
Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Data Acquisition and Ingestion

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2024/25

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

1

Components of a data pipeline

Valeria Cardellini - SABD 2024/25 2

Source: https://www.striim.com/blog/guide-to-data-pipelines/

Our focus

Data ingestion
• How to collect data from external and multiple data

sources and ingest it into target system where it can
be stored and later analyzed?
– For now: distributed file systems, NoSQL data stores, batch

processing frameworks

• How to connect external data sources to stream or in-
memory processing systems for immediate use?

• How and where to perform data preprocessing (e.g.,
data transformation, data conversion)?

• Data ingestion pipeline goal: move data - either
batched or streaming - from multiple sources to a
target destination, making it available for further
processing and analysis

Valeria Cardellini - SABD 2024/25 3

Driving factors
• Data source type and location

– Data source: where data originates
– Batch data sources: files, logs, RDBMS, …
– Real-time data sources: IoT sensors, social media feeds,

stock market feeds, …
– Source location

• Velocity
– How fast data is generated?
– How frequently data varies?
– Real-time or streaming data require low latency and low

overhead

• Ingestion mechanism
– Depends on data consumer
– Pull vs. push based approach

Valeria Cardellini - SABD 2024/25 4

Requirements for data acquisition and ingestion
• Ingestion

– Batch data, streaming data
– Easy writing to storage (e.g., HDFS)

• Decoupling
– Separate data sources from processing

• High availability and fault tolerance
– Data ingestion available 24x7
– For streaming data: buffering (persistence) in case

processing framework is not available

• Scalability and high throughput
– Number of sources and consumers will increase, amount of

data will increase

• Data provenance
– Track where data came from, how it was transformed, and

how it flows through various systems
Valeria Cardellini - SABD 2024/25 5

• Security
– Data authentication and encryption

• Data conversion
– From multiple sources: transform data into common format
– Also to speed up processing

• Data integration
– From multiple flows to single flow

• Data preprocessing
– Raw data is transformed, cleaned, and prepared for analysis

(e.g., range checks, filtering, missing data handling)

• Data compression
• Data routing
• Backpressure

– Data buffering in case of temporary spikes in workload, so
that data can be replayed later without loss

6Valeria Cardellini - SABD 2024/25

Requirements for data acquisition and ingestion

A unifying view

Valeria Cardellini - SABD 2024/25 7

Data acquisition layer
• Allows collecting, aggregating and moving data
• From various sources (server logs, social media, IoT

sensors, …)
• To a data store (messaging system, distributed file

system, NoSQL data store)
• We analyze

– Apache NiFi

Valeria Cardellini - SABD 2024/25 8

Apache NiFi

Valeria Cardellini - SABD 2024/25 9

• Easy to use, powerful and reliable system to automate
the flow of data between systems, mainly used for data
routing and transformation https://nifi.apache.org

• Highly configurable
– Flow specific QoS: loss-tolerant vs guaranteed delivery, low

latency vs high throughput
– Dynamic prioritization of queues
– Flow can be modified at runtime: useful for preprocessing
– Backpressure control

• Ease of use: drag-and-drop web-based UI to create,
manage and monitor the dataflow
– Allows to define sources from where to collect data, processors

for data transformation, destinations to store data

• Data provenance and security (SSL, data encryption)

NiFi: core concepts
• Based on flow-based programming
• Main NiFi concepts:

– FlowFile: piece of user data, made of attributes and
content

– FlowFile Processor: performs the work (sending,
receiving, transforming, routing, splitting, merging, and
processing FlowFiles)

– Connection: defines how data flows from one Processor
to another; has a queue FlowFiles are stored temporarily
until the next Processor or destination can process them

Valeria Cardellini - SABD 2024/25 10

connection processorprocessor

NiFi: visual command & control

• Drag and drop Processors to build a flow
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html

