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Components of a data pipeline

Our focus

Batch and PEIE] Validation, cleaning Data warehouses, Advanced analytics,
streaming data ingestion and transformation data lakes machine learning

Governance & Monitoring

Source: https://www.striim.com/blog/quide-to-data-pipelines/
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Data ingestion

» How to collect data from external and multiple data
sources and ingest it into target system where it can
be stored and later analyzed?

— For now: distributed file systems, NoSQL data stores, batch
processing frameworks

« How to connect external data sources to stream or in-
memory processing systems for immediate use?

» How and where to perform data preprocessing (e.g.,
data transformation, data conversion)?

« Data ingestion pipeline goal: move data - either
batched or streaming - from multiple sources to a
target destination, making it available for further
processing and analysis
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Driving factors

« Data source type and location
— Data source: where data originates
— Batch data sources: files, logs, RDBMS, ...

— Real-time data sources: lIoT sensors, social media feeds,
stock market feeds, ...

— Source location

* Velocity
— How fast data is generated?
— How frequently data varies?

— Real-time or streaming data require low latency and low
overhead

* Ingestion mechanism
— Depends on data consumer
— Pull vs. push based approach
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Requirements for data acquisition and ingestion

* Ingestion

— Batch data, streaming data

— Easy writing to storage (e.g., HDFS)

Decoupling

— Separate data sources from processing

High availability and fault tolerance

— Data ingestion available 24x7

— For streaming data: buffering (persistence) in case
processing framework is not available

Scalability and high throughput

— Number of sources and consumers will increase, amount of
data will increase

Data provenance

— Track where data came from, how it was transformed, and
how it flows through various systems
Valeria Cardellini - SABD 2024/25 5



Requirements for data acquisition and ingestion

Security

— Data authentication and encryption

Data conversion

— From multiple sources: transform data into common format
— Also to speed up processing

Data integration

— From multiple flows to single flow

Data preprocessing

— Raw data is transformed, cleaned, and prepared for analysis
(e.g., range checks, filtering, missing data handling)

Data compression
Data routing

Backpressure

— Data buffering in case of temporary spikes in workload, so
that data can be replayed later without loss
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A unifying view

Source Systems

Batch Layer

Serving Layer

Speed Layer

Messaging Layer
Data Ingestion Layer

Lambda Layer

Data Acquisition Layer

Data Storage Layer
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Data acquisition layer

« Allows collecting, aggregating and moving data

* From various sources (server logs, social media, loT
sensors, ...)

» To a data store (messaging system, distributed file
system, NoSQL data store)

* We analyze
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Apache NiFi 1] e

» Easy to use, powerful and reliable system to automate
the flow of data between systems, mainly used for data
routing and transformation htps:/nifi.apache.org

» Highly configurable

— Flow specific QoS: loss-tolerant vs guaranteed delivery, low
latency vs high throughput

— Dynamic prioritization of queues
— Flow can be modified at runtime: useful for preprocessing
— Backpressure control

» Ease of use: drag-and-drop web-based Ul to create,

manage and monitor the dataflow

— Allows to define sources from where to collect data, processors
for data transformation, destinations to store data

» Data provenance and security (SSL, data encryption)

Valeria Cardellini - SABD 2024/25 9



NiFi: core concepts

« Based on flow-based programming —
* Main NiFi concepts: N
— FlowFile: piece of user data, made of attributes and

content W

— FlowFile Processor: performs the work (sending,
receiving, transforming, routing, splitting, merging, and
processing FlowFiles)

— Connection: defines how data flows from one Processor
to another; has a queue FlowFiles are stored temporarily
until the next Processor or destination can process them

processor connection processor
GenerateFlowFile l LogAttribute l
In 0 (0 bytes) Name success In 0 (0 bytes)
Read/Write 0 bytes / 0 bytes Queued 0 (0 bytes) ) Read/Write 0 bytes / 0 bytes
Out 0 (0 bytes) Out 0 (0 bytes)
Tasks/Time 0/00:00:00.000 Tasks/Time 0/00:00:00.000
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NiFi: visual command & control

» Drag and drop Processors to build a flow
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html

» Start, stop and configure components in real time
* View errors and corresponding messages
» View statistics and health of data flow

» Create templates (i.e., reusable sub-flows) for
common Processors and Connections

Valeria Cardellini - SABD 2024/25 1



NiFi: visual command & control
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NiFi: processors

« Main steps to create and run the dataflow
— Add Processors
— Configure Processors
— Connect Processors among them
— Start and stop Processors
— Get info on Processors

