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MapReduce (MR): limitations 
• Programming model

– Hard to implement everything as a MR program
– Multiple MR steps even for simple tasks

• E.g., sorting words by their frequency requires two MR steps

– Lack of control, structures and data types 
• Efficiency (recall HDFS)

– High communication cost: compute (map), 
communicate (shuffle), compute (reduce)

– Read input and store output from/on disk 
– Limited exploitation of main memory 
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MapReduce: limitations 

• Lack of native support for iteration 
– Each step writes/reads data from disk: I/O overhead
– But real-world applications (e.g., ML algorithms) 

require iterating MR steps 
• Partial solution: design algorithms that minimize the 

number of iterations

• Not feasible for real-time data stream 
processing
– MR job requires to scan entire input before 

processing it

3Valeria Cardellini - SABD 2024/25



Alternative programming models 

• Based on directed acyclic graphs (DAGs)
– Application structured as directed acyclic graph

• DAG node: operation (or task)
• DAG edge: dependency (data flow) between operations

– Spark, Spark Streaming, Flink, Storm, Airflow, 
TensorFlow, …

• SQL-based
– Hive, Spark SQL, Trino, Vertica, …

• NoSQL and NewSQL data stores
– HBase, MongoDB, Cassandra, Spanner, …

• Based on Bulk Synchronous Parallel
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Alternative programming models: BSP 
• Bulk Synchronous Parallel (BSP)

– Developed by Leslie Valiant during 1980s
– Considers communication actions en masse
– Suitable for graph analytics at massive scale and 

massive scientific computations (e.g., matrix, graph 
and network algorithms)
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- Examples: Google’s 
Pregel, Apache Giraph
to perform graph 
processing on big data
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Apache Spark

• Unified engine for large-scale data analytics
– Leading platform for batch/streaming data, SQL analytics, 

data science and machine learning on clusters of nodes
– Multi-language: Scala, Python, Java and R

• In-memory data storage for fast iterative processing
– At least 10x faster than Hadoop MapReduce

• Suitable for execution of DAGs and powerful 
optimization

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system, including 

HDFS and HBase
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Spark milestones
• Spark project started in 2009
• Developed originally at UC Berkeley’s AMPLab by 

Matei Zaharia for his PhD thesis
• Open sourced in 2010, Apache project since 2013
• Zaharia founded Databricks in 2014 https://databricks.com/

• Current release: 3.5.5
• Top open source project for Big Data processing
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Programming model different from Mapreduce, why?

• MapReduce simplified Big Data analysis
– But executes jobs in a simple but rigid structure

• Step to process or transform data (map)
• Step to synchronize (shuffle)
• Step to combine results (reduce)

• As soon as MapReduce got popular, users wanted:
– Iterative computations, e.g., graph and ML algorithms
– Interactive ad-hoc queries
– More efficiency
– Faster in-memory data sharing across parallel jobs 

(required by both iterative and interactive applications)
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Spark: In-memory computation
• Key idea: keep and share datasets in main memory 
• Distributed in-memory: 10x-100x faster than disk 

and network
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Spark vs Hadoop MapReduce
• Underlying programming paradigm similar to 

MapReduce
– Basically “scatter-gather”: scatter data and computation on 

multiple cluster nodes that run in parallel processing on 
data portions; gather final results

• Spark offers a more general data model 
– RDDs, DataSets, DataFrames

• Spark offers a more general and developer-friendly 
programming model
– Map -> Transformations in Spark 
– Reduce -> Actions in Spark

• Spark is storage agnostic
– Not only HDFS, but also Cassandra, S3, Parquet files, …
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Spark stack
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Spark core

• Provides basic functionalities (including task 
scheduling, memory management, fault 
recovery, interacting with storage systems) 
used by other components

• Provides a data abstraction called resilient 
distributed dataset (RDD), a collection of 
items distributed across many compute 
nodes that can be manipulated in parallel
– Spark Core provides APIs for building and 

manipulating these collections
• Written in Scala but APIs for Java, Python 

and R
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Spark as unified analytics engine

• Rich set of integrated higher-level modules 
built on top of Spark
– Can be combined seamlessly within same app

• Spark SQL
– For SQL and structured data processing
– Supports many data sources (Hive tables, Parquet, 

JSON, …)
• Structured Streaming

– For incremental computation and stream 
processing
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PageRank performance (20 
iterations, 3.7B edges)

Spark as unified analytics engine

• MLlib
– Scalable ML library
– Distributed ML algorithms: 

feature extraction, 
classification, regression, 
clustering, recommendation, …
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• GraphX
– API for manipulating graphs and 

performing graph-parallel computations
– Includes also common graph algorithms 

(e.g., PageRank)
• Pandas API on Spark 

– For pandas workloads

Logistic regression performance

Spark on top of cluster managers

• Spark can exploit many cluster resource 
managers which allocate cluster resources to 
run the applications

