
NoSQL Data Stores

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Corso di Sistemi e Architetture per Big Data
A.A. 2024/25

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2024/25 1

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration



Traditional RDBMSs

• Relational DBMSs (RDBMSs)
– Traditional technology to store structured data in 

web and business applications

• SQL is good
– Rich language and toolset
– Easy to use and integrate
– Many vendors

• RDBMSs promise ACID guarantees

Valeria Cardellini - SABD 2024/25 2

ACID properties

• Atomicity
– All statements in a transaction are either executed or the 

whole transaction is aborted without affecting the database: 
“all or nothing” rule that is, transactions do not occur partially

• Consistency
– A database is in a consistent state before and after a 

transaction; it refers to the correctness of a database

• Isolation
– Transactions cannot see uncommitted changes in the 

database (i.e., the results of incomplete transactions are not 
visible to other transactions)

• Durability
– Changes are written to disk (i.e., non-volatile memory) 

before a database commits a transaction so that committed 
data cannot be lost if a system failure occurs

Valeria Cardellini - SABD 2024/25 3



RDBMS constraints

• Domain constraints
– Restrict domain or set of possible values for each attribute

• Entity integrity constraints
– No primary key value can be null

• Referential integrity constraints
– To maintain consistency among tuples in two relations: every 

value of one attribute of a relation should exist as a value of 
another attribute in another relation

• Foreign key
– To cross-reference between multiple relations: it is a key in a 

relation that matches the primary key of another relation

Valeria Cardellini - SABD 2024/25 4

Pros and cons of RDBMS

✓ Well-defined consistency 
model

✓ ACID guarantees
✓ Relational integrity 

maintained through entity 
and referential integrity 
constraints

✓ Well suited for OLTP apps
✓ Sound theoretical foundation
✓ Stable and standardized 

DBMSs available
✓ Well understood

Valeria Cardellini - SABD 2024/25 5

✗ Performance as major 
constraint, scaling is difficult 

✗ Limited support for complex 
data structures

✗ Complete knowledge of DB 
schema required to build 
new queries

✗ Commercial DBMSs are 
expensive

✗ Some DBMSs have field 
size limits

✗ Data integration from 
multiple RDBMSs can be 
cumbersome

Pros Cons



RDBMS challenges

• Workload spikes
– Internet-scale data size
– High read-write rates
– Frequent schema changes

• Let’s scale RDBMSs
– But they were not designed to be distributed

• How to scale RDBMSs?
– Replication
– Sharding

Valeria Cardellini - SABD 2024/25 6

Replication

• Primary backup with master/worker architecture
✓Replication improves read scalability
✗Write scalability?

Valeria Cardellini - SABD 2024/25 7



Sharding

• Horizontal partitioning of data across servers
✓Read and write operations scale
✗Cannot execute transactions across shards 

(partitions)

Valeria Cardellini - SABD 2024/25 8

• Consistent hashing can be 
use to determine which server 
any shard is assigned to
⁃ Hash both data and server 

using the same hash function in 
the same ID space

Scaling RDBMSs is expensive and inefficient

Valeria Cardellini - SABD 2024/25 9

Source: Couchbase technical report



NoSQL data stores

• NoSQL = Not Only SQL
– SQL-style querying is not the crucial objective

• Designed to offer more flexibility and 
scalability compared to RDBMSs

Valeria Cardellini - SABD 2024/25 10

NoSQL data stores: main features

• Support flexible schema
– No requirement for fixed rows in table’s schema
– Well suited for agile development process

• Support horizontal scaling
– Partitioning of data and processing over multiple nodes

• Provide high availability 
– Data replication on multiple nodes, sometimes geo-distributed

• Mainly utilize shared-nothing architecture
– With exception of graph-based databases

• Often avoid unnecessary complexity by eliminating
certain operations, like joins

• Often support weaker consistency models
– BASE rather than ACID: trade-off between consistency and 

performance

11Valeria Cardellini - SABD 2024/25



ACID vs BASE: ACID

12

• Two design philosophies at opposite ends of 
the consistency-availability spectrum
- Keep in mind CAP theorem

• ACID: traditional approach for RDBMSs
– Pessimistic approach: prevents conflicts from 

occurring
• Usually implemented with write locks managed by 

system

• Leads to performance degradation and deadlocks 
(hard to prevent and debug)

– Does not scale well when handling PBs of data 
(remember of latency!)

