
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems
Part 1

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Communication in distributed systems

• Based on message passing
– Send and receive messages

• To allow for message passing, parties must agree on
many low-level details
– How many volts to signal a 0 bit and how many for a 1 bit?
– How many bits for an integer?
– How does the receiver know which is the last bit of the

message?
– How can the receiver find if a message has been corrupted

and what to do then?

Valeria Cardellini - SDCC 2021/22 1

Basic networking model and its adaptation

• We know the solution: divide network communication
in layers
– The well known ISO/OSI reference model
– We don’t care about low-level details: for many distributed

systems, the lowest-level interface is that of the network layer

• An adapted layering scheme

Valeria Cardellini - SDCC 2021/22 2

Middleware protocols
• Middleware layer: provides common services and

general-purpose protocols
– high-level
– independent of specific applications
– can be used by other applications

• Some examples:
– Communication protocols: to call remote procedures or remote

methods, queue messages, support multicasting and streaming
– Naming protocols: to share resources among applications
– Security protocols: to allow applications to communicate

securely
– Distributed consensus protocols, including distributed commit (to

establish that a transaction is completed by all involved parties
or has no effect)

– Distributed locking protocols
– Data consistency protocols

Valeria Cardellini - SDCC 2021/22 3

Types of communication

• Let’s distinguish

– Persistency
• Transient versus persistent communication

– Synchronization
• Synchronous vs. asynchronous communication

– Time dependence
• Discrete vs. streaming communication

Valeria Cardellini - SDCC 2021/22 4

Persistent vs. transient communication

• Persistent communication
– Message is stored by communication middleware as long as

it takes to deliver it to receiver
– Sender does not need to continue execution after submitting

the message
– Receiver does not need to be executing when message is

submitted

• Transient communication
– Message is stored by middleware only as long as sender

and receiver are executing: sender and receiver have to be
active at time of communication

– If delivery is not possible, message is discarded
– Transport-layer example: routers store and forward, but

discard if forward is not possible

Valeria Cardellini - SDCC 2021/22 5

Synchronous communication
• Once the message has been submitted, sender is

blocked until operation is completed
• Send and receive are blocking operations
• How long is sender blocked? Alternatives:

1. until middleware takes over request transmission
2. until message is delivered to receiver
3. until message is fully processed by receiver

1 2 3

Valeria Cardellini - SDCC 2021/22 6

Asynchronous communication

• Once message has been submitted, sender
continues its processing: message is temporarily
stored by middleware until it is transmitted

• Send is a non-blocking operation, receive can be
blocking or non-blocking

Valeria Cardellini - SDCC 2021/22 7

Discrete vs. streaming communication

• Discrete communication
– Each message forms a complete unit of information

• Streaming communication
– Involves sending multiple messages, in temporal relationship

or related to each other by sending order, which is needed to
reconstruct complete information

Valeria Cardellini - SDCC 2021/22 8

Combining communication types
• Combination of persistence and synchronization
a) Persistent and asynchronous communication

– E.g., email, Teams chat

b) Persistent and synchronous communication
– Sender blocked until the (guaranteed) message copy is

delivered to receiver

Valeria Cardellini - SDCC 2021/22 9

Combining communication types
• Combination of persistence and synchronization
c) Transient and asynchronous communication

– Sender does not wait but message can be lost if receiver is
unreachable (e.g., UDP)

Valeria Cardellini - SDCC 2021/22 10

Combining communication types
• Multiple options for transient and synchronous

communication
d) Receipt-based synchronous: sender blocked until message

copy is in receiver space (e.g., asynchronous RPC)
e) Delivery-based synchronous: sender blocked until message is

delivered to receiver

Valeria Cardellini - SDCC 2021/22 11

Combining communication types
• Multiple options for transient and synchronous

communication
f) Response-based synchronous: sender blocked until it receives

a reply message from receiver (e.g., synchronous RPC and
RMI)

Valeria Cardellini - SDCC 2021/22 12

Failure semantics during communication

• Different types of failure in communication between
sender (client) and receiver (server)

1. Request and/or reply message can be lost or delayed,
or connection reset
– Network is reliable ("The Eight Fallacies of Distributed

Computing")

2. Server can crash
a) before performing the requested service
b) after performing the requested service

– client cannot distinguish between a and b

3. Client can crash

Valeria Cardellini - SDCC 2021/22 13

Failure semantics during communication

• What is the semantics of communication in the

presence of failures in a DS?