1. Standalone
– Simple cluster manager included with Spark that 

makes it easy to set up a cluster
2. Hadoop YARN

– Hadoop cluster manager
3. Mesos

– Cluster manager from AMPLab
4. Kubernetes
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Spark architecture
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• Master/worker architecture
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Spark architecture
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https://spark.apache.org/docs/latest/cluster-overview.html

• Main program (called driver program) connects to 
cluster manager, which allocates resources

• Worker nodes in which executors run

• Executors are processes that run computations 
and store data for the application
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Spark architecture
• Each application consists of a driver program and 

executors on the cluster
– Driver program: process which runs user’s main function and 

creates SparkContext object
– SparkContext: main entry point for Spark functionality, tells 

Spark how to access a cluster

• Each application gets its own executors, which are 
processes which stay up for the duration of the 
application and run tasks in multiple threads
– Isolation of concurrent applications

• To run on a cluster:
– SparkContext connects to cluster manager, which allocates 

cluster resources
– Once connected, Spark acquires executors on cluster nodes 

and sends the application code (e.g., jar) to executors
– Finally, SparkContext sends tasks to executors to run
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Spark architecture
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Executor Executor



Resilient Distributed Datasets (RDDs)

• RDDs are the key programming abstraction in 
Spark: a distributed memory abstraction

• Immutable, partitioned and fault-tolerant 
collection of elements that can be manipulated 
in parallel
– Like a LinkedList <MyObjects>
– Stored in main memory across the cluster nodes

• Each worker node that is used to run an application 
contains at least one partition of the RDD(s) that is (are) 
defined in the application
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RDDs: distributed and partitioned

• Stored in main memory of the executors running in 
the worker nodes (when it is possible) or on node 
local disk (if not enough main memory)

• Allow executing in parallel the code invoked on 
them
– Each executor of a worker node runs the specified code 

on its partition of the RDD
– Partition: atomic chunk of data (a logical division of data) 

and basic unit of parallelism
– Partitions of an RDD can be stored on different cluster 

nodes
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RDDs: immutable and fault-tolerant 
• Immutable once constructed

– RDD content cannot be modified
– New RDD is created from existing RDD(s)

• Automatically rebuilt on failure (without
replication)
– Track lineage information so to efficiently recompute 

missing or lost data due to (node) failures
– For each RDD, Spark knows how it has been 

constructed and can rebuild it if a failure occurs
– This information is represented by means of RDD 

lineage DAG which keeps track of one or more 
operations that lead to the creation of that RDD
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RDD: Spark management

• Spark manages the split of 
RDDs in partitions and 
allocates RDDs’ partitions 
to cluster nodes

• Spark hides complexity of 
fault tolerance
– RDDs are automatically 

rebuilt in case of failure 
using the lineage DAG, that 
defines the logical execution 
plan and represents the 
dependencies between 
RDDs (or DataFrames)
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RDD API

• RDD API
– Clean language-integrated API for Scala, Python, 

Java, and R
– Can be used interactively from console (Scala and 

PySpark)
• RDD suitability

– Best suited for unstructured data
– Provides fine-grained control over physical 

distribution of data
• Also higher-level APIs: DataFrame and DataSet
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Python Spark (PySpark)

• PySpark: Python API for Spark supporting the 
collaboration of Spark and Python

• Provides PySpark shell for interactive analysis
• Supports all of Spark’s features such as Spark SQL, 

DataFrames, Structured Streaming, MLlib and Spark 
Core
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PySpark: SparkContext

• SparkContext: entry point for low-level RDD API, 
connection to Spark cluster

• To create a SparkContext, you first need to build 
a SparkConf object that contains information about 
application

conf = SparkConf().setAppName(appName).setMaster(master) 
sc = SparkContext(conf=conf)

• SparkConf allows to set various Spark parameters, 
among which
– master: URL of cluster to connect to
– appName: name of job to run

• In the shell, SparkContext is already available as sc
See https://spark.apache.org/docs/latest/api/python/
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• Data flow is composed of any number of data 
sources, operators, and data sinks by connecting 
their inputs and outputs

• A Directed Acyclic Graph (DAG) in Spark is a set 
of nodes and links, where nodes represent the 
operations on RDDs and directed links represent 
the data dependencies between operations
– Acyclic graph: no cycles or loops in the graph 
– Generalization of MapReduce model, which has only 

two operations (Map and Reduce)

Spark programming model: DAG
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• DAG can be visualized using Spark Web UI
– In figure: WordCount DAG

Spark programming model: DAG
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• DAG is divided into stages
• Stage: set of operations that 

do not involve a shuffle of 
data, resulting in a more 
efficient computation

• As soon as a shuffle of data 
is needed (i.e., when a wide 
transformation is performed), 
the DAG will yield a new 
stage