Valeria Cardellini - SABD 2024/25

Pick two of Consistency, Availability 
and Partition tolerance

ACID vs BASE: BASE

13

• BASE: Basically Available, Soft state, Eventual 
consistency
- Basically Available: the system is available most of the time 

and there could exist a subsystem temporarily unavailable

- Soft state: data is not durable that is, its persistence is in the 
hand of the user that must take care of refreshing it

- Eventually consistent: the system eventually converges to a 
consistent state

• Optimistic approach
- Lets conflicts occur, but detects them and takes action to sort 

them out: how?

• Conditional updates: test value just before updating

• Save both updates: record that they are in conflict and then 

merge them

Valeria Cardellini - SABD 2024/25



NoSQL and consistency 

• Key distinction from RDBMS
– RDBMS: strong consistency, are either CA 

systems or CP systems (depending on 
configuration)

• The majority of NoSQL systems provide 
eventual consistency (i.e., AP systems)

• Some NoSQL systems
provide strong consistency
or tunable consistency 
– E.g., Cassandra and MongoDB

Valeria Cardellini - SABD 2024/25 14

NoSQL cost and performance

Valeria Cardellini - SABD 2024/25 15

Source: Couchbase technical report



Pros and cons of NoSQL

ü Easy to scale-out
ü Higher performance for 

massive data scale
ü Allow data sharing across 

multiple servers
ü HA and fault tolerance 

provided by data replication
ü Many are open-source
ü Support complex data 

structures and objects
ü No fixed schema, support 

unstructured data
ü Fast retrieval of data, 

suitable for real-time apps
16

✗ Many do not support ACID, 
less suitable for OLTP apps

✗ No common data storage 
model -> no well-defined 
approach for design 

✗ Lack of standardization (e.g., 
standard query language)

✗ Many do not support join ops
✗ Lack of reference model can 

lead to vendor lock-in

Pros Cons

Valeria Cardellini - SABD 2024/25

NoSQL data models

• A number of largely diverse data stores not 
based on relational data model

Valeria Cardellini - SABD 2024/25 17



NoSQL data models

• Data model: set of constructs for representing 
information
– Relational model: tables, columns and rows

• Storage model: how the data store 
management system stores and manipulates 
data internally

• Data model is usually independent of storage 
model

• Data models for NoSQL systems:
– Aggregate-oriented models: key-value (KV), 

document, and column-family
– Graph-based models

Valeria Cardellini - SABD 2024/25 18

Aggregate

• Data as single unit with a complex structure
– More structure than just a set of tuples
– E.g., complex record with fields, arrays, records 

nested inside

• Aggregate pattern in Domain-Driven Design 
https://martinfowler.com/bliki/DDD_Aggregate.html

– Cluster of domain objects that we treat as a single 
unit (e.g., order and its items, playlist and its songs)

– Unit for data manipulation and consistency 
management

Valeria Cardellini - SABD 2024/25 19



Aggregate

• Pros
– Easier for application programmers to work with
– Easier for data store systems to handle ops    

• Trade-offs
– Redundancy: aggregation can lead to data 

duplication
– Complexity in updates: careful handling of 

updates, particularly when updating nested
structures or arrays

See https://www.thoughtworks.com/insights/blog/nosql-databases-

overview

Valeria Cardellini - SABD 2024/25 20

Aggregates: example

• With NoSQL

Valeria Cardellini - SABD 2024/25 21

• With RDBMS



Transactions?

