
(Big) Data Storage Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

V. Cardellini - SABD 2024/25 1

Resource Management

Data Storage

Data Processing

High-level Frameworks Support / Integration

Where storage sits in Big Data stack

V. Cardellini - SABD 2024/25 2

• Some frameworks and tools in a data lake
architecture

object

Typical server architecture and storage hierarchy

V. Cardellini - SABD 2024/25 3

Storage performance metrics

V. Cardellini - SABD 2024/25 4

Where to store data?
• See “Latency numbers every programmer should know”

(presented by Jeff Dean from Google in 2010, numbers
updated in 2020)

5V. Cardellini - SABD 2024/25

Maximum attainable throughput

• Varies significantly by device
– 50 GB/s for RAM
– 3 GB/s for NVMe SSD

• SSD: Solid State Drive
• NVMe: Non-Volatile Memory Express
• NVMe is a storage access and transport protocol for

flash and next-generation SSDs
– 130 MB/s for hard disk

• Assumes large reads (≫1 block)

V. Cardellini - SABD 2024/25 6

Hardware trends over time

• Capacity/$ grows at a fast rate (e.g., doubles
every 2 years)

• Throughput grows at a slower rate (~5% per
year), but new interconnects help

• Latency does not improve much over time

V. Cardellini - SABD 2024/25 7

Data storage: the classic approach
• File

– Group of data, whose structure is defined by file system

• File system
– Controls how data are structured, named, organized, stored

and retrieved from disk
– Single (logical) disk (e.g., HDD/SDD, RAID)

• Relational database
– Organized/structured collection of data (e.g., entities, tables)

• Relational database management system (RDBMS)
– Provides a way to organize and access relational data

– Enables data definition, update, retrieval, administration

V. Cardellini - SABD 2024/25 8

What about Big Data?
Storage capacity and data transfer rate have increased
massively over the years

Let's consider the latency (time needed to transfer data*)

V. Cardellini - SABD 2024/25 9

HDD
Capacity: ~1TB
Throughput: 250MB/s

SSD
Capacity: ~1TB
Throughput: 850MB/s

Data Size HDD SSD
10 GB 40s 12s

100 GB 6m 49s 2m
1 TB 1h 9m 54s 20m 33s

10 TB ? ?
* we consider no overhead

We need to
scale out!

General principles for scalable data storage
• Scalability and high performance

– Need to face continuous growth of data to store
– Use multiple nodes to store data

• Ability to run on commodity hardware
– But hardware failures are the norm rather than the exception

• Reliability and fault tolerance
– Transparent data replication

• Availability
– Data should be available to serve requests when needed
– CAP theorem: trade-off with consistency

V. Cardellini - SABD 2024/25 10

Scalable and resilient data storage solutions
Various forms of storage for Big Data:
• Distributed file systems and object stores

– Manage files and objects on multiple nodes
– E.g., Google File System, HDFS, Ozone, Ambri

• NoSQL data stores
– Simple and flexible non-relational data models: key-value,

column family, document, and graph
– Horizontal scalability and fault tolerance
– E.g., Redis, BigTable, Hbase, Cassandra, MongoDB, Neo4J
– Also time series DBs built on top of NoSQL (e.g.,: InfluxDB,

KairosDB)

• NewSQL databases
– Add horizontal scalability and fault tolerance to relational model
– E.g., VoltDB, Google Spanner, CockroachDB

V. Cardellini - SABD 2024/25 11

Scalable and resilient data storage solutions

V. Cardellini - SABD 2024/25 12

Whole picture of different storage solutions we consider

Cloud data storage
• Goals:

– On-demand (elastic) and geographic scale
– Fault tolerance
– Durability (versioned copies)
– Simplified application development and deployment
– Support for cloud-native apps (serverless)

• Some public Cloud services for data storage
– DFSs: Amazon EFS
– Object stores: Amazon S3, Google Cloud Storage, Azure Storage
– Relational DBs: Amazon RDS, Amazon Aurora, Google Cloud