Operations in RDD API

• Spark programs are written in terms of 
operations on RDDs

• Programming model based on parallelizable 
operations
– Higher-order functions that execute user-defined 

functions in parallel
• RDDs are created from external data or other 

RDDs
• RDDs are created and manipulated through 

operators
See https://spark.apache.org/docs/latest/rdd-programming-guide.html

29Valeria Cardellini - SABD 2024/25



RDD operations
• RDD operations: higher-order functions
• Two types of RDD operations: transformations and 

actions
• Transformations: coarse-grained and lazy

operations that define new RDD based on previous 
one(s)
– map, filter, join, union, distinct, …
– lazy: the new RDD representing the result of a computation 

is not immediately computed but is materialized on demand 
when an action is called

• Actions: operations that kick off a job to execute on 
a cluster and return a value to the driver program 
after running a computation on RDD or write data to 
external storage
– count, collect, save, …
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Transformations and actions on RDDs

31

• Common transformations and actions on RDDs
- Seq[T]: sequence of elements of type T

https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions
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How to create RDD
• RDD can be created by: 

– Parallelizing existing data collections of the hosting 
programming language (e.g., collections and lists of 
Scala, Java, Python, or R)

• Number of partitions specified by user
• RDD API: parallelize

– From (large) files stored in HDFS or any other file 
system

• One partition per HDFS block
• RDD API: textFile

– Transforming an existing RDD
• Number of partitions depends on transformation type
• RDD API: transformation operations (map, filter, 
flatMap)
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How to create RDD
• Turn an existing collection into an RDD

– sc is Spark context variable
– Important parameter: number of partitions 
– Spark will run one task for each partition of the cluster 

(typical setting: 2-4 partitions for each CPU in the cluster) 
– Spark tries to set the number of partitions automatically 
– You can also set it manually by passing it as a second 

parameter to parallelize, e.g., sc.parallelize(data, 10)

• Load data from storage (local file system, HDFS, or 
S3)

lines = sc.parallelize(["pandas", "i like pandas"])

lines = sc.textFile("/path/input.txt")

Examples in Python
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RDD transformations: map and filter

• map: takes as input a function which is applied 
to each element of the RDD and maps each 
input element to another element

# transform each element through a function

nums = sc.parallelize([1, 2, 3, 4])

squares = nums.map(lambda x: x * x) # [1,4,9,16]

# select those elements that func returns true 

even = squares.filter(lambda num: num % 2 == 0)  # [4,16]
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• filter: takes as input a function which is applied as 
filter to each element of the RDD, selecting only those 
elements on which the function returns true

RDD transformations: flatMap

• flatMap: takes as input a function which is applied to 
each element of the RDD; can map each input item to 
zero or more output items

# split input lines into words

lines = sc.parallelize(["hello world", "hi"])

words = lines.flatMap(lambda line: line.split(" "))

# [’hello', ’world', ’hi’]

# map each element to zero or more others

ranges = nums.flatMap(lambda x: range(0, x, 1))

# [0, 0, 1, 0, 1, 2, 0, 1, 2, 3] 

range function in 
Python: ordered 
sequence of integer 
values in range 
[start;end) with non-
zero step
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RDD transformations: union and mapPartitions
• union: returns a new RDD that contains the union of 

the elements in the source RDD and the argument
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rdd1 = sc.parallelize([2, 4, 7, 9])

rdd2 = sc.parallelize([1, 4, 5, 8, 9])

rdd3 = rdd1.union(rdd2)

# [2, 4, 7, 9, 1, 4, 5, 8, 9]

rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 3)

# Define a function to process each partition

def f(iterator): yield sum(iterator)

rdd2 = mapPartitions(f).collect()  # [6, 15, 34]

• mapPartitions: similar to map, but runs separately 
on each partition

RDD transformations: partitionBy

• partitionBy: returns a new RDD that contains the 
RDD partitioned using the specified partitioner and 
number of partitions

Valeria Cardellini - SABD 2024/25 37

rdd = sc.parallelize([("apple", 1), ("banana", 2), 

... ("orange", 3), ("apple", 4), ("banana", 1)])

partitioned_rdd = rdd.partitionBy(3)

# Use glom to see data in each partition

partitioned_rdd.glom().collect()

# [[('orange', 3)], [], [('apple', 1), ('banana', 2), 
('apple', 4), ('banana', 1)]]

• glom: returns a new RDD by coalescing all elements 
within each partition into a list
– useful for inspecting how data is distributed across 

partitions or for debugging purposes



RDD transformations: reduceByKey

• reduceByKey: when called on a RDD of 
key-value pairs, aggregates values with 
the same key using the specified function

• Runs parallel reduce operations, one for 
each key in the RDD

x = sc.parallelize([("a", 1), ("b", 1), ("a", 1), ("a", 1),

... ("b", 1), ("b", 1), ("b", 1), ("b", 1)], 3)

# apply reduceByKey operation

y = x.reduceByKey(lambda accum, n: accum + n)

# [('b', 5), ('a', 3)]
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RDD transformations: reduceByKey

• Let’s see the corresponding DAG
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2 stages: wide 
transformation (data 
shuffling)

See how reduceByKey 
is implemented by 
Spark
partitionBy partitions 
the data by key
mapPartitions 
performs partition-level 
aggregation