• Start, stop and configure components in real time
• View errors and corresponding messages
• View statistics and health of data flow
• Create templates (i.e., reusable sub-flows) for

common Processors and Connections

Valeria Cardellini - SABD 2024/25 11

NiFi: visual command & control

Valeria Cardellini - SABD 2024/25 12

NiFi: processors

• Main steps to create and run the dataflow
– Add Processors
– Configure Processors
– Connect Processors among them
– Start and stop Processors
– Get info on Processors

Valeria Cardellini - SABD 2024/25 13

NiFi: processors
• NiFi provides many different Processors out of the

box
– Capabilities to ingest data from many different systems,

route, transform, process, split, and aggregate data, and
distribute data to many systems

– Classified by category

• Data transformation
– E.g., CompressContent, EncryptContent, ReplaceText

• Routing and mediation
– E.g., ControlRate, DistributeLoad, RouteOnContent

• Database access
– E.g., ExecuteSQL, PutSQL

• Attribute extraction
– E.g., ExtractText, HashContent, IdentifyMimeType

Valeria Cardellini - SABD 2024/25 14

NiFi: processors
• System interaction

– E.g., ExecuteProcess

• Data ingestion
– E.g., GetFile, GetFTP, GetHTTP, ListenUDP, GetHDFS,

FetchS3Object, ConsumeKafka, GetMongo, GetTwitter

• Data egress / Sending data
– E.g., PutEmail, PutFile, PutFTP, PutHDFS, PutSQL,

PublishKafka, PutMongo

• Splitting and aggregation
– E.g., SplitText, UnpackContent, MergeContent,

SplitContent

• HTTP
– E.g., GetHTTP, PostHTTP, InvokeHTTP, ListenHTTP

• Amazon Web Services
– E.g., FetchS3Object, PutS3Object, GetSQS, PutSQS

15Valeria Cardellini - SABD 2024/25

NiFi: architecture

Valeria Cardellini - SABD 2024/25 16

• NiFi executes within a JVM

• Multiple NiFi servers can be clustered for scalability

NiFi: use case

• Use NiFi to fetch tweets by means of NiFi’s processor
‘GetTwitter’
– Use Twitter Streaming API to retrieve tweets

• Move data stream to Apache Kafka using NiFi’s
processor ‘PublishKafka’

Valeria Cardellini - SABD 2024/25 17

Data serialization formats for Big Data

• Serialization: process of converting structured
data into a compact (binary) form

• Data serialization formats you already know
– JSON
– Protocol buffers

• Other serialization formats
– Apache Avro (row-oriented)
– Apache ORC (column oriented)
– Apache Parquet (column-oriented)
– Apache Thrift https://thrift.apache.org

Valeria Cardellini - SABD 2024/25 18

Choice of data serialization format

• Impacts various aspects of data processing, including
efficiency, performance, and compatibility

• Efficiency: smaller size (data storage and transfer)
• Performance: faster reads, faster writes
• Compatibility: data can be shared across different

systems and applications
• Support for schema evolution

– Changes in data structure over time without breaking
compatibility with older versions

• Support for splitting large files
– Break up large files into smaller pieces that are easier to

store, transfer, and process

• Advanced compression

Valeria Cardellini - SABD 2024/25 19

Apache Avro
• Key features https://avro.apache.org/

– Compact, binary, row-based data format
– Relies on schema: data+schema is fully self-describing

• Schema is defined in JSON and segregated from data
• Supports schema evolution

– Supports rich data types, including complex structures and
nested objects

– Supports compression techniques
• Including Snappy, Deflate, and Bzip2

– Cross and multi-language
• Data can be serialized in one language and deserialized in

another
• Simple integration with dynamic languages
• Can be used in RPC

– Spark (and Hadoop) can access Avro as data source
https://spark.apache.org/docs/latest/sql-data-sources-avro.html

Valeria Cardellini - SABD 2024/25 20

Apache Avro
• Performance

– Impact of serialization and deserialization times on small
objects, ProtoBuf is faster