– May-be semantics
– At-least-once semantics
– At-most-once semantics
– Exactly-once semantics

• Failure semantics applies both to service

processing (e.g., RPC) and message delivery

(e.g., MOM)

– Let’s focus on service processing

Valeria Cardellini - SDCC 2021/22 14

Basic mechanisms for failure semantics
• Failure semantics depends on the combination of the

following 3 basic mechanisms
1. Client side: Request Retry (RR1)

– Client keeps trying until it gets a reply or is confident about
server failure after a certain number of failed retries

2. Server side: Duplicate Filtering (DF)
– Server discards any duplicate request from the same client

3. Server side: Result Retransmit (RR2)
– Server keeps result to be able to retransmit it without

recalculating in case it receives a duplicate request
• Needed if operation performed by server is not idempotent

Idempotent operation (i.e., without side effects): multiple
executions of the operation produce the same effect/result as a
single execution of the operation, e.g., read-only operation or
x = 1

Valeria Cardellini - SDCC 2021/22 15

May-be semantics

• No guarantee that the operation has been executed
or not on server

• No action is taken to ensure the reliability of
communication: no mechanism (RR1, DF, RR2) is
used

• E.g., best-effort in UDP
Client Server

Send request Request message

Execute
Send reply

LOST

Reply message

Valeria Cardellini - SDCC 2021/22

Client Server
Send request Request message

Execute
CRASH

16

At-least-once semantics
• The service, if executed, has been executed at least

once
– Could be several times, because of request duplication due

to retransmissions

• Client uses RR1, server uses neither DF nor RR2
– Server is not aware of duplicates

• Suitable for idempotent services (stateless server)
• Upon response receipt, client does not know how

many times its request has been processed by server
(at least once): client does not know about server
status
– The server may have executed the requested service but

crashed before sending the response: when the timeout
expires, the client resends the request and server executes
the service again and sends the response to the client

Valeria Cardellini - SDCC 2021/22 17

At-least-once semantics

Client Server
Send request Request message

LOST

ti
m

eo
ut

Retransmit request message

Execute
Send replyReply message

LOST

ti
m

eo
ut

Send request

Send request Retransmit request message

Reply message

ti
m

eo
ut Execute

Send reply

Valeria Cardellini - SDCC 2021/22 18

At-most-once semantics
• Service, if performed, was carried out at most once

– Client knows that if it receives the reply, it has been
processed by server only once

– In case of failure, no information (at-most-once: reply has
been calculated at most once, but possibly also none)

• All basic mechanisms (RR1, DF, RR2) are used
– Client retransmits request when timeout expires
– Server maintains some state to identify duplicate requests and

to not process the request more than once

• Suitable for any type of service
– Even not idempotent

• No constraints on consequent actions
– No coordination between client and server: in case of error,

client does not know if server run the service, while server
ignores if client knows that the service run

– Possible inconsistency on the agreement between client and
server

Valeria Cardellini - SDCC 2021/22 19

At-most-once semantics

Client Server
Send request Request message

LOST

ti
m

eo
ut

Retransmit request message

Log request
Execute
Send reply
Log reply

Reply message

LOST

ti
m

eo
ut

Send request

Send request Retransmit request message

Filter duplicate
Send replyReply message

ti
m

eo
ut

Valeria Cardellini - SDCC 2021/22 20

At-most-once semantics: implementation
• Server detects duplicate requests and returns previous

reply instead of re-running operation handler()
• How to detect duplicate request?

– Client includes a unique ID (xid) with each request and uses
same xid when re-sending

• Some at-most-once complexities
– How to ensure xid is unique?

Server:

if seen[xid]
r = old[xid]

else
r = handler()
old[xid] = r
seen[xid] = true

- Server must eventually discard info about
old requests: when is discard safe?

• Can use sliding windows and sequence
numbers

• Can discard information older than
maximum message lifetime

- How to handle duplicate requests while
original one is still executing?