SQL, Azure SQL Database
– NoSQL data stores: Amazon DynamoDB, Amazon DocumentDB,

Google Cloud Bigtable, Google Datastore, Azure Cosmos DB,
MongoDB Atlas

– NewSQL databases: Google Cloud Spanner
– Serverless databases: Google Firestore, CockroachDB

V. Cardellini - SABD 2024/25 13

Distributed File Systems (DFS)
• Primary support for data management
• Manage data storage across a network of servers

– Usually locally distributed, in some case geo-distributed

• Usual interface to store data as files and later access
them for reads and writes

• Several solutions with different design choices
– GFS, HDFS (GFS open-source clone): batch applications with

large files
– Alluxio: in-memory (high-throughput) storage system
– Lustre https://www.lustre.org: open-source, large-scale

distributed file system
– Ceph https://docs.ceph.com/: open-source, unified system for

object, block, and file storage

V. Cardellini - SABD 2024/25 14

Case study: Google File System (GFS)
Assumptions and motivations
• System is built from inexpensive commodity hardware

that often fails
– 60,000 nodes, each with 1 failure per year: 7 failures per hour!

• System stores large files
• Large streaming/contiguous reads, small random

reads
• Many large, sequential writes that append data

– Concurrent clients can append to same file

• High sustained bandwidth is more important than low
latency

V. Cardellini - SABD 2024/25 15

Ghemawat et al., The Google File System, SOSP ‘03
https://static.googleusercontent.com/media/research.google.com/it//
archive/gfs-sosp2003.pdf

GFS: Main features
• Distributed file system implemented in user space
• Manages (very) large files: usually multi-GB
• Data parallelism using divide et impera approach: file

split into fixed-size chunks
• Chunk:

– Fixed size (either 64MB or 128MB)
– Transparent to users
– Stored as plain file on chunk servers

• Write-once, read-many-times pattern
– Efficient append operation: appends data at the end of file

atomically at least once even in the presence of concurrent
operations (minimal synchronization overhead)

• Fault tolerance and high availability through chunk
replication, no data caching

V. Cardellini - SABD 2024/25 16

GFS: Operation environment

V. Cardellini - SABD 2024/25 17

GFS: Architecture

• Master
– Single, centralized entity (to simplify the design)
– Manages file metadata (stored in memory)

• Metadata: access control information, mapping from files to
chunks, locations of chunks

– Does not store data (i.e., chunks)
– Manages operations on chunks: create, replicate, load balance,

delete
V. Cardellini - SABD 2024/25 18

GFS: Architecture

• Chunk servers (100s – 1000s)
– Store chunks as files
– Spread across cluster racks

• Clients
– Issue control (metadata) requests to GFS master
– Issue data requests to GFS chunkservers
– Cache metadata, do not cache data (simplifies system design)

V. Cardellini - SABD 2024/25 19

GFS: Metadata
• Master stores 3 major types of metadata:

– File and chunk namespace (directory hierarchy)
– Mapping from files to chunks
– Current locations of chunks

• Metadata are stored in memory (64B per chunk)
✓ Fast, easy and efficient to scan the entire state
✗ Number of chunks is limited by amount of master’s memory

"The cost of adding extra memory to the master is a small price to
pay for the simplicity, reliability, performance, and flexibility gained"

• Master also keeps an operation log where metadata
changes are recorded
– Log is persisted on master’s disk and replicated for fault

tolerance
– Master can recover its state by replaying operation log
– Checkpoints for fast recovery

V. Cardellini - SABD 2024/25 20

GFS: Chunk size

• Chunk size is either 64 MB or 128 MB
– Much larger than typical block sizes

• Why? Large chunk size reduces:
– Number of interactions between client and master
– Size of metadata stored on master
– Network overhead (persistent TCP connection to chunk

server)

• Each chunk is stored as a plain Linux file
• Cons

✗ Wasted space due to internal fragmentation
✗ “Small” files consist of a few chunks, which get lots of traffic

from concurrent clients (can be mitigated by increasing
replication factor)