– Storage efficiency for large data files lower than Parquet
• Avro uses compact binary encoding, but no columnar

compression techniques as Parquet
– Optimized for writes, not for reads

• Avro performs better than Parquet for write-intensive workloads
• Scanning large datasets requires reading entire records, leading

to slower query performance in analytics workloads
• Parquet is preferable for analytical queries

– Better than Parquet when schema evolution is frequent

https://www.datacamp.com/blog/avro-vs-parquet

Valeria Cardellini - SABD 2024/25 21

Apache ORC
• ORC (Optimized Row Columnar): format optimized

for analytics workloads https://orc.apache.org/

• Key features
– Columnar storage
– Compression efficiency

• Multiple codecs, including Snappy, zlib
• Lightweight compression techniques such as dictionary

encoding, bit packing, delta encoding, and run length encoding
https://en.wikipedia.org/wiki/Dictionary_coder
https://en.wikipedia.org/wiki/Run-length_encoding

– Predicate pushdown: query optimization technique that filters
data at the storage level before retrieving it

– Optimized for Hive
– Spark can access ORC as data source

https://spark.apache.org/docs/latest/sql-data-sources-orc.html
Comparative analysis: https://www.linkedin.com/pulse/comparative-
analysis-avro-parquet-orc-understanding-differences-bose

Valeria Cardellini - SABD 2024/25 22

Messaging layer: use cases

• Mainly used in data pipelines for data
ingestion or aggregation

• Typically used at the beginning or end of a
data pipeline
– E.g., at beginning of data pipeline:

• Data from various sensors: ingest data into streaming
system for real-time analytics or distributed file system
for batch analytics

Valeria Cardellini - SABD 2024/25 23

Messaging layer: architectural choices

• Message queue
– ActiveMQ https://activemq.apache.org

– RabbitMQ https://www.rabbitmq.com

– ZeroMQ https://zeromq.org

– Amazon SQS https://aws.amazon.com/sqs

• Publish/subscribe
! Kafka
! Apache Pulsar
– NATS https://nats.io

– Redis

Valeria Cardellini - SABD 2024/25 24

Apache Kafka
• Analyzed in SDCC course
http://www.ce.uniroma2.it/courses/sdcc2425/slides/DS_Communication2.pdf

• In a nutshell
– Open-source, distributed pub/sub and event

streaming platform
– Designed as a replicated, distributed, persistent

commit log
– Clients produce or consume events directly to/from a

cluster of brokers, which read/write events durably to
local file system and automatically replicate the
events synchronously or asynchronously within the
cluster for fault tolerance and high availability

• Let’s recall the main points
Valeria Cardellini - SABD 2024/25 25

Kafka: architecture

• Kafka cluster: distributed and replicated commit log of
data over servers known as brokers

26

• Kafka maintains feeds of
messages in categories
called topics

• Producers publish
messages to a topic, while
consumers subscribe to
topics and process
published messages

Valeria Cardellini - SABD 2024/25

Kafka: topics and partitions
• For each topic, Kafka cluster maintains a partitioned

log: topic is split into a fixed number of partitions
• Each partition is an ordered, numbered, immutable

sequence of records that is continually appended to
• Each partition is replicated for fault tolerance across a

configurable number of brokers
• Partitions are distributed across brokers for scalability

27Valeria Cardellini - SABD 2024/25

Kafka: partition replication
• Each partition has one leader broker and 0 or more

followers
• Leader handles read and write requests
• A follower replicates leader and acts as backup
• Each broker is a leader for some of its partitions and

a follower for others to distribute load

Valeria Cardellini - SABD 2024/25 28

Kafka: partitions
• Producers publish their records to partitions of a topic

(round-robin or partitioned by keys), and consumers
consume published records of that topic

• Each record is associated with a monotonically
increasing sequence number, called offset
– Kafka provides topic __consumer offsets to store offsets

