
Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Apache Spark

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

The reference Big Data stack

1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

Valeria Cardellini - SABD 2024/25

MapReduce (MR): limitations
• Programming model

– Hard to implement everything as a MR program
– Multiple MR steps even for simple tasks

• E.g., sorting words by their frequency requires two MR steps

– Lack of control, structures and data types
• Efficiency (recall HDFS)

– High communication cost: compute (map),
communicate (shuffle), compute (reduce)

– Read input and store output from/on disk
– Limited exploitation of main memory

2Valeria Cardellini - SABD 2024/25

MapReduce: limitations

• Lack of native support for iteration
– Each step writes/reads data from disk: I/O overhead
– But real-world applications (e.g., ML algorithms)

require iterating MR steps
• Partial solution: design algorithms that minimize the

number of iterations

• Not feasible for real-time data stream
processing
– MR job requires to scan entire input before

processing it

3Valeria Cardellini - SABD 2024/25

Alternative programming models

• Based on directed acyclic graphs (DAGs)
– Application structured as directed acyclic graph

• DAG node: operation (or task)
• DAG edge: dependency (data flow) between operations

– Spark, Spark Streaming, Flink, Storm, Airflow,
TensorFlow, …

• SQL-based
– Hive, Spark SQL, Trino, Vertica, …

• NoSQL and NewSQL data stores
– HBase, MongoDB, Cassandra, Spanner, …

• Based on Bulk Synchronous Parallel

4Valeria Cardellini - SABD 2024/25

Alternative programming models: BSP
• Bulk Synchronous Parallel (BSP)

– Developed by Leslie Valiant during 1980s
– Considers communication actions en masse
– Suitable for graph analytics at massive scale and

massive scientific computations (e.g., matrix, graph
and network algorithms)

5

- Examples: Google’s
Pregel, Apache Giraph
to perform graph
processing on big data

Valeria Cardellini - SABD 2024/25

Apache Spark

• Unified engine for large-scale data analytics
– Leading platform for batch/streaming data, SQL analytics,

data science and machine learning on clusters of nodes
– Multi-language: Scala, Python, Java and R

• In-memory data storage for fast iterative processing
– At least 10x faster than Hadoop MapReduce

• Suitable for execution of DAGs and powerful
optimization

• Compatible with Hadoop’s storage APIs
– Can read/write to any Hadoop-supported system, including

HDFS and HBase

6Valeria Cardellini - SABD 2024/25

Spark milestones
• Spark project started in 2009
• Developed originally at UC Berkeley’s AMPLab by

Matei Zaharia for his PhD thesis
• Open sourced in 2010, Apache project since 2013
• Zaharia founded Databricks in 2014 https://databricks.com/

• Current release: 3.5.5
• Top open source project for Big Data processing

7Valeria Cardellini - SABD 2024/25

Programming model different from Mapreduce, why?

• MapReduce simplified Big Data analysis
– But executes jobs in a simple but rigid structure

• Step to process or transform data (map)
• Step to synchronize (shuffle)
• Step to combine results (reduce)

• As soon as MapReduce got popular, users wanted:
– Iterative computations, e.g., graph and ML algorithms
– Interactive ad-hoc queries
– More efficiency
– Faster in-memory data sharing across parallel jobs

(required by both iterative and interactive applications)

8Valeria Cardellini - SABD 2024/25

Spark: In-memory computation
• Key idea: keep and share datasets in main memory
• Distributed in-memory: 10x-100x faster than disk

and network

9Valeria Cardellini - SABD 2024/25

Spark vs Hadoop MapReduce
• Underlying programming paradigm similar to

MapReduce
– Basically “scatter-gather”: scatter data and computation on

multiple cluster nodes that run in parallel processing on
data portions; gather final results

• Spark offers a more general data model
– RDDs, DataSets, DataFrames

• Spark offers a more general and developer-friendly
programming model
– Map -> Transformations in Spark
– Reduce -> Actions in Spark

• Spark is storage agnostic
– Not only HDFS, but also Cassandra, S3, Parquet files, …

Valeria Cardellini - SABD 2024/25 10

Spark stack

11Valeria Cardellini - SABD 2024/25

Spark core

• Provides basic functionalities (including task
scheduling, memory management, fault
recovery, interacting with storage systems)
used by other components

• Provides a data abstraction called resilient
distributed dataset (RDD), a collection of
items distributed across many compute
nodes that can be manipulated in parallel
– Spark Core provides APIs for building and

manipulating these collections
• Written in Scala but APIs for Java, Python

and R
12Valeria Cardellini - SABD 2024/25

Spark as unified analytics engine

• Rich set of integrated higher-level modules
built on top of Spark
– Can be combined seamlessly within same app

• Spark SQL
– For SQL and structured data processing
– Supports many data sources (Hive tables, Parquet,

JSON, …)
• Structured Streaming

– For incremental computation and stream
processing

13Valeria Cardellini - SABD 2024/25

PageRank performance (20
iterations, 3.7B edges)

Spark as unified analytics engine

• MLlib
– Scalable ML library
– Distributed ML algorithms:

feature extraction,
classification, regression,
clustering, recommendation, …

14Valeria Cardellini - SABD 2024/25

• GraphX
– API for manipulating graphs and

performing graph-parallel computations
– Includes also common graph algorithms

(e.g., PageRank)
• Pandas API on Spark

– For pandas workloads

Logistic regression performance

Spark on top of cluster managers

• Spark can exploit many cluster resource
managers which allocate cluster resources to
run the applications