• Relational databases have ACID transactions
• Aggregate-oriented data stores

– Support atomic transactions, but only within single 
aggregate

– Most data stores don’t support ACID transactions 
that span multiple aggregates

• In case of update over multiple aggregates: possible 
inconsistent reads

☞Take it into account when deciding how to 
aggregate data

• Graph databases tend to support ACID 
transactions

Valeria Cardellini - SABD 2024/25 22

Key-value (KV): data model

• Simple data model: data is represented as a schema-
less collection of key-value pairs
– Associative array (map or dictionary) as fundamental data 

model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Data model:
– Set of <key, value> pairs
– Value: aggregate instance

• Aggregate is opaque to data store
– Just a big blob of mostly meaningless bits

• Access to aggregate: lookup based on its key
• Richer data models can be implemented on top

Valeria Cardellini - SABD 2024/25 23



KV: data model example

Valeria Cardellini - SABD 2024/25 24

KV: types of data stores

Valeria Cardellini - SABD 2024/25 25

• Some data stores support key ordering
– Data is stored sorted by key (e.g., lexicographical) so that 

keys can be efficiently iterated over (e.g., all keys that start 
with a certain letter, within a certain period of time if the key is
a timestamp)

• Some maintain data in RAM, while others employ 
HDDs, SSDs, flash memory

• Some let developers implement user-defined 
functions (UDFs) to extend processing capabilities

• Wide range of consistency models

https://www.influxdata.com/key-value-database/



KV: consistency

Valeria Cardellini - SABD 2024/25 26

• Consistency ranges from weak (e.g., eventual) 
to strong (e.g., serializability)
– Serializability: guarantee about transactions over 

multiple items
• It guarantees that the execution of a set of transactions 

(with read and write operations) over multiple items is 
equivalent to some serial execution (total ordering) of the 
transactions

• Gold standard in DB community: serializability is the 
traditional Isolation in ACID

– Examples:
• AP: Dynamo, Riak KV
• CP: Redis, Berkeley DB

KV: query features

• Only query by the key!
– There is a key and there is the rest of data (the value)

• Basic ops: put(key,value), get(key), delete(key)
• Most KV data stores provide access operations on 

groups of related key-value pairs 
• Cannot lookup for some attribute of the value

– E.g., KV stores usually do not have a WHERE clause such 
as RDBMSs or if they do, it requires a slow scan of all values

• The key needs to be suitably chosen
– E.g., session ID for storing session data

• What if we don’t know the key?
– Some KV store allows to search inside the value using a full-

text search: see Apache Solr https://solr.apache.org/

Valeria Cardellini - SABD 2024/25 27



KV: use cases

• Session info in web app
– Each user session has a unique id: session id as key
– Store session data using a single put, retrieve using get

• User profile and preferences
– Almost every user has a unique user id, username, …, as 

well as preferences such as language, list of searched and 
recommended

– Put user’s preferences into the value, so getting takes a 
single operation

• Shopping cart data
– Put shopping information into the value, whose key is the 

user id

• Product recommendations

Valeria Cardellini - SABD 2024/25 28

KV: products
• Amazon’s Dynamo: the most famous example
• Amazon DynamoDB

– Data model and name from Dynamo, but different design 

• Oracle NoSQL Database 
https://www.oracle.com/database/nosql/technologies/nosql/

• Embedded (not distributed) KV stores
– Berkeley DB 

https://www.oracle.com/database/technologies/related/berkeleydb.html
• Pre- precursor to NoSQL, key ordering based on Btree+

– LevelDB https://github.com/google/leveldb
• By Google, key ordering

– RocksDB https://rocksdb.org

• Distributed in-memory KV data stores: Memcached, 
Redis, Hazelcast https://memcached.org https://hazelcast.com

– Also used alongside another data store as a cache to handle 
read requests

Valeria Cardellini - SABD 2024/25 29



Document: data model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Document: collection of named fields and data
– Encapsulates and encodes data in some standard formats 

or encodings: JSON, BSON, XML, YAML, …

• Similar to key-value store (unique key), but API or 
query/update language to query or update based on 
document’s internal structure
– Document content is no longer opaque

• Similar to column-family store, but values can have 
complex documents, instead of fixed format