RDD transformations: join
• join: performs an inner-join on 

the keys of two RDDs
• Only keys that are present in both 

RDDs are output
• Join candidates are independently 

processed

users = sc.parallelize([(0, "Alex"), (1, "Bert"), (2, "Curt"), 
(3, "Don")])

hobbies = sc.parallelize([(0, "writing"), (0, "gym"), (1, 
"swimming")])

users.join(hobbies).collect()

# [(0, ('Alex', 'writing')), (0, ('Alex', 'gym')), (1, 
('Bert', 'swimming'))]

Valeria Cardellini - SABD 2024/25 40

RDD transformations: join

• Let’s see the corresponding DAG
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2 stages: wide 
transformation (data 
shuffling)

See how join is 
implemented by Spark

After Stage 0, data is 
shuffled and partitioned
partitionBy partitions 
the data by key
mapPartitions 
performs partition-level 
aggregation



Other RDD transformations

• distinct: returns a new RDD that contains the distinct 
elements of the source RDD

• groupByKey: when called on a key-value pair RDD, 
groups the values for each key in the RDD into a single 
sequence

• mapValues: passes each value in the key-value pair RDD 
through a map function without changing the keys

• sample: samples a fraction of the data, with or without 
replacement

• repartition: changes the number of partitions (i.e., the 
level of parallelism) in the source RDD

• coalesce: decreases the number of partitions in the 
source RDD
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How to pass functions to transformations

• Lambda expressions, for simple functions that can be 
written as an expression (see examples)
• Lambdas do not support multi-statement functions or 

statements that do not return a value

• Local defs inside the function calling into Spark, for 
longer code

• Top-level functions in a module
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Transformations and actions

• Transformations are lazy
– Are not computed till an action requires a result to be 

returned to the driver program
– Spark can build up the logical transformation plan 

• This design enables Spark to perform operations 
more efficiently as they can be grouped together
– E.g., if there were multiple filter or map operations, Spark 

can fuse them into one operation
– E.g., if Sparks knows that data is partitioned, Sparks can 

avoid moving data over the network for groupBy

• We run an action to trigger the computation
– Instructs Spark to compute a result from a series of 

transformations
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Some RDD actions

• collect: returns all the elements of the RDD as a list

• take: returns an array with the first n elements in the 
RDD

• count: returns the number of elements in the RDD

nums = sc.parallelize([1, 2, 3, 4])

nums.collect() # [1, 2, 3, 4]

nums.take(3) # [1, 2, 3]

nums.count() # 4
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Some RDD actions

• reduce: aggregates the elements in the RDD using 
the specified function

• saveAsTextFile: writes the RDD elements as a text 
file either to the local file system or HDFS

sum = nums.reduce(lambda x, y: x + y)

nums.saveAsTextFile("hdfs://file.txt")
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Shuffle operations
• Shuffle: Spark mechanism for re-distributing data so 

that it is grouped differently across partitions
– Involves copying data across executors and machines, 

making shuffle an expensive operation

• Example: with reduceByKey not all values for a single 
key necessarily reside on the same partition (or even 
the same machine), but they must be co-located to 
compute the result by means of an all-to-all operation
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• Operations which can cause a shuffle 
include
– repartition operations: repartition and 

coalesce
– ByKey operations, e.g., reduceByKey and 

groupByKey
– join operations, e.g., join and cogroup



Your very first examples in Spark
• After having installed Spark (e.g., Docker official image 

https://hub.docker.com/_/spark), you can use PySpark in a 
terminal window to run the examples interactively
– sc is SparkContext variable
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First examples

• Let’s first analyze some simple examples 
using RDD API
– Pi estimation 
– WordCount
– Compute average

• Other examples: see Spark distribution
– Java 

https://github.com/apache/spark/tree/master/examples/src/main/jav
a/org/apache/spark/examples

– Python 
https://github.com/apache/spark/tree/master/examples/src/main/pyt
hon
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Pi estimation in Python

def inside(p): 
  x, y = random.random(), random.random() 
  return x*x + y*y < 1 

samples = sc.parallelize(range(0, NUM_SAMPLES))
within_circle = samples.filter(inside)
count = within_circle.count() 
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)) 
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Pi estimation in Python with chaining

def inside(p): 
  x, y = random.random(), random.random() 
  return x*x + y*y < 1 
count = sc.parallelize(range(0, NUM_SAMPLES)) \
 .filter(inside).count() 
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)) 
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• Transformations and actions can be chained 
together



Pi estimation in Scala 
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var NUM_SAMPLES = 100000
val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>

val x = math.random
val y = math.random
x*x + y*y < 1 

}.count() 
println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

• To run Spark shell in Scala
$ spark-shell

WordCount in Python

53Valeria Cardellini - SABD 2024/25

text_file = sc.textFile("hdfs://inputfile")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://output")



WordCount in Python
• Alternative solution: use countByValue

– Action that returns the count of each unique value in RDD as 
a dictionary of (value, count) pairs