V. Cardellini - SABD 2024/25 21

GFS: Fault tolerance and replication

• Master controls and maintains the replication of each
chunk on several chunk servers
– At least 3 replicas on different chunk servers
– Replication based on primary-backup schema
– Replication degree > 3 for highly requested chunks

• Multi-level placement of replicas
– Different machines, same rack + availability and reliability
– Different machines, different racks + aggregated bandwidth

• Data integrity
– Chunk divided in 64KB blocks; 32B checksum for each block
– Checksum kept in memory
– Checksum checked every time app reads data

V. Cardellini - SABD 2024/25 22

GFS: Master operations
• Stores metadata
• Manages and locks namespace

– Namespace represented as a lookup table
– Read lock on internal nodes and read/write lock on leaves:

read lock allows concurrent mutations in the same directory
and prevents deletion, renaming or snapshot

• Communicates periodically with each chunk server
using RPC
– Sends instructions and collects chunk server state

(heartbeat messages)

• Creates, re-replicates and rebalances chunks
– Balances chunk servers’ disk space utilization and load
– Distributes replicas among racks to increase fault tolerance
– Re-replicates a chunk as soon as the number of its available

replicas falls below the replication degree
V. Cardellini - SABD 2024/25 23

GFS: Master operations

• Garbage collection
– File deletion logged by master
– Deleted file is renamed to a hidden name with deletion

timestamp, so that real deletion is postponed and file can be
easily recovered in a limited timespan

• Stale replica detection
– Chunk replicas may become stale if a chunk server fails or

misses updates to chunk
– For each chunk, the master keeps a chunk version number
– Chunk version number updated at each chunk mutation
– Master removes stale replicas during garbage collection

V. Cardellini - SABD 2024/25 24

GFS: Interface
• Files are organized in directories

– But no data structure to represent directory

• Files are identified by their pathname
– Bu no alias support

• GFS supports traditional file system operations (but
not Posix-compliant)
– create, delete, open, close, read, and write

• Supports also 2 special operations:
– snapshot: makes a copy of file or directory tree at low cost

(based on copy-on-write techniques)
– record append: allows multiple clients to append data to

the same file concurrently, without overwriting one
another’s data

V. Cardellini - SABD 2024/25 25

GFS: Read operation

V. Cardellini - SABD 2024/25 26

• Read operation
- Data flow is decoupled from control flow
1) Client sends read(file name, chunk index) to master
2) Master replies with chunk handle (globally unique ID of chunk), chunk

version number (to detect stale replica), and chunk locations
3) Client sends read(chunk handle, byte range) to the closest chunk

server among those serving the chunk
4) Chunk server replies with chunk data

1

2

3

4

GFS: Mutation operation
• Mutations are write or append

– Performed at all chunk's replicas in
same order

• Based on lease mechanism
– Goal: minimize management overhead

at master
– Master grants chunk lease to primary

replica
– Client sends command to primary (4)
– Primary picks serial order for all

mutations to chunk and secondaries
follow order when applying mutations

– Secondaries reply to primary, then
primary replies to client (7)

– Lease is renewed using periodic
heartbeat messages between master
and chunk servers

V. Cardellini - SABD 2024/25 27

• Data flow is decoupled from
control flow

• Client sends data to any of
the chunk servers identified
by master, which in turn
pushes data to other replicas
in a chained fashion so to
fully utilize network bandwidth

GFS: Atomic append

• GFS provides an atomic append operation
• Client sends only data (without specifying offset)
• GFS appends data to file at-least-once atomically

(i.e., as one continuous sequence of bytes)
– At offset chosen by GFS
– Works with multiple concurrent writers
– At least once: applications must cope with possible

duplicates

• Append operations were heavily used by Google’s
distributed apps
– E.g., files often serve as multiple-producers/single-consumer

queue or contain results merged from many clients
(MapReduce)

V. Cardellini - SABD 2024/25 28

GFS: Consistency model

• Changes to namespace (e.g., file creation) are
atomic
– Managed by GFS master with locking