• Consumers must manage their offset

29Valeria Cardellini - SABD 2024/25

Kafka: consumers
• In Kafka design, pull approach for consumers

https://kafka.apache.org/documentation.html#design_pull

• Consumers use offset to track which messages have
been consumed
– Replay messages using offset

• Consumers can be grouped into a Consumer Group: a
set of consumers sharing a common group ID
– Group maps to logical subscriber
– Multiple consumers in a group to increase scalability and fault

tolerance

30Valeria Cardellini - SABD 2024/25

Kafka: APIs
• Core APIs
1. Producer API: allows apps to

publish records of data (e.g.,
logs, IoT) to topics

2. Consumer API: allows apps to
read records from topics

3. Connect API: reusable
connectors (producers or
consumers) that connect
topics to existing applications
or data systems so to move
large collections of data into and out of Kafka
⎼ Connectors for AWS S3, HDFS, RabbitMQ, MySQL, Postgres,

AWS Lambda, MongoDB, Twitter, …
31

https://kafka.apache.org/documentation/#api

Valeria Cardellini - SABD 2024/25

Kafka: APIs

• Streams API: allows transforming streams of data
from input topics to output topics
– Kafka as real-time streaming platform

• Hands-on: use Kafka Streams to process data in
pipelines consisting of multiple stages
https://kafka.apache.org/documentation/streams

Valeria Cardellini - SABD 2024/25 32

Kafka @ Netflix

• Netflix uses Kafka for data collection and buffering

Valeria Cardellini - SABD 2024/25 33

See https://netflixtechblog.com/kafka-inside-keystone-pipeline-dd5aeabaf6bb

Another example: https://www.confluent.io/blog/how-kafka-is-used-by-netflix

Kafka @ Uber
• Uber has one of the largest Kafka deployments

Valeria Cardellini - SABD 2024/25 34
https://www.uber.com/en-IT/blog/presto-on-apache-kafka-at-uber-scale/

Kafka @ Audi

Va
le

ria
 C

ar
de

llin
i -

 S
AB

D
 2

02
4/

25

35

• Audi uses Kafka for
real-time data
processing
– 850 sensors in each car

https://www.youtube.com/watch?v=yGLKi3TMJv8

Kafka performance
• Performance evaluation study of Apache Kafka

How Fast Can We Insert? An Empirical Performance
Evaluation of Apache Kafka, ICPADS’20
https://arxiv.org/pdf/2003.06452
– Achieves ingestion rate of 421K messages/second or 92

MB/s (single topic with 1 partition and replication factor of 1)
on commodity hardware and using 2 senders

– Ack level choice influences performance: configurations with
enabled acks showed better performance

Valeria Cardellini - SABD 2024/25 36

Apache Pulsar
• Cloud-native, distributed messaging and streaming

platform, originally developed by Yahoo
https://pulsar.apache.org

• Scalable, low-latency and durable messaging based
on pub-sub pattern, with support for geo-replication

• Multiple subscription types for topics
• Guaranteed message delivery with persistent

message storage provided by Apache BookKeeper
• Enables also stream-native data processing through

a serverless lightweight computing framework,
named Pulsar Functions
https://pulsar.apache.org/docs/4.0.x/functions-overview

Valeria Cardellini - SABD 2024/25 37

Pulsar: subscription types
• A subscription is a configuration rule that determines

how messages are delivered to consumers
• Multiple subscription types: exclusive, shared (or

round-robin), failover, and key-shared

Valeria Cardellini - SABD 2024/25 38

Pulsar: architecture
• Layered architecture designed to provide scalability

and flexibility
– Stateless serving layer and stateful persistence layer
– Serving layer comprised of brokers that receive and deliver

messages
– Persistence layer comprised of Apache BookKeeper storage

nodes called bookies that durably store messages
• BookKeeper is a distributed write-ahead log