1. Standalone
– Simple cluster manager included with Spark that

makes it easy to set up a cluster
2. Hadoop YARN

– Hadoop cluster manager
3. Mesos

– Cluster manager from AMPLab
4. Kubernetes

15Valeria Cardellini - SABD 2024/25

Spark architecture

16

• Master/worker architecture

Valeria Cardellini - SABD 2024/25

Spark architecture

17

https://spark.apache.org/docs/latest/cluster-overview.html

• Main program (called driver program) connects to
cluster manager, which allocates resources

• Worker nodes in which executors run

• Executors are processes that run computations
and store data for the application

Valeria Cardellini - SABD 2024/25

Spark architecture
• Each application consists of a driver program and

executors on the cluster
– Driver program: process which runs user’s main function and

creates SparkContext object
– SparkContext: main entry point for Spark functionality, tells

Spark how to access a cluster

• Each application gets its own executors, which are
processes which stay up for the duration of the
application and run tasks in multiple threads
– Isolation of concurrent applications

• To run on a cluster:
– SparkContext connects to cluster manager, which allocates

cluster resources
– Once connected, Spark acquires executors on cluster nodes

and sends the application code (e.g., jar) to executors
– Finally, SparkContext sends tasks to executors to run

18Valeria Cardellini - SABD 2024/25

Spark architecture

19Valeria Cardellini - SABD 2024/25

Executor Executor

Resilient Distributed Datasets (RDDs)

• RDDs are the key programming abstraction in
Spark: a distributed memory abstraction

• Immutable, partitioned and fault-tolerant
collection of elements that can be manipulated
in parallel
– Like a LinkedList <MyObjects>
– Stored in main memory across the cluster nodes

• Each worker node that is used to run an application
contains at least one partition of the RDD(s) that is (are)
defined in the application

20Valeria Cardellini - SABD 2024/25

RDDs: distributed and partitioned

• Stored in main memory of the executors running in
the worker nodes (when it is possible) or on node
local disk (if not enough main memory)

• Allow executing in parallel the code invoked on
them
– Each executor of a worker node runs the specified code

on its partition of the RDD
– Partition: atomic chunk of data (a logical division of data)

and basic unit of parallelism
– Partitions of an RDD can be stored on different cluster

nodes

21Valeria Cardellini - SABD 2024/25

RDDs: immutable and fault-tolerant
• Immutable once constructed

– RDD content cannot be modified
– New RDD is created from existing RDD(s)

• Automatically rebuilt on failure (without
replication)
– Track lineage information so to efficiently recompute

missing or lost data due to (node) failures
– For each RDD, Spark knows how it has been

constructed and can rebuild it if a failure occurs
– This information is represented by means of RDD

lineage DAG which keeps track of one or more
operations that lead to the creation of that RDD

22Valeria Cardellini - SABD 2024/25

RDD: Spark management

• Spark manages the split of
RDDs in partitions and
allocates RDDs’ partitions
to cluster nodes

• Spark hides complexity of
fault tolerance
– RDDs are automatically

rebuilt in case of failure
using the lineage DAG, that
defines the logical execution
plan and represents the
dependencies between
RDDs (or DataFrames)

23Valeria Cardellini - SABD 2024/25

RDD API

• RDD API
– Clean language-integrated API for Scala, Python,

Java, and R
– Can be used interactively from console (Scala and

PySpark)
• RDD suitability

– Best suited for unstructured data
– Provides fine-grained control over physical

distribution of data
• Also higher-level APIs: DataFrame and DataSet

24Valeria Cardellini - SABD 2024/25

Python Spark (PySpark)

• PySpark: Python API for Spark supporting the
collaboration of Spark and Python

• Provides PySpark shell for interactive analysis
• Supports all of Spark’s features such as Spark SQL,

DataFrames, Structured Streaming, MLlib and Spark
Core

25Valeria Cardellini - SABD 2024/25

PySpark: SparkContext

• SparkContext: entry point for low-level RDD API,
connection to Spark cluster

• To create a SparkContext, you first need to build
a SparkConf object that contains information about
application

conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)

• SparkConf allows to set various Spark parameters,
among which
– master: URL of cluster to connect to
– appName: name of job to run

• In the shell, SparkContext is already available as sc
See https://spark.apache.org/docs/latest/api/python/

26Valeria Cardellini - SABD 2024/25

• Data flow is composed of any number of data
sources, operators, and data sinks by connecting
their inputs and outputs

• A Directed Acyclic Graph (DAG) in Spark is a set
of nodes and links, where nodes represent the
operations on RDDs and directed links represent
the data dependencies between operations
– Acyclic graph: no cycles or loops in the graph
– Generalization of MapReduce model, which has only

two operations (Map and Reduce)

Spark programming model: DAG

27Valeria Cardellini - SABD 2024/25

• DAG can be visualized using Spark Web UI
– In figure: WordCount DAG

Spark programming model: DAG

28Valeria Cardellini - SABD 2024/25

• DAG is divided into stages
• Stage: set of operations that

do not involve a shuffle of
data, resulting in a more
efficient computation

• As soon as a shuffle of data
is needed (i.e., when a wide
transformation is performed),
the DAG will yield a new
stage

Operations in RDD API

• Spark programs are written in terms of
operations on RDDs

• Programming model based on parallelizable
operations
– Higher-order functions that execute user-defined

functions in parallel
• RDDs are created from external data or other

RDDs
• RDDs are created and manipulated through

operators
See https://spark.apache.org/docs/latest/rdd-programming-guide.html

29Valeria Cardellini - SABD 2024/25

RDD operations
• RDD operations: higher-order functions
• Two types of RDD operations: transformations and

actions
• Transformations: coarse-grained and lazy

operations that define new RDD based on previous
one(s)
– map, filter, join, union, distinct, …
– lazy: the new RDD representing the result of a computation

is not immediately computed but is materialized on demand
when an action is called