• Mutations are ordered as chosen by primary
replica, but chunk server failures can cause
inconsistency

• GFS has a “relaxed” consistency model: eventual
consistency
– Simple and efficient to implement

V. Cardellini - SABD 2024/25 29

GFS performance (in 2003)

30

• Read performance is satisfactory (80-100 MB/s)
• But reduced write performance (30 MB/s) and relatively

slow (5 MB/s) in appending data to existing files

V. Cardellini - SABD 2024/25

GFS problems

V. Cardellini - SABD 2024/25 31

Main architectural problem is…

Single master Single point of failure (SPOF)
Scalability bottleneck

GFS problems: Single master
• Solutions adopted to overcome issues related

to single master
– Overcome SPOF: by having multiple “shadow”

masters that provide read-only access when
primary master is down

– Overcome scalability bottleneck: by reducing
interaction between master and clients

• Master stores only metadata
• Clients can cache metadata
• Chunk size is large
• Chunk lease: master delegates authority to primary

replica

• Overall, simple solutions
V. Cardellini - SABD 2024/25 32

GFS summary
• GFS success

– Used by Google to support search service and other services
– Availability on commodity hardware
– High throughput by decoupling control and data
– Supports massive data sets and concurrent appends

• GFS problems (besides single master)
– Metadata stored in master memory

• “Limited” scalability: approximately 50M files, 10PB
– Semantics not transparent to apps
– Slow failover
– Client’s delay when recovering from failed chunk server
– Not good for all services: focus on throughput, no guarantee on

latency

33V. Cardellini - SABD 2024/25

Google Colossus
• Successor to GFS (since 2010)
• Designed for a wide range of apps (YouTube, Maps,

Photos, search ads)
• At Google scale: EB of storage, 10K servers
• Distributed masters, chunk servers replaced by D servers
• Scalable metadata layer, built on top of Bigtable
• Error-correcting codes (e.g., Reed-Solomon)
• Client-driven encoding and replication
• Hardware diversity: mix of flash memory and disks
• Google Cloud services built on top

– Cloud Storage (object store), Cloud Firestore (NoSQL data store)

V. Cardellini - SABD 2024/25 34

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system

https://www.youtube.com/watch?v=q4WC_6SzBz4

Colossus: key components

V. Cardellini - SABD 2024/25 35

Hadoop Distributed File System (HDFS)
• Open-source user-level DFS https://hadoop.apache.org

• GFS clone: shares many features with GFS
(including pros and cons)
– Master/worker architecture
– Large files, data parallelism
– Commodity hardware
– Fault-tolerant and throughput-oriented

• Integrated with processing frameworks and ingestion
tools, e.g., Hadoop MapReduce, Spark, Flink, NiFi

36

https://www.databricks.com/glossary/hadoop-distributed-file-system-hdfs

Shafer et al., The Hadoop Distributed Filesystem: Balancing Portability and
Performance, ISPASS 2010
https://www.jeffshafer.com/publications/papers/shafer_ispass10.pdf

V. Cardellini - SABD 2024/25

HDFS: Design principles

• Designed to handle large datasets: typical file size is
GBs or TBs

• Write-once, read-many-times access pattern to files
– E.g., MapReduce apps, web crawlers

• Commodity, low-cost hardware
– Designed to work without noticeable interruption even when

failures occur

• Portability across heterogeneous hardware and
software platforms

V. Cardellini - SABD 2024/25 37

HDFS: Architecture

• Master/workers, nodes in HDFS cluster:
– One NameNode (GFS master)
– Multiple DataNodes (GFS chunk servers)

38V. Cardellini - SABD 2024/25

HDFS: File management

39V. Cardellini - SABD 2024/25

• Data parallelism: file split into blocks (GFS chunks)
which are stored on DataNodes

• Large size blocks (default 64 MB)

HDFS: Block replication

40V. Cardellini - SABD 2024/25

• NameNode periodically receives heartbeat and
blockreport from each DataNode
- Blockreport: list of blocks on a DataNode