Valeria Cardellini - SABD 2024/25 13



NiFi: processors

NiFi provides many different Processors out of the
box

— Capabilities to ingest data from many different systems,
route, transform, process, split, and aggregate data, and
distribute data to many systems

— Classified by category

Data transformation

— E.g., CompressContent, EncryptContent, ReplaceText
Routing and mediation

— E.g., ControlRate, Distributeload, RouteOnContent
Database access

— E.g., ExecuteSQL, PutSQL

Attribute extraction
— E.g., ExtractText, HashContent, IdentifyMimeType

Valeria Cardellini - SABD 2024/25

NiFi: processors
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System interaction
— E.g., ExecuteProcess

Data ingestion

— E.g., GetFile, GetFTP, GetHTTP, ListenUDP, GetHDFS,
FetchS30bject, ConsumeKafka, GetMongo, GetTwitter

Data egress / Sending data

— E.g., PutEmail, PutFile, PutFTP, PutHDFS, PutSQL,
PublishKafka, PutMongo

Splitting and aggregation

— E.g., SplitText, UnpackContent, MergeContent,
SplitContent

HTTP
— E.g., GetHTTP, POostHTTP, InvokeHTTP, ListenHTTP

Amazon Web Services
— E.g., FetchS30bject, PutS30bject, GetSQS, PutSQs

Valeria Cardellini - SABD 2024/25
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NiFi: architecture

* NiFi executes within a JVM

8 W | @ Web Server |

£ Flow Controller

Processor 1 Extension N

[ S
£ FlowFile S Content € Provenance
Repository Repository Repository

« Multiple NiFi servers can be clustered for scalability

ZooKeeper Server

@ Cluster Coordinator
" .
nnnnnnnnnnnnnnnnnnnnnnnnn ‘ Primary Node
Repository | T Repositor
@ ZooKeeper Client
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NiFi: use case

» Use NiFi to fetch tweets by means of NiFi’s processor
‘GetTwitter’

— Use Twitter Streaming API to retrieve tweets

* Move data stream to Apache Kafka using NiFi's
processor ‘PublishKafka’

Source Collect/Ingest Process Storage

& Faor 4
- ‘ 8 kafka & Grars 22,

Flink
u n Dashboard
. NiF] S”Sg:&z Amazon 53
Twitter APls ming
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Data serialization formats for Big Data

 Serialization: process of converting structured
data into a compact (binary) form

« Data serialization formats you already know
— JSON
— Protocol buffers

* Other serialization formats
— Apache Avro (row-oriented)
— Apache ORC (column oriented)
— Apache Parquet (column-oriented)
— Apache Thrift hitps://thrift. apache.org

Valeria Cardellini - SABD 2024/25

Choice of data serialization format
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» Impacts various aspects of data processing, including
efficiency, performance, and compatibility

» Efficiency: smaller size (data storage and transfer)
» Performance: faster reads, faster writes

« Compatibility: data can be shared across different
systems and applications
» Support for schema evolution

— Changes in data structure over time without breaking
compatibility with older versions

» Support for splitting large files

— Break up large files into smaller pieces that are easier to
store, transfer, and process

Advanced compression

Valeria Cardellini - SABD 2024/25
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Apache Avro Am .

» Key features https://avro.apache.org/
— Compact, binary, row-based data format
— Relies on schema: data+schema is fully self-describing
* Schema is defined in JSON and segregated from data
» Supports schema evolution
— Supports rich data types, including complex structures and
nested objects
— Supports compression techniques
* Including Snappy, Deflate, and Bzip2

— Cross and multi-language

« Data can be serialized in one language and deserialized in
another

« Simple integration with dynamic languages
* Can be used in RPC
— Spark (and Hadoop) can access Avro as data source

https://spark.apache.org/docs/latest/sql-data-sources-avro.html
Valeria Cardellini - SABD 2024/25

Apache Avro
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» Performance
— Impact of serialization and deserialization times on small
objects, ProtoBuf is faster

— Storage efficiency for large data files lower than Parquet

* Avro uses compact binary encoding, but no columnar
compression techniques as Parquet

— Optimized for writes, not for reads
» Avro performs better than Parquet for write-intensive workloads

» Scanning large datasets requires reading entire records, leading
to slower query performance in analytics workloads

» Parquet is preferable for analytical queries
— Better than Parquet when schema evolution is frequent

https://www.datacamp.com/blog/avro-vs-parquet

Valeria Cardellini - SABD 2024/25
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Apache ORC Q