Valeria Cardellini - SDCC 2021/22 21

https://martinfowler.com/articles/patterns-of-distributed-
systems/idempotent-receiver.html

Exactly-once semantics
• Strongest but most difficult guarantees to implement

in DS, especially large-scale ones
• Requires full agreement on the interaction

– Service is run only once or it is not run at all: all-or-nothing
semantics

• If everything goes well: the service runs only once, duplicates
are found

• If something goes wrong: client or server knows if the service is
run (once - all) or if it has not run (no time - nothing)

• Semantics with concordant knowledge of each
other's state and without hypotheses on the
maximum duration of the interaction protocol
between client and server
– No constraint on maximum duration: barely practical in a real

system!

Valeria Cardellini - SDCC 2021/22 22

Exactly-once semantics: mechanisms
• Server-side basic mechanisms (RR1, DF, RR2) are

not enough
• Additional mechanisms are required to tolerate

server-side faults
– Transparent server replication
– Write-ahead logging (WAL)
– Recovery

• Mechanisms to recover from whatever state the failed server
left behind and begin processing from a safe point

• We will study distributed snapshot and state checkpointing

Valeria Cardellini - SDCC 2021/22 23

WAL pattern
• aka Commit log
• Goal

– Provide durability guarantee by persisting every state
change as a command to the append only log

• How
– Each state change is stored as a log entry in a file on hard

disk and the log is appended sequentially
– The file can be read on every restart and the state can be

recovered by replaying all the log entries
https://martinfowler.com/articles/patterns-of-distributed-systems/wal.html

Valeria Cardellini - SDCC 2021/22 24

Summing up failure semantics

• At-least once and at-most once semantics are
feasible and widely used in distributed systems

• We often choose the lesser of two evils, which is at-
least-once semantics in most cases
– At-least once semantics is also easier to scale

Valeria Cardellini - SDCC 2021/22 25

Distributed systems are all about trade-offs!

Distributed application programming
• You know explicit network programming

– Operating system construct based on socket API and explicit
management of message exchange

– Used in most network applications (e.g. web browser, web
server)

– But distribution is not transparent and requires developer
effort

• How to increase the abstraction level of distributed
programming? By means of a communication
middleware between OS and applications
– Hide complexity of underlying layers
– Free programmer from automatable tasks
– Improve software quality by reusing known, correct and

efficient solutions
Valeria Cardellini - SDCC 2021/22 26

Distributed application programming
• Implicit network programming

– Language-level construct
– Remote Procedure Call (RPC)

• Distributed app realized through procedure calls, but
caller (client) and callee (server) are located on different
machines and communication among them is hidden to
programmer

– Remote method invocation (Java RMI)
• Distributed application in Java is realized by invoking

methods of object running on a remote machine
Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Valeria Cardellini - SDCC 2021/22 27

Remote Procedure Call (RPC)
• Idea (by Birrel and Nelson, 1984): use client/server

model to call procedures executed on other machines
– Process on machine A calls procedure on machine B
– Calling process on A is suspended
– Called procedure is execute on B
– Input and output parameters are transported into messages
– No message passing is visible to programmer

Valeria Cardellini - SDCC 2021/22 28

Why RPC

• Used in many distributed systems, including cloud
computing ones

• Developed and employed in many languages and
frameworks, among which:
– C (Sun RCP)
– Java (Java RMI)
– Go
– gRPC
– Remote Python Call (RPyC)
– Distributed Ruby (DRb)
– Ice
– Microsoft .NET
– JSON-RPC
– CORBA

Valeria Cardellini - SDCC 2021/22

Our case studies

29

Local procedure call

• Caller pushes to stack
input parameters (data,
dbList) and returns
address

• When callee returns,
control is back to caller

• Example of local procedure call:
newlist = append(data, dbList)

Valeria Cardellini - SDCC 2021/22 30

In case of RPC, how to make it appear to the
developer that the call is local?

