Elective exercise using Go and RPC

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2018/19

Valeria Cardellini

Elective exercise using Go and RPC

- Solve one of the following problems using the MapReduce paradigm:
 - WordCount: it should return the counts of each word in a collection of documents (assume either N files or a large file divided into N chunks)
 - WordLengthCount: it should return how many words of certain lengths exist in a collection of documents

- Requirements: use Go and RPC
- 1 or 2 students per group
A brief introduction to MapReduce

Parallel programming: background

• Parallel programming
 – Break processing into parts that can be executed concurrently on multiple workers
 • Workers can be:
 – Threads in a processor core
 – Cores in a multi-core processor
 – Multiple processors in a machine
 – Many machines in a cluster

• Challenge
 – Identify tasks that can run concurrently and/or groups of data that can be processed concurrently
Parallel programming: background

- Which is the simplest environment for parallel programming?
 - No dependency among data
 - Data can be split into equal-size chunks
 - Each worker can work on a chunk
 - Master/worker approach
 - Master
 - Initializes array and splits it according to the number of workers
 - Sends each worker the sub-array
 - Receives the results from each worker
 - Worker:
 - Receives a sub-array from master
 - Performs processing
 - Sends results to master
- Single Program, Multiple Data (SPMD): technique to achieve parallelism
 - The most common style of parallel programming

Key idea behind MapReduce: Divide and conquer

- A feasible approach to tackling large-data problems
 - Partition a large problem into smaller sub-problems
 - Independent sub-problems executed in parallel
 - Combine intermediate results from each individual worker
- Implementation details of divide and conquer are complex
Divide and conquer: how?

- **Decompose** the original problem into smaller, parallel tasks
- **Schedule** tasks on workers distributed in a cluster, keeping into account:
 - Data locality
 - Resource availability
- Ensure workers get the data they need
- Coordinate synchronization among workers
- **Share** partial results
- Handle **failures**

Key idea behind MapReduce:
Scale out, not up!

- For data-intensive workloads, a large number of commodity servers is preferred over a small number of high-end servers
 - Cost of super-computers is not linear
 - Datacenter efficiency is a difficult problem to solve, but recent improvements
- Processing data is quick, I/O is very slow
- **Sharing vs. shared nothing:**
 - Sharing: manage a common/global state
 - **Shared nothing:** independent entities, no common state
- **Sharing is difficult:**
 - Synchronization, deadlocks
 - Finite bandwidth to access data from SAN
 - Temporal dependencies are complicated (restarts)
MapReduce

• **Programming model** for processing huge amounts of data sets over thousands of servers
 – Based on a shared nothing approach

• Also an associated **implementation** (framework) of the distributed system that runs the corresponding programs

• Some examples of applications for Google:
 – Web indexing
 – Reverse Web-link graph
 – Distributed sort
 – Web access statistics

Typical Big Data problem

- Iterate over a large number of records
- Extract something of interest from each record
 - Shuffle and sort intermediate results
 - Aggregate intermediate results
 - Generate final output

Key idea: provide a functional abstraction of the two Map and Reduce operations
MapReduce: model

- Processing occurs in two phases: Map and Reduce
 - Functional programming roots (e.g., Lisp)
- Map and Reduce are defined by the programmer
- Input and output: sets of key-value pairs
- Programmers specify two functions: map and reduce
 - map\((k_1, v_1)\) → \([k_2, v_2]\]
 - reduce\((k_2, [v_2])\) → \([k_3, v_3]\]
 - \((k, v)\) denotes a (key, value) pair
 - [...] denotes a list
 - Keys do not have to be unique: different pairs can have the same key
 - Normally the keys \(k_1\) of input elements are not relevant

Map

- Execute a function on a set of key-value pairs (input shard) to create a new list of key-value pairs
 - map \((\text{in_key}, \text{in_value})\) → list(\(\text{out_key}, \text{intermediate_value}\))
- Map calls are distributed across machines by automatically partitioning the input data into shards
 - Parallelism is achieved as keys can be processed by different machines
- MapReduce library groups together all intermediate values associated with the same intermediate key and passes them to the Reduce function
Reduce

- Combine values in sets to create a new value

 reduce (out_key, list(intermediate_value)) →

 list(out_key, out_value)

- The key in output is often identical to the key in the input
- Parallelism is achieved as reducers operating on different keys can be executed simultaneously

Your first MapReduce example (in Lisp)

- **Example**: sum-of-squares (sum the square of numbers from 1 to n) in MapReduce fashion

- **Map function**:

 map square [1, 2, 3, 4]

 returns [1, 4, 9, 16]