https://bookkeeper.apache.org

Valeria Cardellini - SABD 2024/25 39

Pulsar: architecture
• Pulsar instance of Pulsar composed of one or more

Pulsar clusters
– Clusters may be geographically distributed and data can be

geo-replicated among different clusters
– Each cluster consiste of one or more brokers, an ensemble

of bookies, and a ZooKeeper quorum
– ZooKeeper is used for cluster-level configuration and

coordination

Valeria Cardellini - SABD 2024/25 40

Cloud services for data ingestion

• Amazon Data Firehose
https://aws.amazon.com/it/firehose
– Fully managed Cloud service

to ingest, transform, and load
real-time streams into data
lakes (e.g., S3), warehouses,
and analytics services

• Google Cloud Pub/Sub
https://cloud.google.com/pubsub
– Fully-managed real-time

pub/sub messaging service

Valeria Cardellini - SABD 2024/25 41

– Can transform and compress streaming data before storing it
– Can invoke Lambda functions to transform source data

Putting all together

• How to schedule and orchestrate data
pipelines and workflows?

• Alternatives, including:
– Apache NiFi
– Apache Oozie

• Designed for Hadoop, dated

!Apache Airflow

Valeria Cardellini - SABD 2024/25 42

Apache Airflow
• Open-source platform for developing, scheduling,

and monitoring batch-oriented workflows
https://airflow.apache.org
– Initially developed by Airbnb

• Allows users to define workflows as code, making
them easy to manage, version, and share
– Workflows are defined in Python
– Dynamic: workflows are defined in code, enabling dynamic

workflow generation, scheduling and parameterization
– Extensible: wide range of built-in operators and can be

extended
– Flexible: leverages Jinja templating engine, allowing rich

customizations https://jinja.palletsprojects.com/en/stable/

• Workflows are represented as DAGs
– When to schedule workflow execution, how workflow is

composed (tasks and their dependencies), callbacks
Valeria Cardellini - SABD 2024/25 43

Apache Airflow: simple example

Valeria Cardellini - SABD 2024/25 44

• A simple DAG
– When to schedule
– Two tasks: BashOperator and Python function
– Dependency between the two tasks

Airflow and other frameworks
• Can be easily integrated with Spark to schedule and

orchestrate Spark jobs alongside other tasks (e.g.,
data ingestion, validation)
– Built-in SparkSubmitOperator to submit Spark job (e.g.,

JAR, Python script) to a Spark cluster directly from an Airflow
DAG https://airflow.apache.org/docs/apache-airflow-providers-
apache-spark/stable/operators.html

• Can be also integrated with NiFi
– From Airflow to NiFi: trigger NiFi Flow from Airflow by sending

a POST request to NiFi’s REST API
– From NiFi to Airflow: use NiFi to trigger Airflow DAGs
– Alternatively, use a message queue or pub/sub system by

sending a message from Airflow to NiFi (from NiFi to Airflow)
Valeria Cardellini - SABD 2024/25 45

Airflow: use cases
• Wide range of use cases https://airflow.apache.org/use-cases

– Automate ETL and ELT pipelines
• Extract, transform, and load (or extract, load, and transform)

data without manual intervention
• Including: scheduling the data pipeline, handling errors,

monitoring, transforming data
– Manage business operations
– Infrastructure management, e.g., a Spark cluster
– Orchestrate MLOps

• MLOps (ML operations) automates the ML pipeline, from data
collection and model training to model deployment and
monitoring, and model retraining

• Can be specialized to generative AI (FMOps and LLMOps)

Valeria Cardellini - SABD 2024/25 46

References

• Apache NiFi documentation https://nifi.apache.org/docs.html

• Apache Kafka documentation
https://kafka.apache.org/documentation/

• Apache Pulsar documentation
https://pulsar.apache.org/docs/4.0.x/concepts-overview/
– How to run https://pulsar.apache.org/docs/4.0.x/getting-started-

standalone

• Apache Airflow documentation
https://airflow.apache.org/docs/

Valeria Cardellini - SABD 2024/25 47