• Actions: operations that kick off a job to execute on
a cluster and return a value to the driver program
after running a computation on RDD or write data to
external storage
– count, collect, save, …

30Valeria Cardellini - SABD 2024/25

Transformations and actions on RDDs

31

• Common transformations and actions on RDDs
- Seq[T]: sequence of elements of type T

https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

Valeria Cardellini - SABD 2024/25

How to create RDD
• RDD can be created by:

– Parallelizing existing data collections of the hosting
programming language (e.g., collections and lists of
Scala, Java, Python, or R)

• Number of partitions specified by user
• RDD API: parallelize

– From (large) files stored in HDFS or any other file
system

• One partition per HDFS block
• RDD API: textFile

– Transforming an existing RDD
• Number of partitions depends on transformation type
• RDD API: transformation operations (map, filter,
flatMap)

32Valeria Cardellini - SABD 2024/25

How to create RDD
• Turn an existing collection into an RDD

– sc is Spark context variable
– Important parameter: number of partitions
– Spark will run one task for each partition of the cluster

(typical setting: 2-4 partitions for each CPU in the cluster)
– Spark tries to set the number of partitions automatically
– You can also set it manually by passing it as a second

parameter to parallelize, e.g., sc.parallelize(data, 10)

• Load data from storage (local file system, HDFS, or
S3)

lines = sc.parallelize(["pandas", "i like pandas"])

lines = sc.textFile("/path/input.txt")

Examples in Python
Valeria Cardellini - SABD 2024/25 33

RDD transformations: map and filter

• map: takes as input a function which is applied
to each element of the RDD and maps each
input element to another element

transform each element through a function

nums = sc.parallelize([1, 2, 3, 4])

squares = nums.map(lambda x: x * x) # [1,4,9,16]

select those elements that func returns true

even = squares.filter(lambda num: num % 2 == 0) # [4,16]

Valeria Cardellini - SABD 2024/25 34

• filter: takes as input a function which is applied as
filter to each element of the RDD, selecting only those
elements on which the function returns true

RDD transformations: flatMap

• flatMap: takes as input a function which is applied to
each element of the RDD; can map each input item to
zero or more output items

split input lines into words

lines = sc.parallelize(["hello world", "hi"])

words = lines.flatMap(lambda line: line.split(" "))

[’hello', ’world', ’hi’]

map each element to zero or more others

ranges = nums.flatMap(lambda x: range(0, x, 1))

[0, 0, 1, 0, 1, 2, 0, 1, 2, 3]

range function in
Python: ordered
sequence of integer
values in range
[start;end) with non-
zero step

Valeria Cardellini - SABD 2024/25 35

RDD transformations: union and mapPartitions
• union: returns a new RDD that contains the union of

the elements in the source RDD and the argument

Valeria Cardellini - SABD 2024/25 36

rdd1 = sc.parallelize([2, 4, 7, 9])

rdd2 = sc.parallelize([1, 4, 5, 8, 9])

rdd3 = rdd1.union(rdd2)

[2, 4, 7, 9, 1, 4, 5, 8, 9]

rdd1 = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 3)

Define a function to process each partition

def f(iterator): yield sum(iterator)

rdd2 = mapPartitions(f).collect() # [6, 15, 34]

• mapPartitions: similar to map, but runs separately
on each partition

RDD transformations: partitionBy

• partitionBy: returns a new RDD that contains the
RDD partitioned using the specified partitioner and
number of partitions

Valeria Cardellini - SABD 2024/25 37

rdd = sc.parallelize([("apple", 1), ("banana", 2),

... ("orange", 3), ("apple", 4), ("banana", 1)])

partitioned_rdd = rdd.partitionBy(3)

Use glom to see data in each partition

partitioned_rdd.glom().collect()

[[('orange', 3)], [], [('apple', 1), ('banana', 2),
('apple', 4), ('banana', 1)]]

• glom: returns a new RDD by coalescing all elements
within each partition into a list
– useful for inspecting how data is distributed across

partitions or for debugging purposes

RDD transformations: reduceByKey

• reduceByKey: when called on a RDD of
key-value pairs, aggregates values with
the same key using the specified function

• Runs parallel reduce operations, one for
each key in the RDD

x = sc.parallelize([("a", 1), ("b", 1), ("a", 1), ("a", 1),

... ("b", 1), ("b", 1), ("b", 1), ("b", 1)], 3)

apply reduceByKey operation

y = x.reduceByKey(lambda accum, n: accum + n)

[('b', 5), ('a', 3)]

Valeria Cardellini - SABD 2024/25 38

RDD transformations: reduceByKey

• Let’s see the corresponding DAG

Valeria Cardellini - SABD 2024/25 39

2 stages: wide
transformation (data
shuffling)

See how reduceByKey
is implemented by
Spark
partitionBy partitions
the data by key
mapPartitions
performs partition-level
aggregation

RDD transformations: join
• join: performs an inner-join on

the keys of two RDDs
• Only keys that are present in both

RDDs are output
• Join candidates are independently

processed

users = sc.parallelize([(0, "Alex"), (1, "Bert"), (2, "Curt"),
(3, "Don")])

hobbies = sc.parallelize([(0, "writing"), (0, "gym"), (1,
"swimming")])

users.join(hobbies).collect()

[(0, ('Alex', 'writing')), (0, ('Alex', 'gym')), (1,
('Bert', 'swimming'))]