- **Reduce function**:

 reduce [1, 4, 9, 16]

 returns 30 (the sum of the square elements)
MapReduce computation

1. Some number of Map tasks each are given one or more chunks of data from a distributed file system
2. These Map tasks turn the chunk into a sequence of key-value pairs
 – The way key-value pairs are produced from the input data is determined by the code written by the user for the Map function
3. The key-value pairs from each Map task are collected by a master controller and sorted by key
4. The keys are divided among all the Reduce tasks, so all key-value pairs with the same key wind up at the same Reduce task
5. The Reduce tasks work on one key at a time, and combine all the values associated with that key in some way
 – The manner of combination of values is determined by the code written by the user for the Reduce function
6. Output key-value pairs from each reducer are written persistently back onto the distributed file system
7. The output ends up in r files, where r is the number of reducers
 – Such output may be the input to a subsequent MapReduce phase

Where the magic happens

• Implicit between the map and reduce phases is a distributed “group by” operation on intermediate keys, called shuffle and sort
 – Transfer mappers output to reducers, merging and sorting the output
 – Intermediate data arrive at every reducer sorted by key
• Intermediate keys are transient
 – They are not stored on the distributed file system
 – They are “spilled” to the local disk of each machine in the cluster
A simplified view of MapReduce: example

- Mappers are applied to all input key-value pairs, to generate an arbitrary number of intermediate pairs.
- Reducers are applied to all intermediate values associated with the same intermediate key.
- Between the map and reduce phase lies a barrier that involves a large distributed sort and group by..
WordCount

- **Problem**: count the number of occurrences for each word in a large collection of documents
- **Input**: repository of documents, each document is an element
- **Map**: read a document and emit a sequence of key-value pairs where:
 - Keys are words of the documents and values are equal to 1:
 \[(w_1, 1), (w_2, 1), \ldots, (w_n, 1)\]
- **Shuffle and sort**: group by key and generates pairs of the form \((w_1, [1, 1, \ldots, 1])\), \ldots, \((w_n, [1, 1, \ldots, 1])\)
- **Reduce**: add up all the values and emits \((w_1, k)\), \ldots, \((w_n, l)\)
- **Output**: \((w,m)\) pairs where:
 - \(w\) is a word that appears at least once among all the input documents and \(m\) is the total number of occurrences of \(w\) among all those documents

WordCount in practice
WordLengthCount

• **Problem:** count how many words of certain lengths exist in a collection of documents

• **Input:** a repository of documents, each document is an element

• **Map:** read a document and emit a sequence of key-value pairs where the key is the length of a word and the value is the word itself:

 \[(i, w_1), \ldots, (j, w_n)\]

• **Shuffle and sort:** group by key and generate pairs of the form

 \[(1, [w_1, \ldots, w_k]), \ldots, (n, [w_r, \ldots, w_s])\]

• **Reduce:** count the number of words in each list and emit:

 \[(1, l), \ldots, (p, m)\]

• **Output:** \((l, n)\) pairs, where \(l\) is a length and \(n\) is the total number of words of length \(l\) in the input documents

Valeria Cardellini - SDCC 2018/19

Back to the exercise
Overview on architecture

- Exploit master-worker architecture
 - Distribute the work among workers using channels via RPC
- Need to implement a master that assigns map and reduce tasks to workers
- Do not consider failures of master and workers
 - The set of workers is known and does not change during the computation; no worker fails
 - The master does not fail

Overview on architecture

- 3 phases
 - Map
 - Shuffle and sort
 - Reduce
- Distribute the work among parallel workers
- Need a synchronization point (i.e., barrier) between map and reduce phases
 - No reduce task can start until all the map tasks have finished their processing
- Need a synchronization point after reduce phase
 - The master must wait all the reduce tasks before merging their results
Main ideas

• **Map phase**: process the N files/chunks in parallel on the workers, applying the map function to each file/chunk
 – The master should assign the N files/chunks to the workers that execute the map task
 – Each map task can either write its results to some number of intermediate files or send its results to the master or the reduce tasks
 • You can choose to realize the shuffle and sort phase either in a centralized or decentralized way

• **Shuffle and sort phase**: organize the output of the map tasks in such a way that the reduce tasks receive in input data grouped by key

• **Reduce phase**: each reduce task processes its input and writes its output to a file or send its output to the master
 – The master merges all outputs from the reduce tasks and produces the final result
Delivery

• When to deliver
 – By January 18, 2019

• What to deliver
 – Your code, including the instructions to run it
 – Optional: short report describing the application architecture and main ideas

• How to deliver
 – By email
 – Use as mail subject: [SDCC] consegna esercizio