Valeria Cardellini - SABD 2024/25 30

Document: data model

• Data model
– A set of <key, document> pairs
– Document: an aggregate instance

• Aggregate structure is visible
– Limits on what we can place in it

• Access to aggregate
– Queries based on the fields in the aggregate

• Flexible schema
– Documents do not need to have same structure
– Better flexibility: apps can store different data in documents 

as business requirements change
• No need of schema migration efforts

Valeria Cardellini - SABD 2024/25 31



Document: data model example

Valeria Cardellini - SABD 2024/25 32

• JSON format

Document: data store API

• Usual CRUD operations (not standardized)
– Create (or insert)
– Retrieve (or get, query, search, find)

• Not only simple key-to-document lookup

• Query language allows the user to retrieve documents based 

on the values of one or more fields

– Update (or edit)
• Not only the entire document but also individual fields of the 

document

– Delete (or remove)

• Read and write operations over multiple fields in a 
single document are usually atomic

• Some document data stores support indexing to 
facilitate fast lookup of documents

Valeria Cardellini - SABD 2024/25 33



KV vs. document data stores

• KV data store
– A key plus a blob of mostly meaningless bits
– Can store whatever you like in the aggregate
– Can only access aggregate by lookup based on its key

• Document data store
– A key plus a structured aggregate
– More flexibility in accessing and updating data

• Can query based on aggregate fields

• Can retrieve/update part of aggregate rather than whole 

aggregate 

– Can create indexes based on aggregate content
• Indexes speed up read accesses but slow down write 

accesses, thus should be designed carefully

Valeria Cardellini - SABD 2024/25 34

KV vs. document data stores

• The line between KV and document gets a bit blurry 
– People often use document store to do KV-style lookup 

• Data stores classified as KV may allow you to 
structure data beyond just an opaque, e.g.,
– Redis allows you to break down aggregate into lists or sets
– Other KV stores support querying by full-text search tools 

Valeria Cardellini - SABD 2024/25 35



Some data model design choices

• Be careful: no universal rule
– It depends on how your app tends to manipulate 

data! 

• How to model 1:N relationship
– Simple rule of thumb: how large is N? 

• One-to-few: embedding (denormalization)
• One-to-many: referencing (normalization)
• One-to-squillions: parent-referencing

– Some example https://www.mongodb.com/blog/post/6-rules-

of-thumb-for-mongodb-schema-design

Valeria Cardellini - SABD 2024/25 36

Some data model design choices

• Denormalization
– Denormalized data models embed related data in 

a single document

See https://www.mongodb.com/docs/manual/data-modeling/

Valeria Cardellini - SABD 2024/25 37



Some data model design choices

• Denormalization
– Pros:

✓Store related pieces of information in same document: 
fewer queries and updates

✓Update data within same document in a single atomic 
write operation

– Cons:
✗Document size limit (e.g., 16MB in MongoDB) 

http://docs.mongodb.com/manual/core/document

✗Cannot perform atomic update on multiple documents 
✗Only makes sense when high read to write ratio

Valeria Cardellini - SABD 2024/25 38

Some data model design choices

Valeria Cardellini - SABD 2024/25 39

• Normalization
– Normalized data models describe relationships 

using references between documents
• Another example: see slide 32

– In general, use normalization
• When embedding would result in data duplication without 

sufficient read performance gains
• To represent complex many-to-many relationships
• To model large hierarchical datasets



Document: use cases

• To store and manage large collections of semi-
structured data with varying number of fields
– Textual documents, email messages, …
– Conceptual documents like denormalized representations of 

DB entities (e.g., product, customer)
– Sparse data in general, i.e., irregular (semi-structured) data 

that would require an extensive use of nulls in RDBMS 

• Examples
- Log data
- IoT data from edge devices
- Inventory management (e.g., catalogue)
- Customer data used for personalization

https://www.influxdata.com/document-database/

Valeria Cardellini - SABD 2024/25 40

Document: when not to use

• Complex transactions spanning multiple documents
– MongoDB supports distributed transactions but they incur 

greater performance cost over single-document writes
– Solution: use embedding rather than referencing, but size 

limit
In most cases, a distributed transaction incurs a greater performance cost over 
single document writes, and the availability of distributed transactions should
not be a replacement for effective schema design. For many scenarios, 
the denormalized data model (embedded documents and arrays) will continue 
to be optimal for your data and use cases. That is, for many scenarios, 
modeling your data appropriately will minimize the need for distributed
transactions. https://www.mongodb.com/docs/manual/core/transactions/