– Driver collects the partitions and does the merge

• Which solution is better? Depends on dataset size
– Large dataset: use map, reduceByKey and collect to 

exploit parallelism of reduceByKey
– Small dataset: using countByValue may reduce network 

traffic (one stage less)
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text_file = sc.textFile("hdfs://inputfile")
words = text_file.flatMap(lambda line: line.split(" "))
wordCount = words.countByValue()
print(wordCount)

Compute average in Python

# Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31),  

("Bob", 40), ("Bob", 35), ("Brooke", 25)])
# Use map and reduceByKey transformations with their lambda 
# expressions to aggregate and then compute average 
agesRDD = (dataRDD
.map(lambda x: (x[0], (x[1], 1)))
.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
.map(lambda x: (x[0], x[1][0]/x[1][1]))) 
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• A common pattern in data analysis
• Let’s aggregate all the ages for each name, group by 

name, and then average the ages



Java: Lambda expressions
• Lambda expressions are short blocks of code which 

take in parameters and return a value
– Enable to treat functionality as method argument, or code 

as data 

• Similar to methods (anonymous methods, i.e., 
methods without names), but do not need a name 
and can be implemented in the body itself

• Usually passed as parameters to a function
• Arrow operator -> divides the lambda expression in 

two parts
– Left side: parameters required by lambda expression
– Right side: actions of lambda expression
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Pi estimation in Java with chaining

List<Integer> l = new ArrayList<>(NUM_SAMPLES); 
for (int i = 0; i < NUM_SAMPLES; i++) { 
    l.add(i); 
} 
long count = sc.parallelize(l).filter(i -> { 
   double x = Math.random(); 
   double y = Math.random(); 
   return x*x + y*y < 1; 
}).count(); 
System.out.println("Pi is roughly " + 4.0 * count / NUM_SAMPLES); 
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WordCount in Java
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• JavaPairRDD: RDD containing key/value pairs
• Spark’s Java API allows to create tuples using 
scala.Tuple2 class

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaRDD<String> words = lines.flatMap(line -> 

 Arrays.asList(SPACE.split(line).iterator());

JavaPairRDD<String, Integer> ones = words.mapToPair(w -> 

 new Tuple2<>(w, 1));

JavaPairRDD<String, Integer> counts = ones.reduceByKey((x, y) ->

 x+y);

counts.saveAsTextFile("output");

WordCount in Java with chaining
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JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaPairRDD<String, Integer> counts = lines

.flatMap(s -> Arrays.asList(SPACE.split(line)).iterator())

.mapToPair(w -> new Tuple2<>(w, 1))

.reduceByKey((x, y) -> x + y);

counts.saveAsTextFile("output");



Initializing Spark: SparkContext

• First step in Spark program using RDD API: create a 
Spark configuration object (SparkConf) and then a 
SparkContext object with that configuration

• SparkConf object: configuration for Spark application
– Used to set various Spark parameters as key-value pairs 

• SparkContext is the entry point to Spark core 
functionalities and allows you to interact with Spark  
cluster, load data, and perform transformations.

• Only one SparkContext may be active per JVM
– Stop the existing SparkContext before creating a new one 

using stop()
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SparkConf().setMaster("local").setAppName("My app")

SparkSession
• From Spark 2.0, SparkSession was introduced as 

single entry point for all functionalities, unifying the 
different contexts previously used for various APIs
– Still provides access to SparkContext, which is essential for 

working directly with RDDs
• From interactive shell: available as variable spark
• Within application: use builder to create and 

configure SparkSession
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Java

Python



Pi estimation in Python: using SparkSession
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Full example using 
SparkSession and API RDD

Access SparkContext from 
SparkSession and work with RDD

Create and configure SparkSession

Slightly different from slide 51: map 
and reduce instead of filter and count 

https://github.com/apache/spark/blob/master/examples/src/main/python/pi.py

WordCount in Java: using SparkSession
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Full example using 
SparkSession and API RDD

Create and configure SparkSession



WordCount in Java: using SparkSession
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Use RDDUse Dataset

https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/exa
mples/JavaWordCount.java

Launch applications

• Launch Spark application using bin/spark-submit 
script

Valeria Cardellini - SABD 2024/25 65

See https://spark.apache.org/docs/latest/submitting-applications.html



Launch applications: main options
• --class: app entry point (e.g., 

org.apache.spark.examples.SparkPi)
• --master: master URL for cluster (e.g.,  

spark://23.195.26.187:7077) (default: local)
• --deploy-mode: whether to deploy driver on worker nodes 

(cluster) or locally as external client (default: client) 
• --conf: Spark configuration property in key=value format
• application-jar: path to jar including app and all 

dependencies. Be careful: URL must be globally visible, e.g., 
hdfs:// path or a file:// path that is present on all nodes

• For Python app: pass a .py file in place of application-jar
and add Python .zip, .egg or .py files to the search path using    
--py-files

• application-arguments: arguments passed to the main 
method of the main class, if any
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Launch applications: example

