
Hands-on Cloud Computing Services
Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

A.A. 2021/22



Recap

I EC2
I Photogallery on EC2
I Custom AMI

Next step:

2



Amazon VPC

I Provision logically isolated sections of the AWS cloud
I Define virtual networks (IP ranges, subnets, gateways,. . . )
I May create a hardware Virtual Private Network (VPN) connection

between your own datacenter and your VPC (hybrid cloud)
I No additional charges for creating and using the VPC itself.
I So far, we have used the default VPC

3



Amazon VPC: main building blocks

I In each AZ, we can define one or more subnets
I Routing Tables attached to subnets
I Internet Gateway

4



Basic VPC Configuration

I Create a new Virtual Private Cloud (VPC)
I We associate a block of (private) IP addresses to the VPC

I Subnets will be created within this block of addressess
I We can pick, e.g., 10.0.0.0/16

I We can create subnets: each subnet is associated with an
Availability Zone (AZ)

I Let’s pick an AZ and create a subnet (e.g., 10.0.1.0/24)
I If you want (for debugging), you can require that EC2 instances in

the subnet are also assigned a public IP address
I Create an Internet Gateway (IG) to allow instances in the VPC to

reach Internet; associate it with the VPC
I Create a Route Table for the VPC and attach it to the subnet(s)
I Add a new rule in the table: 0.0.0.0\0 – target: IG
I Repeat the above steps for each subnet you want.

5



Elastic Load Balancing (ELB)

I ELB automatically distributes incoming traffic across multiple
targets (e.g., EC2 instances, containers, and IP addresses) in one or
more Availability Zones

I It monitors the health of its registered targets and routes traffic
only to the healthy targets

I 4 types of ELB:
I Application Load Balancer (layer 5)
I Network Load Balancer (layer 4)
I Gateway Load Balancer (layer 3)
I Classic Load Balancer (legacy)

I We’ll use the Application LB today

6



ELB Configuration

I Create an ELB instance listening for HTTP requests on port 80
I Health check: use HTTP requests on port 80 with path /
I ELB needs a security group: configure one to accept traffic on port

80
I Create a few EC2 instances using our custom AMI in our subnets
I Register the instances to the ELB
I Wait a few minutes (DNS...) and then try to connect at the ELB

URL with the browser

Note:
I EC2 instances don’t need a public IP address any more
I EC2 instances can now use a stricter security group:

I Allowed source: 0.0.0.0/0 → <ID of ELB sec group>

7



ELB Configuration

I Create an ELB instance listening for HTTP requests on port 80
I Health check: use HTTP requests on port 80 with path /
I ELB needs a security group: configure one to accept traffic on port

80
I Create a few EC2 instances using our custom AMI in our subnets
I Register the instances to the ELB
I Wait a few minutes (DNS...) and then try to connect at the ELB

URL with the browser
Note:
I EC2 instances don’t need a public IP address any more
I EC2 instances can now use a stricter security group:

I Allowed source: 0.0.0.0/0 → <ID of ELB sec group>

7



Auto scaling

I We want to dynamically provision the number of active instances
I Let’s use the Auto Scaling service of EC2

8



Auto Scaling + Photogallery

I Before starting, terminate manually launched instances
I Create a Launch Configuration for Photogallery
I Create an Auto Scaling Group that uses the new Launch

Configuration
I Specify the VPC and the subnets where new instances should be

launched
I Enable load balancing, associating the group with our ELB
I Set minimum and maximum number of instances (e.g., 2 and 5)
I Set an auto scaling policy
I Verify that new instances are automatically created

9



AWS CLI

I AWS provides a Command Line Interface to interact with AWS
services

I Faster interaction compared to web console
I Installation: check official docs
I Before usage, we need to configure:

I AWS Access Key ID and AWS Secret Access Key
I default region to use (e.g., us-east-1)
I output format (json, text)

I AWS CLI can be configured by:
I running aws configure, or
I editing ~/.aws/config and ~/.aws/credentials

I Available commands well documented on AWS website

10



AWS CLI: example

Create a new security group in our VPC:

$ aws ec2 create-security-group --group-name my-sg \
--description "My security group" --vpc-id vpc-12345

We can see the properties of any SG:

$ aws ec2 describe-security-groups --group-ids <groupId>

Set inbound traffic rules:

$ aws ec2 authorize-security-group-ingress --group-id <ID> \
--protocol tcp --port 22 --cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-ingress --group-id <ID> \
--protocol tcp --port 80 --cidr 0.0.0.0/0

$ aws ec2 describe-security-groups --group-ids <ID DEL GRUPPO>

11



AWS CLI: example

$ aws ec2 run-instances --image-id <ID AMI> --count 1 \
--instance-type t2.nano \
--key-name <MyKeyPair> --security-group-ids <sgId> \
--subnet-id <subnetId> --associate-public-ip-address

We can associate the instance with a tag:
$ aws ec2 create-tags --resources <instID> \

--tags Key=Name,Value=SDCC

We can get information about active instances:
$ aws ec2 describe-instances \

--filters "Name=tag:Name,Values=SDCC"
$ aws ec2 describe-instances \

--filters "Name=instance-type,Values=t2.nano"

To terminate the instance:
$ aws ec2 terminate-instances --instance-ids <ID>

12



Exercise

I Create a script to destroy all the active EC2 instances.
I Create a script to destroy all the active EC2 instances with tag

“Name=SDCC”

13


