hello World”: a variant of WordCount
• The usual approach: replicate operators whenever

possible
• Use data parallelism (aka operator fission) and redesign

application by splitting sorting into two stages: multiple
intermediate sorters followed by a final sorter

• To partition the downstream flow across multiple replicas,
use key-based partitioning, so that operator state is also
partitioned among replicas

30V. Cardellini - SABD 2024/25

Example of DSP application: DEBS’14 GC

• Real-time analytics over high volume sensor data: analysis
of energy consumption measurements for smart homes
– Smart plugs deployed in households and equipped with sensors that

measure values related to power consumption

• Input data stream: id, timestamp, value,
property, plug_id, household_id, house_id,
e.g., 2967740693, 1379879533, 82.042, 0, 1, 0, 12

• Query 1: make load forecasts based on current
load measurements and historical data
– Output data stream:

ts, house_id, predicted_load

• Query 2: find outliers concerning energy
consumption
– Output data stream:

ts_start, ts_stop, household_id, percentage

https://debs.org/grand-challenges/2014

31V. Cardellini - SABD 2024/25

Example of DSP application: DEBS’15 GC

• Real-time analytics over high volume spatio-temporal
data streams: analysis of taxi trips based on data
streams originating from New York City taxis

• Data stream composed of tuples
• Each tuple includes: pickup and drop-off points

(longitude and latitude), corresponding timestamps plus
information related to payment
07290D3599E7A0D62097A346EFCC1FB5,E7750A37CAB07D0DFF0AF
7E3573AC141,2013-01-01 00:00:00,2013-01-01
00:02:00,120,0.44,-73.956528,40.716976,-
73.962440,40.715008,CSH,3.50,0.50,0.50,0.00,0.00,4.50

https://debs.org/grand-challenges/2015

V. Cardellini - SABD 2024/25 32

Example of DSP application: DEBS’15 GC

• Query 1: identify top-10 most frequent routes during the
last 30 minutes

• Query 2: identify areas that are currently most profitable
for taxi drivers

• Both queries rely on sliding window operators
- Continuously evaluate query results

V. Cardellini - SABD 2024/25 33

Example of DSP application: DEBS’16 GC

• Real-time analytics for a dynamic (evolving) social-
network graph

• Query 1: identify the posts that currently trigger the most
activity in the social network

• Query 2: identify large communities that are currently
involved in a topic

• Require continuous analysis
of dynamic graph considering
multiple streams that reflect
graph updates

https://debs.org/grand-challenges/2016

V. Cardellini - SABD 2024/25 34

Distributed DSP system

• Distributed system that executes DSP applications
- Continuously calculates results for long-standing queries
- Over potentially infinite data streams
- Using stateless or stateful operators

• System nodes may be heterogeneous
- Computing capacity, network bandwidth, …

• Must be highly optimized and with minimal overhead
so to deliver real-time response

• Must manage a number of issues
- Place operators on computing nodes (application deployment)
- Hide node and operator failures
- …

35V. Cardellini - SABD 2024/25

Distributed DSP system

• Traditionally runs in a locally distributed cluster
within a data center (also Cloud-based)

• Assumptions:
- Scale out

• Commodity servers
• Data-parallelism (operator parallelism) is king

- Designed to handle failures

• Newer environments: edge computing and Cloud-
edge continuum

V. Cardellini - SABD 2024/25 36

Top DSP frameworks
• All having a distributed architecture
• Apache Storm
• Apache Flink
• Apache Spark Streaming
• Kafka Streams
• Cloud-based services

– Amazon Kinesis https://aws.amazon.com/kinesis

– Azure Stream Analytics
https://azure.microsoft.com/products/stream-analytics

– Google Cloud Dataflow
https://cloud.google.com/products/dataflow

37V. Cardellini - SABD 2024/25

Distributed DSP systems: processing models
• Processing models:

- One-at-a-time: each individual incoming tuple is processed
sequentially, one by one, as it arrives

• E.g, Apache Storm
- Windowed (or micro-batched): multiple tuples are grouped in a

buffer before being processed
• E.g, Apache Spark Streaming

• One-at-a-time: pros and cons

V. Cardellini - SABD 2024/25 38

Low latency: immediate
processing upon tuple arrival

Limited context: no global or
historical view of data

Simple state management: often
stateless or minimal

Not easy to perform aggregations
over time/count

Real-time responsiveness, e.g.,
alerts

No temporal grouping (e.g.,
trends)

Efficient for simple event-driven
logic

No built-in tolerance for out-of-
order tuples

Distributed DSP systems: processing models

• Windowed: pros and cons

V. Cardellini - SABD 2024/25 39

Supports complex analytics (e.g.,
average, trends)

Higher latency: waits for window
to fire

Stateful processing: retains data
over time/counts More memory-consuming

Temporal awareness: enables
time-sensitive logic

Increased complexity: requires
managing window logic, including
trigger and eviction

Handles out-of-order tuples (in
some systems)

V.
 C

ar
de

llin
i -

SA
BD

 2
02

4/
25

40

Distributed DSP systems: evolution

• Early systems were designed as extensions of relational execution
engines plus windows

• Modern systems have evolved considering completeness and
ordering (e.g., out-of-order computation) and witnessed
architectural paradigm shifts (e.g., processing guarantees,
reconfiguration and state management)

• Recent shift towards general event-driven architectures, actor-like
programming models and microservices, and growing use of hw
accelerators

Fragkoulis et al., A Survey on the Evolution of Stream Processing Systems, 2024

V. Cardellini - SABD 2024/25 41

Data-intensive systems: a common view

• Distributed data-intensive systems for batch and
stream processing share some common
characteristics in terms of architecture

Margara et al., A Model and Survey of Distributed Data-Intensive Systems, 2023

V. Cardellini - SABD 2024/25 42

Data-intensive systems: a common view
• Applications (i.e., jobs) and their lifecycle

- Job lifecycle includes: definition using API, compilation into
an execution plan, deployment, and execution

- Jobs are compiled into elementary units of execution (i.e.,
tasks) and run on slots offered by worker nodes

- Each task can be replicated (data parallelism)
- Tasks must be deployed onto the slots of the underlying

infrastructure through a placement algorithm

V. Cardellini - SABD 2024/25 43

References

• Akidau, Streaming 101: The world beyond batch,
2015 https://www.oreilly.com/radar/the-world-beyond-batch-streaming-
101

• Kleppman, Designing Data-Intensive Applications,
chapter 11

• Margara et al., A model and survey of distributed data-
intensive systems, ACM Comp. Surv., 2023
https://dl.acm.org/doi/pdf/10.1145/3604801

• Fragkoulis et al., A survey on the evolution of stream
processing systems, VLDB J., 2024
https://link.springer.com/article/10.1007/s00778-023-00819-8