Valeria Cardellini - SABD 2024/25 40

RDD transformations: join

• Let’s see the corresponding DAG

Valeria Cardellini - SABD 2024/25 41

2 stages: wide
transformation (data
shuffling)

See how join is
implemented by Spark

After Stage 0, data is
shuffled and partitioned
partitionBy partitions
the data by key
mapPartitions
performs partition-level
aggregation

Other RDD transformations

• distinct: returns a new RDD that contains the distinct
elements of the source RDD

• groupByKey: when called on a key-value pair RDD,
groups the values for each key in the RDD into a single
sequence

• mapValues: passes each value in the key-value pair RDD
through a map function without changing the keys

• sample: samples a fraction of the data, with or without
replacement

• repartition: changes the number of partitions (i.e., the
level of parallelism) in the source RDD

• coalesce: decreases the number of partitions in the
source RDD

Valeria Cardellini - SABD 2024/25 42

How to pass functions to transformations

• Lambda expressions, for simple functions that can be
written as an expression (see examples)
• Lambdas do not support multi-statement functions or

statements that do not return a value

• Local defs inside the function calling into Spark, for
longer code

• Top-level functions in a module

Valeria Cardellini - SABD 2024/25 43

Transformations and actions

• Transformations are lazy
– Are not computed till an action requires a result to be

returned to the driver program
– Spark can build up the logical transformation plan

• This design enables Spark to perform operations
more efficiently as they can be grouped together
– E.g., if there were multiple filter or map operations, Spark

can fuse them into one operation
– E.g., if Sparks knows that data is partitioned, Sparks can

avoid moving data over the network for groupBy

• We run an action to trigger the computation
– Instructs Spark to compute a result from a series of

transformations

44Valeria Cardellini - SABD 2024/25

Some RDD actions

• collect: returns all the elements of the RDD as a list

• take: returns an array with the first n elements in the
RDD

• count: returns the number of elements in the RDD

nums = sc.parallelize([1, 2, 3, 4])

nums.collect() # [1, 2, 3, 4]

nums.take(3) # [1, 2, 3]

nums.count() # 4

Valeria Cardellini - SABD 2024/25 45

Some RDD actions

• reduce: aggregates the elements in the RDD using
the specified function

• saveAsTextFile: writes the RDD elements as a text
file either to the local file system or HDFS

sum = nums.reduce(lambda x, y: x + y)

nums.saveAsTextFile("hdfs://file.txt")

Valeria Cardellini - SABD 2024/25 46

Shuffle operations
• Shuffle: Spark mechanism for re-distributing data so

that it is grouped differently across partitions
– Involves copying data across executors and machines,

making shuffle an expensive operation

• Example: with reduceByKey not all values for a single
key necessarily reside on the same partition (or even
the same machine), but they must be co-located to
compute the result by means of an all-to-all operation

Valeria Cardellini - SABD 2024/25 47

• Operations which can cause a shuffle
include
– repartition operations: repartition and

coalesce
– ByKey operations, e.g., reduceByKey and

groupByKey
– join operations, e.g., join and cogroup

Your very first examples in Spark
• After having installed Spark (e.g., Docker official image

https://hub.docker.com/_/spark), you can use PySpark in a
terminal window to run the examples interactively
– sc is SparkContext variable

Valeria Cardellini - SABD 2024/25 48

First examples

• Let’s first analyze some simple examples
using RDD API
– Pi estimation
– WordCount
– Compute average

• Other examples: see Spark distribution
– Java

https://github.com/apache/spark/tree/master/examples/src/main/jav
a/org/apache/spark/examples

– Python
https://github.com/apache/spark/tree/master/examples/src/main/pyt
hon

49Valeria Cardellini - SABD 2024/25

Pi estimation in Python

def inside(p):
 x, y = random.random(), random.random()
 return x*x + y*y < 1

samples = sc.parallelize(range(0, NUM_SAMPLES))
within_circle = samples.filter(inside)
count = within_circle.count()
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2024/25 50

Pi estimation in Python with chaining

def inside(p):
 x, y = random.random(), random.random()
 return x*x + y*y < 1
count = sc.parallelize(range(0, NUM_SAMPLES)) \
 .filter(inside).count()
print("Pi is roughly %f" % (4.0 * count / NUM_SAMPLES))

Valeria Cardellini - SABD 2024/25 51

• Transformations and actions can be chained
together

Pi estimation in Scala

Valeria Cardellini - SABD 2024/25 52

var NUM_SAMPLES = 100000
val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>

val x = math.random
val y = math.random
x*x + y*y < 1

}.count()
println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")

• To run Spark shell in Scala
$ spark-shell

WordCount in Python

53Valeria Cardellini - SABD 2024/25

text_file = sc.textFile("hdfs://inputfile")

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://output")

WordCount in Python
• Alternative solution: use countByValue

– Action that returns the count of each unique value in RDD as
a dictionary of (value, count) pairs

– Driver collects the partitions and does the merge

• Which solution is better? Depends on dataset size
– Large dataset: use map, reduceByKey and collect to

exploit parallelism of reduceByKey
– Small dataset: using countByValue may reduce network

traffic (one stage less)

Valeria Cardellini - SABD 2024/25 54

text_file = sc.textFile("hdfs://inputfile")
words = text_file.flatMap(lambda line: line.split(" "))
wordCount = words.countByValue()
print(wordCount)

Compute average in Python

Create an RDD of tuples (name, age)
dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31),

("Bob", 40), ("Bob", 35), ("Brooke", 25)])
Use map and reduceByKey transformations with their lambda
expressions to aggregate and then compute average
agesRDD = (dataRDD
.map(lambda x: (x[0], (x[1], 1)))
.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
.map(lambda x: (x[0], x[1][0]/x[1][1])))