HDFS: File read

41

Source: “Hadoop: The definitive guide”

• NameNode is used to get block location

V. Cardellini - SABD 2024/25

HDFS: File write

42

Source: “Hadoop: The definitive guide”

• Clients ask NameNode for a list of suitable DataNodes
• This list forms a chain: first DataNode stores the block,

then forwards it to the second, and so on
V. Cardellini - SABD 2024/25

Enhancements in HDFS 3.x
• High availability

– Support for >= 2 NameNodes (1 active and >=1 standby)
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html

• Erasure coding as alternative strategy to replication in
order to provide fault tolerance
✓ Same level of fault tolerance with less storage overhead: from

200% (when replication degree is 3) to 50%
✗ Increase in network and processing overhead
– 2 codes: XOR and Reed-Solomon
– Erasure coding can be enabled on a per-directory basis
https://docs.cloudera.com/runtime/7.3.1/scaling-namespaces/topics/hdfs-ec-
overview.html

V. Cardellini - SABD 2024/25 43

HDFS: security

• HDFS initially lacked robust security mechanisms
• Recent versions support authentication (Kerberos and

LDAP), authorization (ACLs), and encryption (data at
rest and in transit)

• Can be integrated with Apache Ranger, which provides
security across Hadoop ecosystem https://ranger.apache.org
⎯ Centralized security administration
⎯ Fine-grained authorization
⎯ Different authorization methods (role-based AC, attribute-

based AC, etc.)
⎯ Centralize auditing of user access and administrative actions

• Data governance can be provided by third-party tools,
e.g., Cloudera Navigator

V. Cardellini - SABD 2024/25 44

Distributed Object Stores (DOS)

• Designed to handle large volumes of unstructured
data by storing objects rather than files

• Data is stored as object with unique identifier,
metadata, and content
– Object aka blob

• No hierarchical directory structure
• Mostly read-intensive workloads
• Challenges

– Variety of media types (photos, videos, documents, …)
– Variety of sizes: from tens of KBs (e.g., profile pictures) to a

few GBs (e.g., videos)
– Volume: ever-growing number of blobs to be stored and

served

V. Cardellini - SABD 2024/25 45

Object store: Apache Ozone

• Highly scalable, distributed object store
https://ozone.apache.org

• Built on Hadoop Distributed Data Store, a highly
available, replicated block storage layer

• Separation of metadata management layer and data
storage layer

• Strongly consistent distributed storage thanks to Raft
protocol
– Apache Ratis https://ratis.apache.org: high-performance Java

library for Raft protocol

• Secure: access control and transparent data
encryption

V. Cardellini - SABD 2024/25 46

Ozone: architecture

V. Cardellini - SABD 2024/25 47

• Ozone Manager: name space
• Storage Container Manager: physical and data layer
• Recon: management interface

Object store: Ambry
• LinkedIn’s object store
• 800M put and get ops/day (over 120 TB in size), 10K

reqs/sec. (in 2016)
• Immutable objects (designed for media objects)
• Low-latency, high-throughput
• Optimized for both small and large objects
• Geo-distributed: high durability and availability
• Decentralized architecture
• A number of techniques

– Logical blob grouping, asynchronous replication, rebalancing
mechanisms, zero-cost failure detection, and OS caching

V. Cardellini - SABD 2024/25 48

Noghabi et al. Ambry: LinkedIn’s Scalable Geo-Distributed Object Store,
SIGMOD ’16 https://dl.acm.org/doi/pdf/10.1145/2882903.2903738

https://github.com/linkedin/ambry

Ambry: architecture

V. Cardellini - SABD 2024/25 49

• Decentralized multi-tenant system across
geographically distributed data centers

Ambry: partitions and blobs

V. Cardellini - SABD 2024/25 50

• Data is organized in virtual units called partitions
– Partition: logical grouping of a number of blobs, implemented

as a large, fixed-size file, replicated on multiple Datanodes

• Physical placement of partitions on machines
• Decoupling of logical and physical placement