* ORC (Optimized Row Columnar): format optimized
for analytics workloads htips:/orc.apache.org/

» Key features
— Columnar storage
— Compression efficiency

* Multiple codecs, including Snappy, zlib

» Lightweight compression techniques such as dictionary
encoding, bit packing, delta encoding, and run length encoding
https://en.wikipedia.org/wiki/Dictionary coder

https://en.wikipedia.org/wiki/Run-length encoding

— Predicate pushdown: query optimization technique that filters
data at the storage level before retrieving it

— Optimized for Hive

— Spark can access ORC as data source
https://spark.apache.org/docs/latest/sql-data-sources-orc.html

Comparative analysis: https://www.linkedin.com/pulse/comparative-

analysis-avro-parquet-orc-understanding-differences-bose
Valeria Cardellini - SABD 2024/25

Messaging layer: use cases

« Mainly used in data pipelines for data
ingestion or aggregation
» Typically used at the beginning or end of a
data pipeline
— E.g., at beginning of data pipeline:
« Data from various sensors: ingest data into streaming

system for real-time analytics or distributed file system
for batch analytics

Lambda Layer
|:> Data Storage Layer

Batch Layer

L

Serving Layer
1

Speed Layer

Data Acquisition Layer
Messaging Layer
Data Ingestion Layer

Oy A
Source Systems
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Messaging layer: architectural choices

 Message queue
— ActiveMQ nttps:/activema.apache.org _
— RabbitMQ nttps://www.rabbitma.com = m—] &
— ZeroMQ https://zeroma.org
— Amazon SQS https://aws.amazon.com/sqs

» Publish/subscribe
< Kafka
<~ Apache Pulsar
— NATS nhtips:/nats.io
— Redis

Valeria Cardellini - SABD 2024/25 24

Apache Kafka %

* Analyzed in SDCC course

http://www.ce.uniroma?Z2.it/courses/sdcc2425/slides/DS Communication2.pdf

* In a nutshell

— Open-source, distributed pub/sub and event
streaming platform

— Designed as a replicated, distributed, persistent
commit log

— Clients produce or consume events directly to/from a
cluster of brokers, which read/write events durably to
local file system and automatically replicate the
events synchronously or asynchronously within the
cluster for fault tolerance and high availability

» Let's recall the main points

Valeria Cardellini - SABD 2024/25 25



Kafka: architecture

 Kafka maintains feeds of (G
messages in categories P | i
called topics CTR T

* Producers publish B B
messages to a topic, while ;
consumers subscribe to CIEQSE'_"E'_Q_'EEP___l?_’ieﬁﬁ___‘
topics and process T |

published messages

» Kafka cluster: distributed and replicated commit log of
data over servers known as brokers
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Kafka: topics and partitions

» For each topic, Kafka cluster maintains a partitioned
log: topic is split into a fixed number of partitions

« Each partition is an ordered, numbered, immutable
sequence of records that is continually appended to

« Each partition is replicated for fault tolerance across a
configurable number of brokers

 Partitions are distributed across brokers for scalability
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Kafka: partition replication

» Each partition has one leader broker and 0 or more
followers

* Leader handles read and write requests
» A follower replicates leader and acts as backup

» Each broker is a leader for some of its partitions and
a follower for others to distribute load

[l | Producer |

A Publish data
Kafka cluster v

Leader Follower Follower

Broker 1 Broker 2 Broker 3
Zookeeper
0 Partition ) 0 Partition ) 0 Partition )

replicas replicas replicas

——
K
g
&
g

_______________________

________________________
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Kafka: partitions
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* Producers publish their records to partitions of a topic
(round-robin or partitioned by keys), and consumers
consume published records of that topic

« Each record is associated with a monotonically
increasing sequence number, called offset

— Kafka provides topic __consumer offsets to store offsets
» Consumers must manage their offset

Producers

lwrites
1

11

819101

/reads

Consumer A Consumer B
(offset=9) (offset=11)

N =
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Kafka: consumers

» In Kafka design, pull approach for consumers

https://kafka.apache.org/documentation.html#design_pull

« Consumers use offset to track which messages have

been consumed
— Replay messages using offset

» Consumers can be grouped into a Consumer Group: a

set of consumers sharing a common group ID

— Group maps to logical subscriber

— Multiple consumers in a group to increase scalability and fault

30
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Kafka: APls
e Core APlIs https://kafka.apache.org/documentation/#api
1. Producer API: allows apps to Producers

publish records of data (e.g.,

App

App

App

logs, |oT) to topics

2. Consumer API: allows apps to \ l //

App

' ream
read records from topics Connectors 532:; Prif: eessors
3. Connect API: reusable /
connectors (producers or / I \ Aee

consumers) that connect

App

topics to existing applications
or data systems so to move

large collections of data into and out of Kafka
— Connectors for AWS S3, HDFS, RabbitMQ, MySQL, Postgres,

AWS Lambda, MongoDB, Twitter, ...

