Hands-on Cloud Computing Services

Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

AA.2021/22

UNIVERSITA DEGLI STUDI DI ROMA

\ """ TOR VERGATA




Recap

> EC2
» Photogallery on EC2
» Custom AMI

Next step:

Elastic
Load
Balancer

EC2
Instance



Amazon VPC

v

Provision logically isolated sections of the AWS cloud
> Define virtual networks (IP ranges, subnets, gateways,...)

> May create a hardware Virtual Private Network (VPN) connection
between your own datacenter and your VPC (hybrid cloud)

v

No additional charges for creating and using the VPC itself.
So far, we have used the default VPC

v



Amazon VPC: main building blocks

» In each AZ, we can define one or more subnets
> Routing Tables attached to subnets
> Internet Gateway



Basic VPC Configuration

v

Create a new Virtual Private Cloud (VPC)
We associate a block of (private) IP addresses to the VPC

Subnets will be created within this block of addressess
We can pick, e.g., 10.0.0.0/16

We can create subnets: each subnet is associated with an
Availability Zone (AZ)

Let's pick an AZ and create a subnet (e.g., 10.0.1.0/24)

If you want (for debugging), you can require that EC2 instances in
the subnet are also assigned a public IP address

Create an Internet Gateway (IG) to allow instances in the VPC to
reach Internet; associate it with the VPC

Create a Route Table for the VPC and attach it to the subnet(s)
Add a new rule in the table: 0.0.0.0\0 - target: IG
Repeat the above steps for each subnet you want.



Elastic Load Balancing (ELB)

> ELB automatically distributes incoming traffic across multiple
targets (e.g., EC2 instances, containers, and IP addresses) in one or
more Availability Zones

> It monitors the health of its registered targets and routes traffic
only to the healthy targets
> 4 types of ELB:

> Application Load Balancer (layer 5)
» Network Load Balancer (layer 4)

» Gateway Load Balancer (layer 3)

> Classic Load Balancer (legacy)

> We'll use the Application LB today



ELB Configuration

v

v

Create an ELB instance listening for HTTP requests on port 80
Health check: use HTTP requests on port 80 with path /

ELB needs a security group: configure one to accept traffic on port
80

Create a few EC2 instances using our custom AMI in our subnets
Register the instances to the ELB

Wait a few minutes (DNS...) and then try to connect at the ELB
URL with the browser



ELB Configuration

v

>
>
>

Create an ELB instance listening for HTTP requests on port 80
Health check: use HTTP requests on port 80 with path /

ELB needs a security group: configure one to accept traffic on port
80

Create a few EC2 instances using our custom AMI in our subnets
Register the instances to the ELB

Wait a few minutes (DNS...) and then try to connect at the ELB
URL with the browser

Note:

>
| 2

EC2 instances don't need a public IP address any more
EC2 instances can now use a stricter security group:
> Allowed source: 0.0.0.0/0 — <ID of ELB sec group>



Auto scaling

> We want to dynamically provision the number of active instances
> Let's use the Auto Scaling service of EC2

. : Availability Zone !

Amazon EC2

el &

Internet Application
Gateway Load Balancer

Avallability Zone

Amazon EC2




Auto Scaling + Photogallery

v

v

vvyyy

Before starting, terminate manually launched instances
Create a Launch Configuration for Photogallery

Create an Auto Scaling Group that uses the new Launch
Configuration

Specify the VPC and the subnets where new instances should be
launched

Enable load balancing, associating the group with our ELB

Set minimum and maximum number of instances (e.g., 2 and 5)
Set an auto scaling policy

Verify that new instances are automatically created



AWS CLI

v

AWS provides a Command Line Interface to interact with AWS
services

Faster interaction compared to web console

Installation: check official docs

Before usage, we need to configure:
> AWS Access Key IDand AWS Secret Access Key
> default region to use (e.g., us-east-1)
> output format (json, text)
AWS CLI can be configured by:
> running aws configure, or
> editing ~/.aws/config and ~/.aws/credentials

Available commands well documented on AWS website

10



AWS CLI: example

Create a new security group in our VPC:

$ aws ec2 create-security-group --group-name my-sg \
--description "My security group" --vpc-id vpc-12345

We can see the properties of any SG:
$ aws ec2 describe-security-groups --group-ids <groupId>
Set inbound traffic rules:

$ aws ec2 authorize-security-group-ingress --group-id <ID> \
--protocol tcp —--port 22 --cidr 0.0.0.0/0

$ aws ec2 authorize-security-group-ingress --group-id <ID> \
--protocol tcp --port 80 --cidr 0.0.0.0/0

$ aws ec2 describe-security-groups --group-ids <ID DEL GRUPPO:

11



AWS CLI: example

$ aws ec2 run-instances --image-id <ID AMI> --count 1 \
--instance-type t2.nano \
--key-name <MyKeyPair> --security-group-ids <sgId> \
--subnet-id <subnetId> --associate-public-ip-address
We can associate the instance with a tag:

$ aws ec2 create-tags —-resources <instID> \
--tags Key=Name,Value=SDCC

We can get information about active instances:

$ aws ec2 describe-instances \
--filters "Name=tag:Name,Values=SDCC"
$ aws ec2 describe-instances \
--filters "Name=instance-type,Values=t2.nano"

To terminate the instance:

$ aws ec2 terminate-instances --instance-ids <ID>

12



Exercise

> Create a script to destroy all the active EC2 instances.

> Create a script to destroy all the active EC2 instances with tag
“Name=SDCC”

13