Valeria Cardellini - SABD 2024/25 55

• A common pattern in data analysis
• Let’s aggregate all the ages for each name, group by

name, and then average the ages

Java: Lambda expressions
• Lambda expressions are short blocks of code which

take in parameters and return a value
– Enable to treat functionality as method argument, or code

as data

• Similar to methods (anonymous methods, i.e.,
methods without names), but do not need a name
and can be implemented in the body itself

• Usually passed as parameters to a function
• Arrow operator -> divides the lambda expression in

two parts
– Left side: parameters required by lambda expression
– Right side: actions of lambda expression

56Valeria Cardellini - SABD 2024/25

Pi estimation in Java with chaining

List<Integer> l = new ArrayList<>(NUM_SAMPLES);
for (int i = 0; i < NUM_SAMPLES; i++) {
 l.add(i);
}
long count = sc.parallelize(l).filter(i -> {
 double x = Math.random();
 double y = Math.random();
 return x*x + y*y < 1;
}).count();
System.out.println("Pi is roughly " + 4.0 * count / NUM_SAMPLES);

Valeria Cardellini - SABD 2024/25 57

WordCount in Java

58Valeria Cardellini - SABD 2024/25

• JavaPairRDD: RDD containing key/value pairs
• Spark’s Java API allows to create tuples using
scala.Tuple2 class

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaRDD<String> words = lines.flatMap(line ->

 Arrays.asList(SPACE.split(line).iterator());

JavaPairRDD<String, Integer> ones = words.mapToPair(w ->

 new Tuple2<>(w, 1));

JavaPairRDD<String, Integer> counts = ones.reduceByKey((x, y) ->

 x+y);

counts.saveAsTextFile("output");

WordCount in Java with chaining

59Valeria Cardellini - SABD 2024/25

JavaRDD<String> lines = sc.textFile("hdfs://inputfile");

JavaPairRDD<String, Integer> counts = lines

.flatMap(s -> Arrays.asList(SPACE.split(line)).iterator())

.mapToPair(w -> new Tuple2<>(w, 1))

.reduceByKey((x, y) -> x + y);

counts.saveAsTextFile("output");

Initializing Spark: SparkContext

• First step in Spark program using RDD API: create a
Spark configuration object (SparkConf) and then a
SparkContext object with that configuration

• SparkConf object: configuration for Spark application
– Used to set various Spark parameters as key-value pairs

• SparkContext is the entry point to Spark core
functionalities and allows you to interact with Spark
cluster, load data, and perform transformations.

• Only one SparkContext may be active per JVM
– Stop the existing SparkContext before creating a new one

using stop()

60Valeria Cardellini - SABD 2024/25

SparkConf().setMaster("local").setAppName("My app")

SparkSession
• From Spark 2.0, SparkSession was introduced as

single entry point for all functionalities, unifying the
different contexts previously used for various APIs
– Still provides access to SparkContext, which is essential for

working directly with RDDs
• From interactive shell: available as variable spark
• Within application: use builder to create and

configure SparkSession

Valeria Cardellini - SABD 2024/25 61

Java

Python

Pi estimation in Python: using SparkSession

Valeria Cardellini - SABD 2024/25 62

Full example using
SparkSession and API RDD

Access SparkContext from
SparkSession and work with RDD

Create and configure SparkSession

Slightly different from slide 51: map
and reduce instead of filter and count

https://github.com/apache/spark/blob/master/examples/src/main/python/pi.py

WordCount in Java: using SparkSession

63Valeria Cardellini - SABD 2024/25

Full example using
SparkSession and API RDD

Create and configure SparkSession

WordCount in Java: using SparkSession

64Valeria Cardellini - SABD 2024/25

Use RDDUse Dataset

https://github.com/apache/spark/blob/master/examples/src/main/java/org/apache/spark/exa
mples/JavaWordCount.java

Launch applications

• Launch Spark application using bin/spark-submit
script

Valeria Cardellini - SABD 2024/25 65

See https://spark.apache.org/docs/latest/submitting-applications.html

Launch applications: main options
• --class: app entry point (e.g.,

org.apache.spark.examples.SparkPi)
• --master: master URL for cluster (e.g.,

spark://23.195.26.187:7077) (default: local)
• --deploy-mode: whether to deploy driver on worker nodes

(cluster) or locally as external client (default: client)
• --conf: Spark configuration property in key=value format
• application-jar: path to jar including app and all

dependencies. Be careful: URL must be globally visible, e.g.,
hdfs:// path or a file:// path that is present on all nodes

• For Python app: pass a .py file in place of application-jar
and add Python .zip, .egg or .py files to the search path using
--py-files

• application-arguments: arguments passed to the main
method of the main class, if any

Valeria Cardellini - SABD 2024/25 66

Launch applications: example

./bin/spark-submit --class
org.apache.spark.examples.SparkPi \

--master local \
--deploy-mode client \
--num-executors 2 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
examples/jars/spark-examples*.jar 10

Valeria Cardellini - SABD 2024/25 67

./bin/spark-submit \
examples/src/main/python/pagerank.py \
data/mllib/pagerank_data.txt 10

• Launch PageRank in Python passing arguments

• Launch Pi estimation in Java configuring Spark and
passing argument

Deploy modes and cluster managers

• Spark supports different deploy modes and cluster
managers, so it can run in different configurations
and environments

Valeria Cardellini - SABD 2024/25 68

Caching and persistence
• By default, RDDs are recomputed each time you run

an action on them
– This can be expensive (in time) if you need to use the RDD

more than once (e.g., iterative algorithms)