RPC: architecture

Valeria Cardellini - SDCC 2021/22 31

call procedure execute
procedure

realize RPC
support

realize RPC
support

• Solution: create proxies
(aka stubs)

• On the client side: the
client stub has the
service’s interface
– Client calls client stub that

manages all the details: it
packages parameters and
calls the server

• On the server side: the
server stub receives the
request and calls the local procedure

• Goal: distribution transparency
– Stubs are automatically generated
– Developer focus is on application logic

RPC: Basic steps
1. On client side, client calls a local procedure,

called client stub
2. Client stub packs request message and call

local OS
• Parameter marshaling: arguments are

converted from local to common format and

packaged into a message

Valeria Cardellini - SDCC 2021/22 32

3. Client OS sends request message to remote OS
4. Remote OS gives request message to server stub
5. On server side, server stub unpacks request message and calls server as it

was a local procedure
• Parameter unmarshaling: arguments are extracted from message and converted

from common to local format

6. Server executes local call and returns result to server stub
7. Server stubs packs reply message (marshals return value(s)) and calls OS
8. Server OS sends reply message to client OS
9. Client OS gives message to client stub
10. Client stub unpacks reply message (unmarshals return value(s)) and returns

result to client

RPC basic steps: example

• Call remote procedure doit(a,b)

Valeria Cardellini - SDCC 2021/22 33

RPC middleware requirements
• Exchange messages to call procedure/invoke method,

so to make it appear to the user that the call is local: we
need to:
– Identify request and reply messages, remote procedure/method
– Pass parameters

• Manage data heterogeneity
– Which data? Parameters, return value(s)
– Marshaling vs. serialization:

• Serialization: convert object into a sequence of bytes that can be
sent over a network; serialization is used in marshaling

• Marshaling: bundle parameters into a form that can be
reconstructed (unmarshaled) by another process

• Handle failures due to distribution
– During communication
– User errors

Valeria Cardellini - SDCC 2021/22 34

RPC issues
• Issues to address in order to transparently execute

procedure call
1. How to manage heterogeneity in data representation?

– Client and server also need to agree on transport protocol for
message passing: TPC, UDP, both?

2. Client and server run on different hosts having their own
address space: how to realize parameter passing by
reference?

3. When failures occur, what does the client know about
the execution of the server?
– Local procedure call: exactly-once
– Remote procedure call: at-least-once or at-most-once (in most

cases)

4. How to bind to server, i.e., how do we locate the server
endpoint?

Valeria Cardellini - SDCC 2021/22 35

Data heterogeneity
• Client and server may use different data

representations
– E.g., different character sets, byte ordering (little endian vs big

endian), size of integers, floating point representation

• General alternatives (not only RPC) to handle
heterogeneity in data representation:
1. Specify encoding within the message itself
2. Let message sender convert data into receiver encoding
3. Convert data into standard encoding agreed between the

parties
• Sender: converts from local to standard
• Receiver: converts from standard to local

4. Let an intermediary convert between different encodings

Valeria Cardellini - SDCC 2021/22 36

Data heterogeneity

• Let’s compare alternatives 2 and 3, assuming N
distributed components that communicate among
them

• #2: each component knows all conversion functions
Conversion is faster

✘ Higher number of conversion functions: N*(N-1)

• #3: all components agree on standard encoding for
data representation and each component knows
how to convert from local to common format and
vice versa

Conversion is slower
✘ Lower number of conversion functions: 2*N

Alternative 3 is the standard choice in RPC systems

Valeria Cardellini - SDCC 2021/22 37

Data heterogeneity: patterns
• Let’s consider alternatives 3 and 4: how to realize?
• Proxy

– Aim: support access (and location) transparency
– Control access to an object using another proxy object

• The proxy is created in the local address space to represent the
remote object and offers the same interface of the remote object

• Broker
– Aim: separate and encapsulate the details of communication

from its functionality
– Enables components to interact without handling remote

concerns by themselves
– Locates the server for the client, hides the communication

details, etc.

Proxy (stub) is the standard choice in RPC systems
Who automatically generates stubs?

Valeria Cardellini - SDCC 2021/22 38

Parameter passing techniques

• Call by value
– Parameter value is copied in a local isolated storage (usually

stack)
– The callee acts on copied data and changes will not affect

the caller

• Call by reference
– Reference (pointer) to parameter is copied into the stack
– The callee acts directly on caller data

• Call by copy-restore
– A somehow special case of call by reference: data is copied

into the caller stack; when the procedure returns, the
updated contents are copied back (restored)

– Available in few programming languages (e.g., Ada, Fortran)

Valeria Cardellini - SDCC 2021/22 39

RPC parameter passing
• A reference is a memory address

– Valid only in its context (local machine)
– We need a pointerless representation

• Solution: simulate call by reference by using call by
copy-restore
– Client stub copies the pointed data in the request message

and sends the message to server stub
– Server stub acts on copy, using the address space of the

receiver host
– If the copy is modified, it will be then restored by client stub

overwriting the original data
– Size of data to be copied should be known
– What happens if data contains a pointer?