• Queries against varying aggregate structure
– Since data is saved as an aggregate, if aggregate structure 

constantly changes, the aggregate is saved at the lowest 
level of granularity. In this scenario, document data stores 
may not perform well

Valeria Cardellini - SABD 2024/25 41



Document: products

• MongoDB: the most popular
• Aerospike https://aerospike.com

– KV and document models, tunable consistency

• ArangoDB https://arangodb.com

– Document and graph models

• Couchbase https://www.couchbase.com

• Apache CouchDB https://couchdb.apache.org

• RavenDB https://ravendb.net/

– ACID, Raft-based multi-master replication, student licence

• Cloud services
– Amazon DocumentDB (compatible with MongoDB) 

https://aws.amazon.com/documentdb/

– Microsoft Azure CosmosDB
https://azure.microsoft.com/services/cosmos-db/

Valeria Cardellini - SABD 2024/25 42

Column-family: data model

• Strongly aggregate-oriented
– Lots of aggregates
– Each aggregate has a key

• Data model: two-level map structure
– A set of <row-key, aggregate> pairs
– Each aggregate is a group of pairs <column-key, value>
– Column: a set of data values of a particular type

• Similar to key-value store, but value can have 
multiple attributes (columns)

• Similar to document store because aggregate 
structure is visible

• Columns can be organized in families
– Data usually accessed together

Valeria Cardellini - SABD 2024/25 43



Column-family: data model example

Valeria Cardellini - SABD 2024/25 44

• Representing customer information as column-family

Row-store vs. column-store

Valeria Cardellini - SABD 2024/25 45

• Row-store systems: store and process data by rows
– RDBMSs support indexes to improve performance of set-wide 

operations on whole tables

• Column-store systems: store and process data by 
columns
– Faster data access rather than scanning and discarding 

unwanted data in row, e.g., for aggregate queries (avg, max, …)
– Examples: C-Store (pre-NoSQL), OpenText 

https://www.opentext.com/products/analytics-database, MariaDB 
ColumnStore https://mariadb.com/

– Do not confuse column-store with column-family



Column-family: features

Valeria Cardellini - SABD 2024/25 46

• Column-family data stores: no column stores in the 
original sense of the term, because they have a two-
level structure with column families

• Table’s rows and columns can be split over multiple 
servers by means of sharding to achieve scalability

• In addition, column families are located on the same 
partition to facilitate query performance 

• Column-family stores are suitable for read-mostly, 
read-intensive, large data repositories 

Column-family: features
• Each column:

– Has to be part of a single column family
– Acts as unit for access

• Can get a particular column
– See slide 44: get('1234', 'name')

• Can add any column to any row, and rows can have 
different columns

• Two ways to think about how data is structured:
– Row-oriented

• Each row is an aggregate (e.g., customer with id 1234)

• Column families represent useful chunks of data within that 

aggregate (e.g., profile, order history)

– Column-oriented
• Each column family defines a record type (e.g., customer 

profiles)

• A row is the join of records in all column families

Valeria Cardellini - SABD 2024/25 47



Column-family: use cases

• Queries that involve only a few columns
• Aggregation queries against vast amounts of data

- E.g., average, maximum

• Apps with truly large volumes of data (PBs)
• Apps geographically distributed over multiple data 

centers
⎻ See Cassandra geo-distribution

Valeria Cardellini - SABD 2024/25 48

Column-family: products

• Google’s Bigtable is the most notable, uses GFS for 
distributed data storage

• Apache HBase: open-source implementation of 
Bigtable on top of HDFS
– Apache Phoenix https://phoenix.apache.org: SQL query engine 

on top of HBase

• Other popular column-family data stores
– Apache Accumulo https://accumulo.apache.org/: based on 