– Transparent data movement (necessary for rebalancing)
– No rehashing of data during cluster expansion

Storing in memory: Alluxio
• Distributed in-memory storage system www.alluxio.io

• Adds a data access layer between storage and
computation
– Interposed between persistent storage layer (e.g., HDFS,

AWS S3, …) and processing frameworks for analytics and AI
(e.g., Spark, Flink, TensorFlow, …)

• Goal: storage unification and abstraction
– Brings data from storage closer to applications

V. Cardellini - SABD 2024/25 51

– Enables applications to
connect to different
storage systems through
a common interface and a
global namespace

Alluxio
• History

– Originated from Tachyon project at AMPLab (UC
Berkeley)

– Evolved as data orchestration technology for analytics and
AI for the cloud

• Features
– High read/write throughput, at memory speed
– Commonly used as distributed shared caching service
– How to address RAM volatility? Avoid replication and use

re-computation (lineage) to achieve fault tolerance
• One copy of data in memory (fast)
• Upon failure, re-compute data using lineage: keep track of

executed ops and, in case of failure, recover lost output by
re-executing ops that created the output

• Borrowed from Spark

V. Cardellini - SABD 2024/25 52

Alluxio: Architecture

• Master-worker architecture (like GFS, HDFS)
• Replicated masters, multiple workers

– Passive standby approach to ensure master fault
tolerance

– Consensus: Zookeeper, Raft

V. Cardellini - SABD 2024/25 53

Alluxio: Architecture

54

Workers
– Manage local storage (RAM, SSD,

HDD)
– Access to “under storage” (e.g.,

HDFS, S3), not managed by Alluxio
– Periodically heartbeat to primary

master

Master
– Stores metadata of storage system
– Responds to client requests
– Tracks lineage information
– Computes checkpoint order
– Secondary master(s) for fault

tolerance

docs.alluxio.io/os/user/stable/en/overview/Architecture.html
V. Cardellini - SABD 2024/25

Alluxio: Lineage and persistence
Alluxio consists of two (logical) layers:
• Lineage layer: tracks sequence of operations that have created a

particular data output
– Write-once semantics: data is immutable once written
– Frameworks using Alluxio track data dependencies and recompute

them when failure occurs
– API for managing and accessing lineage information

• Persistence layer: persists data onto storage, used to perform
asynchronous checkpoints
– Efficient checkpointing algorithm

• Avoids checkpointing temporary files
• Checkpoints hot files first (i.e., the most read files)
• Bounds re-computation time

V. Cardellini - SABD 2024/25 55

File set A File set B
task

dependency

Task reads file set A
and writes file set B

Data storage so far: Summing up
• Distributed file systems: GFS and HDFS

– Master/worker architecture, originally single master
– Decouple metadata from data, also control and data flows
– Designed for high-throughput, large files, batch applications

• Distributed object stores: Ozone and Ambri
– Master/worker architecture, multi-master
– Decouple data control and data storage

• Alluxio
– In-memory storage system
– Master/worker architecture
– No replication: tracks changes (lineage), recovers data using

checkpoints and re-computations

V. Cardellini - SABD 2024/25 56

References

• Ghemawat et al., The Google File System, Proc. ACM SOSP '03
https://static.googleusercontent.com/media/research.google.com/it//archiv
e/gfs-sosp2003.pdf

• Hildebrand and Serenyi, Colossus under the hood: a peek into
Google’s scalable storage system, 2021
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system

• Video on Colossus: A peek behind the VM at the Google Storage
infrastructure, 2020 https://www.youtube.com/watch?v=q4WC_6SzBz4

• Shafer et al., The Hadoop Distributed Filesystem: Balancing
Portability and Performance, Proc. ISPASS ‘10
https://www.jeffshafer.com/publications/papers/shafer_ispass10.pdf

• Li, Alluxio: A Virtual Distributed File System, 2018
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf

V. Cardellini - SABD 2024/25 57