• To avoid recomputing an RDD multiple times, ask
Spark to persist (or cache) data for rapid reuse
– To persist RDD, use persist() or cache() methods on it
– When RDD is persisted, each node stores its partitions in

memory and reuses them in future actions on that RDD (or
RDDs derived from it): future actions are thus much faster
(more than 10x)

• Key tool for iterative algorithms and fast interactive use
• Both cache and persist can be also applied to

DataFrames and Datasets

69Valeria Cardellini - SABD 2024/25

Caching and persistence: storage level
• Using persist() you can specify the storage level for

persisting an RDD
– cache() is equivalent to persist() with default storage level

(MEMORY_ONLY)

• Main storage levels:
– MEMORY_ONLY: if the RDD does not fit in memory, some

partitions will not be cached and will be recomputed on the fly
each time they are needed

– MEMORY_AND_DISK
– DISK_ONLY

• Which storage level is best?
– Try to keep in-memory as much as possible
– Try not to spill to disk unless the functions that computed your

datasets are expensive (e.g., filter a large amount of data)
– Use replicated storage levels only if you want fast fault

recovery
70Valeria Cardellini - SABD 2024/25

Caching and persistence: performance speedup
• Spark outperforms Hadoop by up to 100x in

iterative ML
– Speedup comes from avoiding I/O and deserialization

costs by storing data in memory

71Valeria Cardellini - SABD 2024/25
Source: “Apache Spark: A Unified Engine for Big Data Processing”

110 s/iteration

1st iteration 80 s

Further iterations 1 s

Caching and persistence: example
• Let’s analyze how persistence is used in iterative

algorithms
• Naïve implementation of K-means algorithm

– At each iteration we need to use the RDD containing the
data points to be clustered

– Let’s cache it
data = lines.map(parseVector).cache()

https://github.com/apache/spark/blob/master/examples/src/main/python/k
means.py

72Valeria Cardellini - SABD 2024/25

K-means in Spark

• Name of data file, number of clusters K and
convergence threshold are read from command line

• Code uses NumPy (package for scientific computing
in Python)

$./bin/spark-submit --master local \

 $SPARK_HOME/examples/src/main/python/kmeans.py \

 $SPARK_HOME/data/mllib/kmeans_data.txt 2 0.1

Valeria Cardellini - SABD 2024/25 73

K-means in Spark

• Let’s first define two utility functions: parseVector
and closestPoint

Return index of the
closest centroid for point
p. centers contains the
centroids, where
centers[i] is
the i-th centroid

Valeria Cardellini - SABD 2024/25 74

Convert data into
float numbers

K-means in Spark
• Read data to be clustered from input file, convert

data into float numbers and then set K and
convergeDist

• Cache the RDD data to improve performance
• Inizialize randomly the cluster centroids kPoints

Valeria Cardellini - SABD 2024/25 75

takeSample is an action
used to retrieve a random
sample from the RDD (False
means without replacement)

K-means in Spark
• Repeat in a loop until convergence

– Map each data point to its closest centroid
– Calculate new cluster centroids (using average pattern)

Valeria Cardellini - SABD 2024/25 76

How Spark works on clusters

• A Spark application runs as a set of processes
(executors) on the cluster, coordinated by the driver
program of the application

• Executor: process launched on a worker node, that
runs tasks and keeps data in memory or disk storage
– Each application has its own executors

77Valeria Cardellini - SABD 2024/25

task

How Spark works at runtime

78Valeria Cardellini - SABD 2024/25

data shuffle

• Application creates RDDs, transforms them, and runs
actions: this results in a DAG of operations

• DAG is transformed into stages
– Stage: set of tasks without data shuffle in between, contains

pipelined transformations with narrow dependencies
– Task: unit of execution that is sent to one executor and works

on a single partition of data

• Actions drive execution

Stage execution
• Spark:

– Creates a task for each partition in RDD
– Schedules and assigns tasks to worker nodes

• Task creation and scheduling happens
internally (you need to do anything)

• Configuration
– Number of executors, amount of resources

assigned to each executor (cores and memory)
– By default, each executor runs one task per core

79Valeria Cardellini - SABD 2024/25

Summary of Spark components

RDD: parallel dataset with partitions

DAG: logical graph of RDD operations

Stage: set of tasks that run in parallel

Task: smallest unit of execution

80

Coarse grain

Fine grain

Valeria Cardellini - SABD 2024/25

Fault tolerance

• Spark keeps track of transformations used to
build RDDs (their lineage DAG)

• Lineage information + RDD immutability =
fault tolerance
– Lineage is used to recover lost data of RDD by

replaying transformations on RDDs

81Valeria Cardellini - SABD 2024/25

Example: RDD lineage DAG
created during log analysis

Application scheduling

• DAG scheduler assigns tasks from Spark app to
executors

• When app runs a Spark action (e.g., collect),
scheduler builds a physical execution plan (DAG of
stages) from the logical execution plan (RDD lineage
DAG)

• Scheduler determines task scheduling (on which
worker node to run each task) on the basis of data
locality
– If a task needs a partition which is available in a node’s

memory, the task is sent to that node

• Scheduler handles failures to compute missing
partitions from each stage

82Valeria Cardellini - SABD 2024/25

Spark’s high-level modules

83Valeria Cardellini - SABD 2024/25

Spark SQL

84

• Spark module for structured data processing
• Run SQL queries on top of Spark
• Integrated with Spark ecosystem

– Seamlessly mix SQL queries with Spark programs,
using either SQL or DataFrame API