./bin/spark-submit --class 
org.apache.spark.examples.SparkPi \

--master local \
--deploy-mode client \
--num-executors 2 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
examples/jars/spark-examples*.jar 10
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./bin/spark-submit \
examples/src/main/python/pagerank.py \
data/mllib/pagerank_data.txt 10

• Launch PageRank in Python passing arguments

• Launch Pi estimation in Java configuring Spark and 
passing argument



Deploy modes and cluster managers

• Spark supports different deploy modes and cluster 
managers, so it can run in different configurations 
and environments
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Caching and persistence
• By default, RDDs are recomputed each time you run 

an action on them
– This can be expensive (in time) if you need to use the RDD 

more than once (e.g., iterative algorithms) 

• To avoid recomputing an RDD multiple times, ask 
Spark to persist (or cache) data for rapid reuse
– To persist RDD, use persist() or cache() methods on it
– When RDD is persisted, each node stores its partitions in 

memory and reuses them in future actions on that RDD (or 
RDDs derived from it): future actions are thus much faster
(more than 10x)

• Key tool for iterative algorithms and fast interactive use
• Both cache and persist can be also applied to 

DataFrames and Datasets
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Caching and persistence: storage level
• Using persist() you can specify the storage level for 

persisting an RDD
– cache() is equivalent to persist() with default storage level 

(MEMORY_ONLY)

• Main storage levels:
– MEMORY_ONLY: if the RDD does not fit in memory, some 

partitions will not be cached and will be recomputed on the fly 
each time they are needed

– MEMORY_AND_DISK
– DISK_ONLY

• Which storage level is best? 
– Try to keep in-memory as much as possible
– Try not to spill to disk unless the functions that computed your 

datasets are expensive (e.g., filter a large amount of data)
– Use replicated storage levels only if you want fast fault 

recovery
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Caching and persistence: performance speedup
• Spark outperforms Hadoop by up to 100x in 

iterative ML
– Speedup comes from avoiding I/O and deserialization 

costs by storing data in memory
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Source: “Apache Spark: A Unified Engine for Big Data Processing”

110 s/iteration

1st iteration 80 s

Further iterations 1 s



Caching and persistence: example
• Let’s analyze how persistence is used in iterative 

algorithms
• Naïve implementation of K-means algorithm

– At each iteration we need to use the RDD containing the 
data points to be clustered

– Let’s cache it
data = lines.map(parseVector).cache()

https://github.com/apache/spark/blob/master/examples/src/main/python/k
means.py
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K-means in Spark

• Name of data file, number of clusters K and 
convergence threshold are read from command line

• Code uses NumPy (package for scientific computing 
in Python)

$ ./bin/spark-submit --master local \

  $SPARK_HOME/examples/src/main/python/kmeans.py \

  $SPARK_HOME/data/mllib/kmeans_data.txt 2 0.1
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K-means in Spark

• Let’s first define two utility functions: parseVector 
and closestPoint

Return index of the 
closest centroid for point 
p. centers contains the 
centroids, where 
centers[i] is
the i-th centroid
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Convert data into 
float numbers

K-means in Spark
• Read data to be clustered from input file, convert 

data into float numbers and then set K and 
convergeDist

• Cache the RDD data to improve performance
• Inizialize randomly the cluster centroids kPoints
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takeSample is an action 
used to retrieve a random 
sample from the RDD (False 
means without replacement)



K-means in Spark
• Repeat in a loop until convergence

– Map each data point to its closest centroid
– Calculate new cluster centroids (using average pattern)
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How Spark works on clusters

• A Spark application runs as a set of processes 
(executors) on the cluster, coordinated by the driver 
program of the application

• Executor: process launched on a worker node, that 
runs tasks and keeps data in memory or disk storage 
– Each application has its own executors
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task

How Spark works at runtime
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data shuffle

• Application creates RDDs, transforms them, and runs 
actions: this results in a DAG of operations

• DAG is transformed into stages
– Stage: set of tasks without data shuffle in between, contains 

pipelined transformations with narrow dependencies
– Task: unit of execution that is sent to one executor and works 

on a single partition of data

• Actions drive execution

Stage execution
• Spark:

– Creates a task for each partition in RDD
– Schedules and assigns tasks to worker nodes

• Task creation and scheduling happens 
internally (you need to do anything)

• Configuration
– Number of executors, amount of resources

assigned to each executor (cores and memory)
– By default, each executor runs one task per core
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Summary of Spark components

RDD: parallel dataset with partitions

DAG: logical graph of RDD operations

Stage: set of tasks that run in parallel

Task: smallest unit of execution
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Coarse grain

Fine grain
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Fault tolerance

• Spark keeps track of transformations used to 
build RDDs (their lineage DAG)

• Lineage information + RDD immutability = 
fault tolerance
– Lineage is used to recover lost data of RDD by 

replaying transformations on RDDs
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Example: RDD lineage DAG 
created during log analysis 



Application scheduling

• DAG scheduler assigns tasks from Spark app to 
executors

• When app runs a Spark action (e.g., collect), 
scheduler builds a physical execution plan (DAG of 
stages) from the logical execution plan (RDD lineage 
DAG)