Bigtable, HDFS to store data and Zookeeper for consensus
• Different APIs and nomenclature from HBase, but same in 

operational and architectural standpoint

• Better security

– Apache Cassandra

• Cloud services
– Google Cloud Bigtable
– HBase through Amazon EMR or Azure HDInsight

Valeria Cardellini - SABD 2024/25 49



Graph: data model

• Uses graph structure with nodes, edges, and 
properties to represent stored data
– Nodes are the entities

• E.g., users, posts

– Edges are the relationships between the entities
• E.g., a user posts a comment

– Edges can be directed or undirected
– Nodes and edges also have a set of properties (attributes) 

consisting of key-value pairs

• Replaces relational tables with structured relational 
graphs of interconnected key-value pairs

Valeria Cardellini - SABD 2024/25 50

Graph: data model example

Valeria Cardellini - SABD 2024/25 51

https://github.com/neo4j-graph-examples/movies



Graph: data model

• Powerful data model
– Differently from other types of NoSQL stores, it concerns 

itself with relationships
– Focus on visual representation of information: more human-

friendly than other NoSQL stores 
– Other types of NoSQL stores are poor for interconnected 

data 

• Ad-hoc languages to query and manipulate data in 
graphs, e.g.,
– Cypher: declarative language for Neo4j
– Gremlin https://tinkerpop.apache.org/gremlin.html: functional, 

data-flow language

Valeria Cardellini - SABD 2024/25 52

Graph databases: pros and cons

• Pros: 
✓ Explicit graph structure
✓ Index-free adjacency: since each node knows its adjacent 

nodes, performance of traversal does not depend on graph scale
✓ Support for graph algorithms
✓ Support for graph indexing to make lookups more efficient
✓ Flexibility to handle complex and evolving data structures without

requiring schema modifications

• Cons:
✗ Horizontal scalability more difficult to achieve wrt to other models

• Data sharding on multiple servers: traversing multiple servers is less 

efficient

✗ Require more design effort with respect to SQL
https://www.oracle.com/it/autonomous-database/what-is-graph-database/

https://www.influxdata.com/graph-database/

Valeria Cardellini - SABD 2024/25 53



Graph databases vs. aggregate-oriented stores

• Very different data models 

• Aggregate-oriented data stores
– Distributed on multiple servers, also geographically
– Simple query languages
– No ACID guarantees 

• Graph databases
– Distributed architecture is more challenging
– Ad-hoc graph-based query languages
– ACID guarantees: transactions maintain consistency over 

multiple graph nodes and edges 

Valeria Cardellini - SABD 2024/25 54

Graph databases: use cases

• To model entities and relationships and query for 
relationships between entities, e.g.,
– Social networking
– Dependency analysis
– Recommender systems 
– Fraud detection
– Drug discovery
– Network security

• To perform traversal queries based on connections 
and apply graph algorithms
– To find patterns, paths, communities, influencers, single 

points of failure, and other relationships

Valeria Cardellini - SABD 2024/25 55



Graph databases: products
• Neo4j
• InfiniteGraph https://infinitegraph.com

– Proprietary, distributed

• MemGraph https://memgraph.com

– Open source, in-memory

• NebulaGraph https://www.nebula-graph.io

– Open source, distributed

• OrientDB http://orientdb.org

– Open source, distributed, multi-model

• Apache Tinkerpop https://tinkerpop.apache.org

– Graph computing framework for OLTP and OLAP that uses 
Gremlin as query language

• Cloud services:
– Amazon Neptune https://aws.amazon.com/neptune

– Azure Cosmos DB: multi-modelVa
le

ria
 C

ar
de

llin
i-

SA
BD

 2
02

4/
25

56

Case studies

• Key-value data stores
– Amazon’s Dynamo 
– Redis

• Document-oriented data stores
– MongoDB

• Column-family data stores
– Google’s Bigtable and Hbase
– Cassandra

• Graph databases
– Neo4j

• NoSQL Cloud services
– DynamoDB and Cloud Bigtable 

In blue: Hands-on lessons

Valeria Cardellini - SABD 2024/25 57