Valeria Cardellini - SABD 2024/25

Consumers
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Kafka: APls

» Streams API: allows transforming streams of data
from input topics to output topics
— Kafka as real-time streaming platform

» Hands-on: use Kafka Streams to process data in

pipelines consisting of multiple stages
https://kafka.apache.org/documentation/streams

Valeria Cardellini - SABD 2024/25 32

Kafka @ Netflix

* Nefflix uses Kafka for data collection and buffering
Self Service Ul * ' @
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See https://netflixtechblog.com/kafka-inside-keystone-pipeline-dd5aeabaf6bb

Another example: https://www.confluent.io/blog/how-kafka-is-used-by-netflix
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Kafka @ Uber

» Uber has one of the largest Kafka deployments
Uber

Big Data Stack
3, - ,';ide,r,A,p; - ,4» ) — ‘ 2 Micro-Services
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https://www.uber.com/en-IT/blog/presto-on-apache-kafka-at-uber-scale/
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Kafka @ Audi

Audi Data Collector

* Audi uses Kafka for
real-time data i:‘\m::\fl’?: = INSIGHT

ACDC
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— 850 sensors in each car l |

)

The Future of the Automotive Industry
is a Real Time Data Cluster

Front Camera Traffic Front, rear and top Anomaly Infrared Camera
Alerts view cameras Detection
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c | oo R )

Front and Rear Hazard Crash Sensors Personalizatio Ultrasonic Sensors
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Kafka performance

» Performance evaluation study of Apache Kafka

How Fast Can We Insert? An Empirical Performance

Evaluation of Apache Kafka, ICPADS’ 20

https://arxiv.org/pdf/2003.06452

— Achieves ingestion rate of 421K messages/second or 92
MB/s (single topic with 1 partition and replication factor of 1)
on commodity hardware and using 2 senders

— Ack level choice influences performance: configurations with
enabled acks showed better performance

/ - 500K MPS
2 — acks=0; both local
acks=1; both local
—_— acks=1; 1 local - 1 remote
~— acks=1; both remote (different hosts)

Incoming Messages/Second

0 100 200 300 400 500 600

Passed Time in Seconds
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Apache Pulsar Z=PULSAR
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» Cloud-native, distributed messaging and streaming
platform, originally developed by Yahoo

https://pulsar.apache.org
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« Scalable, low-latency and durable messaging based
on pub-sub pattern, with support for geo-replication

» Multiple subscription types for topics

» Guaranteed message delivery with persistent
message storage provided by Apache BookKeeper

« Enables also stream-native data processing through
a serverless lightweight computing framework,
named Pulsar Functions

https://pulsar.apache.org/docs/4.0.x/functions-overview

Valeria Cardellini - SABD 2024/25
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Pulsar: subscription types

» A subscription is a configuration rule that determines
how messages are delivered to consumers

* Multiple subscription types: exclusive, shared (or
round-robin), failover, and key-shared

Exclusive
>
Failover
/’ Consumer B-1
{ Subsc 0 > “
Producer 1 RN LTI,
Incase of failure P | Consumer B-2
\ in consumer B-1
topic A
Shared 13
/ ;V/' Consumer c-1
Producer 2 { Subscri .
iR M
£3¢ Consumer c-2
¥Eg
¥
Key_Shared
/ Consumer D-1
{ ubsc n ]
\
£5§ Consumer D-2
. . g
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Pulsar: architecture

« Layered architecture designed to provide scalability
and flexibility
— Stateless serving layer and stateful persistence layer

— Serving layer comprised of brokers that receive and deliver
messages

— Persistence layer comprised of Apache BookKeeper storage
nodes called bookies that durably store messages

* BookKeeper is a distributed write-ahead log
https://bookkeeper.apache.org

Producer Consumer
77777777777777777777777777777777

[ Broker 1 ] [ Broker 2 ] { Broker 3 ]

Apache BookKeeper
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Pulsar: architecture