• Scheduler determines task scheduling (on which 
worker node to run each task) on the basis of data 
locality
– If a task needs a partition which is available in a node’s 

memory, the task is sent to that node

• Scheduler handles failures to compute missing 
partitions from each stage
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Spark’s high-level modules
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Spark SQL

84

• Spark module for structured data processing
• Run SQL queries on top of Spark
• Integrated with Spark ecosystem

– Seamlessly mix SQL queries with Spark programs, 
using either SQL or DataFrame API

– Apply functions to results of SQL queries, e.g.,

• Compatible with Hive, speedup up to 100x
– Hive: data warehouse built on top of Hadoop that  

provides data summarization, query, and analysis 
with SQL-like interface
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Spark SQL: how it began

• Goal was to extend Hive to run on Spark 
– Shark: modified Hive’s backend to run over Spark, 

employing in-memory columnar storage
– Shark limits

• Only Hive data model
• Query optimizer tied to Hadoop
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Hive on Hadoop MapReduce Shark on Spark



Spark SQL: Features
• Borrows from Shark

– Hive data loading, in-memory columnar storage
• Adds:

– RDD-aware query optimizer (Catalyst Optimizer)
– Schema to RDD (DataFrame and Dataset APIs)
– Rich language interfaces
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Spark SQL: Catalyst optimizer
• Catalyst is based on functional programming 

constructs in Scala and designed for
– Easily adding new optimization techniques and features to 

Spark SQL
– Enabling developers to extend the optimizer (e.g., adding 

data source specific rules, support for new data types)

• Phases of query execution: analysis, logical 
optimization, physical planning, and code generation

Valeria Cardellini - SABD 2024/25 87



DataFrame and Dataset APIs
• Higher-level than RDD
• Best suited for structured and semi-structured 

data
• SparkSession: entry point
• Exploit Catalyst optimizer
• In common with RDDs:

– Distributed in-memory collection of data
– Immutable
– Manipulated in similar ways to RDDs
– Evaluated lazily
– Persisted in memory
– Spark keeps lineage of transformations
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DataFrame and Dataset APIs
• DataFrame adds to RDD a schema to describe data

– Unlike RDD, data is organized into a distributed in-memory 
table with named columns and schema

– Spark SQL provides API to run SQL queries on DataFrames
with a simple SQL-like syntax

• Table-like format of a DataFrame
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https://spark.apache.org/docs/latest/sql-programming-guide.html 



DataFrame and Dataset APIs
• Dataset extends DataFrame providing type-safe, 

OO programming interface
– Structured and strongly typed collection of data
– Dataset: collection of strongly-typed JVM objects in Scala 

or class in Java

• DataFrame vs Dataset
– DataFrame: more flexible and efficient in terms of 

performance
– Dataset: more type-safe and expressive, but with a limited 

set of APIs and more memory consumption

• DataFrame and Dataset APIs have with similar 
interfaces
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RDDs vs DataFrames vs Datasets
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https://www.databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-
rdds-dataframes-and-datasets.html 



Dataset API
• Provides the benefits of RDDs (strong typing, ability 

to use lambda functions) with those of Spark SQL’s 
optimized execution engine

• API available in Scala and Java (not in Python)
• Can be constructed from JVM objects in Scala or 

class in Java
• Can be manipulated using transformations (map, 

flatMap, filter, groupBy, ...) and actions
• Lazy, i.e. computation is only triggered when an 

action is invoked
– Internally, a logical plan describes the computation required 

to produce data. When an action is invoked, Spark query 
optimizer optimizes the logical plan and generates a physical 
plan for efficient execution
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Dataset API
• How to create a Dataset?

– From file using read function
– From existing RDD by converting it
– Through transformations applied on existing Datasets

• When creating a Dataset you have to know the 
schema (i.e., data types) 
• With JSON and CSV files it is possible to infer the schema 
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DataFrame API
• DataFrame: a Dataset organized into named columns
• Conceptually equivalent to a table in a relational 

database, with richer optimizations
• API available in Scala, Java, Python, and R

– Can be used in PySpark shell
– In Scala and Java, a DataFrame is a Dataset of Rows

• Can be manipulated in similar ways to RDDs
• Can be constructed from: 

– Structured data files (JSON, CSV, Parquet, Avro, ORC, 
protobuf)

– Existing RDDs, either inferring the schema using reflection 
or programmatically specifying the schema

– Tables in Hive
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DataFrame API: constructing data frames

• Create DataFrame from RDD, list or pandas DataFrame
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DataFrame API: constructing data frames
• Spark supports many file formats, including text, CSV, 

JSON, Parquet, ORC, and Avro
• Create DataFrame from file

– To load a file into a DataFrame, use generic read.load
function and its options (default file format is Parquet)

– Can also specify manually file format along with extra options 
(see example below)

– For some format, specific read methods, e.g., read.csv, 
read.json, read.parquet