– Apply functions to results of SQL queries, e.g.,

• Compatible with Hive, speedup up to 100x
– Hive: data warehouse built on top of Hadoop that

provides data summarization, query, and analysis
with SQL-like interface

Valeria Cardellini - SABD 2024/25

Spark SQL: how it began

• Goal was to extend Hive to run on Spark
– Shark: modified Hive’s backend to run over Spark,

employing in-memory columnar storage
– Shark limits

• Only Hive data model
• Query optimizer tied to Hadoop

85Valeria Cardellini - SABD 2024/25

Hive on Hadoop MapReduce Shark on Spark

Spark SQL: Features
• Borrows from Shark

– Hive data loading, in-memory columnar storage
• Adds:

– RDD-aware query optimizer (Catalyst Optimizer)
– Schema to RDD (DataFrame and Dataset APIs)
– Rich language interfaces

86Valeria Cardellini - SABD 2024/25

Spark SQL: Catalyst optimizer
• Catalyst is based on functional programming

constructs in Scala and designed for
– Easily adding new optimization techniques and features to

Spark SQL
– Enabling developers to extend the optimizer (e.g., adding

data source specific rules, support for new data types)

• Phases of query execution: analysis, logical
optimization, physical planning, and code generation

Valeria Cardellini - SABD 2024/25 87

DataFrame and Dataset APIs
• Higher-level than RDD
• Best suited for structured and semi-structured

data
• SparkSession: entry point
• Exploit Catalyst optimizer
• In common with RDDs:

– Distributed in-memory collection of data
– Immutable
– Manipulated in similar ways to RDDs
– Evaluated lazily
– Persisted in memory
– Spark keeps lineage of transformations

Valeria Cardellini - SABD 2024/25 88

DataFrame and Dataset APIs
• DataFrame adds to RDD a schema to describe data

– Unlike RDD, data is organized into a distributed in-memory
table with named columns and schema

– Spark SQL provides API to run SQL queries on DataFrames
with a simple SQL-like syntax

• Table-like format of a DataFrame

Valeria Cardellini - SABD 2024/25 89

https://spark.apache.org/docs/latest/sql-programming-guide.html

DataFrame and Dataset APIs
• Dataset extends DataFrame providing type-safe,

OO programming interface
– Structured and strongly typed collection of data
– Dataset: collection of strongly-typed JVM objects in Scala

or class in Java

• DataFrame vs Dataset
– DataFrame: more flexible and efficient in terms of

performance
– Dataset: more type-safe and expressive, but with a limited

set of APIs and more memory consumption

• DataFrame and Dataset APIs have with similar
interfaces

Valeria Cardellini - SABD 2024/25 90

RDDs vs DataFrames vs Datasets

Valeria Cardellini - SABD 2024/25 91

https://www.databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-
rdds-dataframes-and-datasets.html

Dataset API
• Provides the benefits of RDDs (strong typing, ability

to use lambda functions) with those of Spark SQL’s
optimized execution engine

• API available in Scala and Java (not in Python)
• Can be constructed from JVM objects in Scala or

class in Java
• Can be manipulated using transformations (map,

flatMap, filter, groupBy, ...) and actions
• Lazy, i.e. computation is only triggered when an

action is invoked
– Internally, a logical plan describes the computation required

to produce data. When an action is invoked, Spark query
optimizer optimizes the logical plan and generates a physical
plan for efficient execution

Valeria Cardellini - SABD 2024/25 92

Dataset API
• How to create a Dataset?

– From file using read function
– From existing RDD by converting it
– Through transformations applied on existing Datasets

• When creating a Dataset you have to know the
schema (i.e., data types)
• With JSON and CSV files it is possible to infer the schema

Valeria Cardellini - SABD 2024/25 93

DataFrame API
• DataFrame: a Dataset organized into named columns
• Conceptually equivalent to a table in a relational

database, with richer optimizations
• API available in Scala, Java, Python, and R

– Can be used in PySpark shell
– In Scala and Java, a DataFrame is a Dataset of Rows

• Can be manipulated in similar ways to RDDs
• Can be constructed from:

– Structured data files (JSON, CSV, Parquet, Avro, ORC,
protobuf)

– Existing RDDs, either inferring the schema using reflection
or programmatically specifying the schema

– Tables in Hive

94Valeria Cardellini - SABD 2024/25

DataFrame API: constructing data frames

• Create DataFrame from RDD, list or pandas DataFrame

Valeria Cardellini - SABD 2024/25 95

DataFrame API: constructing data frames
• Spark supports many file formats, including text, CSV,

JSON, Parquet, ORC, and Avro
• Create DataFrame from file

– To load a file into a DataFrame, use generic read.load
function and its options (default file format is Parquet)

– Can also specify manually file format along with extra options
(see example below)

– For some format, specific read methods, e.g., read.csv,
read.json, read.parquet

– Spark can infer schema for CSV and JSON
– Example: load CSV file using read.load (default separator is

",")

96

df = spark.read.load(
"/opt/spark/examples/src/main/resources/people.csv",
format="csv", sep=";", inferSchema="true", header="true")

Valeria Cardellini - SABD 2024/25
https://github.com/apache/spark/blob/master/examples/src/main/python/sql/datasource.py

DataFrame API: load CSV file

• Spark can infer schema of each column from CSV file

Valeria Cardellini - SABD 2024/25 97

• Example: load CSV file using read.csv

Parquet file format
• Columnar data file format designed for efficient data

storage and retrieval https://parquet.apache.org

• Spark provides support for reading and writing
Parquet files
– Also supported by other data processing frameworks,

regardless of data model or programming language choice

• Interoperable with other data storage formats
– Avro, Thrift, Protocol Buffers, ...