» Pulsar instance of Pulsar composed of one or more

Pulsar clusters
— Clusters may be geographically distributed and data can be
geo-replicated among different clusters
— Each cluster consiste of one or more brokers, an ensemble
of bookies, and a ZooKeeper quorum
— ZooKeeper is used for cluster-level configuration and
coordination

Producer

‘ Producer
P2

P1

Consumer
c2

Consumer
€1
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Cloud services for data ingestion

* Amazon Data Firehose

https://aws.amazon.com/it/firehose

— Fully managed Cloud service
to ingest, transform, and load
real-time streams into data
lakes (e.g., S3), warehouses,
and analytics services

— Can transform and compress streaming data before storing it

— Can invoke Lambda functions to transform source data

» Google Cloud Pub/Sub

https://cloud.google.com/pubsub

— Fully-managed real-time
pub/sub messaging service

Valeria Cardellini - SABD 2024/25 41



Putting all together

« How to schedule and orchestrate data
pipelines and workflows?

 Alternatives, including:
— Apache NiFi

— Apache Oozie
» Designed for Hadoop, dated

“"Apache Airflow

Valeria Cardellini - SABD 2024/25
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Apache Airflow ! Kirtlow
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» Open-source platform for developing, scheduling,

and monitoring batch-oriented workflows
https://airflow.apache.org

— Initially developed by Airbnb

» Allows users to define workflows as code, making
them easy to manage, version, and share
— Workflows are defined in Python

— Dynamic: workflows are defined in code, enabling dynamic
workflow generation, scheduling and parameterization

— Extensible: wide range of built-in operators and can be
extended

— Flexible: leverages Jinja templating engine, allowing rich
customizations https://jinja.palletsprojects.com/en/stable/

» Workflows are represented as DAGs

— When to schedule workflow execution, how workflow is

composed (tasks and their dependencies), callbacks
Valeria Cardellini - SABD 2024/25
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Apache Airflow: simple example

« Asimple DAG

— When to schedule
— Two tasks: BashOperator and Python function

— Dependency between the two tasks

from datetime import datetime

from airflow.sdk import DAG, task
from airflow.providers.standard.operators.bash import BashOperator

# A DAG represents a workflow, a collection of tasks

with DAG(dag_id="demo", start_date=datetime(2022, 1, 1), schedule="0 @ *x x x") as dag:
# Tasks are represented as operators
hello = BashOperator(task_id="hello", bash_command="echo hello")

@task()
def airflow():
print("airflow")

# Set dependencies between tasks
hello >> airflow()

Valeria Cardellini - SABD 2024/25

Airflow and other frameworks
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» Can be easily integrated with Spark to schedule and
orchestrate Spark jobs alongside other tasks (e.g.,
data ingestion, validation)

— Built-in SparkSubmitOperator to submit Spark job (e.g.,
JAR, Python script) to a Spark cluster directly from an Airflow

DAG https://airflow.apache.org/docs/apache-airflow-providers-
apache-spark/stable/operators.html

submit_job = SparkSubmitOperator(

application="${SPARK_HOME}/examples/src/main/python/pi.py", task_id="submit_job"

)

« Can be also integrated with NiFi

— From Airflow to NiFi: trigger NiFi Flow from Airflow by sending
a POST request to NiFi’'s REST API

— From NiFi to Airflow: use NiFi to trigger Airflow DAGs

— Alternatively, use a message queue or pub/sub system by
sending a message from Airflow to NiFi (from NiFi to Airflow)

Valeria Cardellini - SABD 2024/25
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Airflow: use cases

« Wide range of use cases https:/airflow.apache.org/use-cases

— Automate ETL and ELT pipelines

» Extract, transform, and load (or extract, load, and transform)
data without manual intervention

* Including: scheduling the data pipeline, handling errors,
monitoring, transforming data

— Manage business operations
— Infrastructure management, e.g., a Spark cluster

— Orchestrate MLOps

* MLOps (ML operations) automates the ML pipeline, from data
collection and model training to model deployment and
monitoring, and model retraining

* Can be specialized to generative Al (FMOps and LLMOps)

MLOps Cycle

Re-)Train

Valeria Cardellini - SABD 2024/25

0

tabri

References

46

* Apache NiFi documentation hitps:/nifi.apache.org/docs.html

» Apache Kafka documentation
https://kafka.apache.org/documentation/

» Apache Pulsar documentation
https://pulsar.apache.org/docs/4.0.x/concepts-overview/

— How to run https://pulsar.apache.org/docs/4.0.x/getting-started-
standalone

» Apache Airflow documentation
https://airflow.apache.org/docs/
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