– Spark can infer schema for CSV and JSON 
– Example: load CSV file using read.load (default separator is 

",")
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df = spark.read.load(
"/opt/spark/examples/src/main/resources/people.csv",
format="csv", sep=";", inferSchema="true", header="true")
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https://github.com/apache/spark/blob/master/examples/src/main/python/sql/datasource.py

DataFrame API: load CSV file

• Spark can infer schema of each column from CSV file
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• Example: load CSV file using read.csv



Parquet file format
• Columnar data file format designed for efficient data 

storage and retrieval https://parquet.apache.org

• Spark provides support for reading and writing 
Parquet files 
– Also supported by other data processing frameworks, 

regardless of data model or programming language choice

• Interoperable with other data storage formats
– Avro, Thrift, Protocol Buffers, ...
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Parquet file format
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• Provides efficient data compression and encoding 
schemes
– Several compression codecs (e.g., gzip, snappy) with different 

compression ratio and processing cost

• Example: Parquet vs. CSV 

• Schema of original data is automatically preserved
• Supports schema evolution, allowing schema changes
• Supports predicate pushdown

– Optimization technique whereby data filtering operations are 
performed into scan operator responsible for reading in the data



DataFrame API: using Parquet
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https://spark.apache.org/docs/latest/sql-data-sources-parquet.html

Spark SQL can automatically infer the schema of 
a JSON file using SparkSession.read.json()

From DataFrame to RDD and viceversa

• To convert DataFrame to RDD when greater control 
is needed, call .rdd method on DataFrame object

• Reverse conversion can be done by calling 
spark.createDataFrame() on an existing RDD

Valeria Cardellini - SABD 2024/25 101



DataFrame API: benefits
• Let’s consider expressivity and simplicity 
• Example: aggregate all the ages for each name, 

group by name, and then average the ages
– With RDDs (see slide 55), we instruct Spark how to 

aggregate keys and compute averages using lambda 
functions: hard to read and cryptic

– With DataFrames, we instruct Spark what to do
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from pyspark.sql.functions import avg 
# Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 
31), ("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name", 
"age"])
# Group the same names together, aggregate their ages, 
# and compute an average 
avg_df = data_df.groupBy("name").agg(avg("age"))
# Show the results of the final execution
avg_df.show() 

Spark Streaming and Structured Streaming
• Spark Streaming (legacy): streaming engine

– Data streams are ingested and analyzed in micro-
batches

– Uses a high-level abstraction called Dstream
(discretized stream) 

• A continuous stream of data, represented as a sequence 
of RDDs

– Internally, it works as:

• Structured Spark Streaming
– Spark’s stream processing engine built on Spark 

SQL engine
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See hands-on lesson



Spark MLlib
• Spark Mllib: Spark library for machine learning

– Includes 2 packages: 
• spark.ml: MLlib DataFrame-based API to support a variety of 

data types
• spark.mllib: MLlib RDD-based API (maintenance mode)

• Provides common ML algorithms
– Classification (e.g., logistic regression), regression, 

clustering (e.g., K-means), recommendation (e.g., 
collaborative filtering), decision trees, random forests, and 
more

• Provides also utilities 
– For ML: feature transformations, model evaluation and 

hyper-parameter tuning
– For distributed linear algebra (e.g., PCA) and statistics (e.g., 

summary statistics, hypothesis testing)
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Spark MLlib: logistic regression example
• Logistic regression: popular method to predict a 

categorical response
– Binomial and multinomial

• Dataset of labels and features
• Load training data and fit model using binomial 

logistic regression
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LIBSVM format

ML package
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Learn a LogisticRegression model, which 
uses the parameters stored in lr

Create a LogisticRegression instance



Spark MLlib: K-means
• MLlib implementation of K-means includes a 

parallelized variant of K-means++ called Kmeans||
– K-means++ goal: find K initial cluster centroids by spreading 

them out so as to improve solution quality and convergence
• 1st cluster centroid is chosen uniformly from data points 
• Each subsequent centroid is chosen from the remaining data 

points with probability proportional to its squared distance from 
the point's closest existing cluster centroid

– Since K-means++ is sequential (it needs K passes over the 
data), Spark uses its parallel variant Kmeans||

• K-means input is feature vector
• K-means output is predicted cluster centers
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https://en.wikipedia.org/wiki/K-means%2B%2B

Bahmani et al, Scalable k-means++, Proc. VLDB Endow., 2012. 
theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf

Spark ML: k-means example
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Silhouette is used to evaluate separation distance 
between resulting clusters

Silhouette plot displays a measure of how close each 
point in one cluster is to points in the neighboring 
clusters and provides a way to assess the number of 
clusters visually



Combining processing tasks with Spark
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• It is easy to seamlessly combine different 
Spark libraries in the same application

• Example in Scala combining SQL, ML and 
streaming libraries in Spark
– Read historical Twitter data using Spark SQL
– Train a K-means clustering model using MLlib
– Apply the model to a new stream of tweets in 

order to predict language from location

Combining processing tasks with Spark

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))
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