Valeria Cardellini - SABD 2024/25 98

Parquet file format

Valeria Cardellini - SABD 2024/25 99

• Provides efficient data compression and encoding
schemes
– Several compression codecs (e.g., gzip, snappy) with different

compression ratio and processing cost

• Example: Parquet vs. CSV

• Schema of original data is automatically preserved
• Supports schema evolution, allowing schema changes
• Supports predicate pushdown

– Optimization technique whereby data filtering operations are
performed into scan operator responsible for reading in the data

DataFrame API: using Parquet

Valeria Cardellini - SABD 2024/25 100

https://spark.apache.org/docs/latest/sql-data-sources-parquet.html

Spark SQL can automatically infer the schema of
a JSON file using SparkSession.read.json()

From DataFrame to RDD and viceversa

• To convert DataFrame to RDD when greater control
is needed, call .rdd method on DataFrame object

• Reverse conversion can be done by calling
spark.createDataFrame() on an existing RDD

Valeria Cardellini - SABD 2024/25 101

DataFrame API: benefits
• Let’s consider expressivity and simplicity
• Example: aggregate all the ages for each name,

group by name, and then average the ages
– With RDDs (see slide 55), we instruct Spark how to

aggregate keys and compute averages using lambda
functions: hard to read and cryptic

– With DataFrames, we instruct Spark what to do

Valeria Cardellini - SABD 2024/25 102

from pyspark.sql.functions import avg
Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny",
31), ("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name",
"age"])
Group the same names together, aggregate their ages,
and compute an average
avg_df = data_df.groupBy("name").agg(avg("age"))
Show the results of the final execution
avg_df.show()

Spark Streaming and Structured Streaming
• Spark Streaming (legacy): streaming engine

– Data streams are ingested and analyzed in micro-
batches

– Uses a high-level abstraction called Dstream
(discretized stream)

• A continuous stream of data, represented as a sequence
of RDDs

– Internally, it works as:

• Structured Spark Streaming
– Spark’s stream processing engine built on Spark

SQL engine
103Valeria Cardellini - SABD 2024/25

See hands-on lesson

Spark MLlib
• Spark Mllib: Spark library for machine learning

– Includes 2 packages:
• spark.ml: MLlib DataFrame-based API to support a variety of

data types
• spark.mllib: MLlib RDD-based API (maintenance mode)

• Provides common ML algorithms
– Classification (e.g., logistic regression), regression,

clustering (e.g., K-means), recommendation (e.g.,
collaborative filtering), decision trees, random forests, and
more

• Provides also utilities
– For ML: feature transformations, model evaluation and

hyper-parameter tuning
– For distributed linear algebra (e.g., PCA) and statistics (e.g.,

summary statistics, hypothesis testing)

Valeria Cardellini - SABD 2024/25 104

Spark MLlib: logistic regression example
• Logistic regression: popular method to predict a

categorical response
– Binomial and multinomial

• Dataset of labels and features
• Load training data and fit model using binomial

logistic regression

105

LIBSVM format

ML package

Valeria Cardellini - SABD 2024/25

Learn a LogisticRegression model, which
uses the parameters stored in lr

Create a LogisticRegression instance

Spark MLlib: K-means
• MLlib implementation of K-means includes a

parallelized variant of K-means++ called Kmeans||
– K-means++ goal: find K initial cluster centroids by spreading

them out so as to improve solution quality and convergence
• 1st cluster centroid is chosen uniformly from data points
• Each subsequent centroid is chosen from the remaining data

points with probability proportional to its squared distance from
the point's closest existing cluster centroid

– Since K-means++ is sequential (it needs K passes over the
data), Spark uses its parallel variant Kmeans||

• K-means input is feature vector
• K-means output is predicted cluster centers

Valeria Cardellini - SABD 2024/25 106

https://en.wikipedia.org/wiki/K-means%2B%2B

Bahmani et al, Scalable k-means++, Proc. VLDB Endow., 2012.
theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf

Spark ML: k-means example

Valeria Cardellini - SABD 2024/25 107

Silhouette is used to evaluate separation distance
between resulting clusters

Silhouette plot displays a measure of how close each
point in one cluster is to points in the neighboring
clusters and provides a way to assess the number of
clusters visually

Combining processing tasks with Spark

Valeria Cardellini - SABD 2024/25 108

• It is easy to seamlessly combine different
Spark libraries in the same application

• Example in Scala combining SQL, ML and
streaming libraries in Spark
– Read historical Twitter data using Spark SQL
– Train a K-means clustering model using MLlib
– Apply the model to a new stream of tweets in

order to predict language from location

Combining processing tasks with Spark

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

Valeria Cardellini - SABD 2024/25 109

References

• Zaharia et al., Spark: Cluster Computing with Working Sets,
HotCloud’10.
https://static.usenix.org/events/hotcloud10/tech/full_papers/Zaharia.pdf

• Zaharia et al., Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing, NSDI’12
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

• Zaharia et al., Apache Spark: A Unified Engine For Big Data
Processing, Commun. ACM, 2016.
https://dl.acm.org/doi/pdf/10.1145/2934664

• Ambrust et al., Spark SQL: Relational Data Processing in Spark,
ACM SIGMOD’15 https://dl.acm.org/doi/pdf/10.1145/2723372.2742797

• Damji et al., Learning Spark - Lightning-Fast Big Data Analysis, 2nd
edition, O’Reilly, 2020 https://pages.databricks.com/rs/094-YMS-
629/images/LearningSpark2.0.pdf

110Valeria Cardellini - SABD 2024/25