Valeria Cardellini - SDCC 2021/22 40

Semantics of remote call/method

• Exactly once semantics is costly: most RPC systems
implement weaker semantics

• At-least-once semantics: if the client gest a reply from
the server, it means that remote call/method has
been executed at least once by the server

• At-most-once semantics: if the client gets a reply
from the server, it means that the remote call/method
has been executed at most once by the server

Valeria Cardellini - SDCC 2021/22 41

Server binding
• Binding: how to locate the server endpoint, including

the proper process (port or transport address) on it
– In principle: can be static or dynamic

• Static binding
– At design time: server address and other info are wired into

code
– Easy and no overhead, but lacks transparency and flexibility

• Dynamic binding
– At run-time
– Increased overhead, but gains transparency and flexibility

• E.g., we can redirect requests in case of server replication
– Try to limit overhead

Valeria Cardellini - SDCC 2021/22 42

Server binding: dynamic
• Two phases in client/server relationship
• Naming: static phase, before execution

– Client specifies to whom it wants to be connected, using a
unique name that identifies the service

– Unique names are associated with operations or abstract
interfaces and binding is made to the specific service interface

• Addressing: dynamic phase, during execution
– Server effectively binds to client when client invokes service
– Depending on middleware implementation, multiple replica

servers can be looked for
– Addressing can be explicit or implicit
– Explicit addressing: client sends request using broadcast or

multicast, waiting only for first reply

Valeria Cardellini - SDCC 2021/22 43

Server binding: dynamic

client

stub

server

stub

name

server

12, 3

4

Valeria Cardellini - SDCC 2021/22 44

– Implicit addressing: there is a name server (aka binder,
directory service, registry service) that registers services and
manages a binding table

– Service lookup, registration, update, and deletion

• Dynamic binding frequency
– Each procedure call requires addressing
– To reduce cost, binding result can be cached and re-used

RPC and OSI model

• Where is RPC in the OSI model?
– Layer 5 (session): Connection management
– Layer 6 (presentation): Marshaling/data representation
– Uses the transport layer (layer 4) for communication

(TCP/UDP)

Valeria Cardellini - SDCC 2021/22 45

More issues: Synchronous vs. asynchronous RPC

• Synchronous RPC: strict
request-reply behavior
– RPC call blocks client that waits

for server reply

• Some RPC middleware
supports asynchronous RPC
– Client continues without waiting

for server reply
– Server can reply as soon as

request is received and execute
procedure later

Asynchronous RPC

Valeria Cardellini - SDCC 2021/22 46

Synchronous RPC

More issues: transparency

• Is RPC truly transparent? Can we really just treat
remote procedure calls as local procedure calls?
– Performance, failures, concurrent requests, replication,

migration, …

• Performance
– RPC is slower ... a lot slower: why?
– Local call: maybe 10 cycles = ~3 ns
– RPC: 0.1-1 ms on a LAN => ~100K slower

• Major source of overhead: context switching, copies, inter-
process communication

• In WAN: can easily be millions of times slower

Valeria Cardellini - SDCC 2021/22 47

More issues: transparency

• Failures
– Different failures can occur

• Client cannot locate server
• Lost request messages
• Server crashes
• Lost reply messages
• Client crashes

Valeria Cardellini - SDCC 2021/22 48

More issues: security

• Authenticate client? Authenticate server?
– Is the client sending messages to the correct server or is

the server an impostor?
– Is the server accepting messages only from legitimate

clients? Can the server identify user at the client side?

• Messages may be visible over network
– Messages may be sniffed (and modified) while they

traverse the network: do we need to hide them?
– Has the message been accidentally corrupted or

truncated while on the network?

• RPC protocol may be subject to replay attacks
– Can a malicious host capture a message and retransmit it

at a later time?

Valeria Cardellini - SDCC 2021/22 49

Programming with RPC
• Language support

– Many programming languages have no language-level
concept of remote procedure calls (e.g., C, C++)

• These compilers will not automatically generate client and
server stubs

– Some languages have support that enables RPC (Java,
Python, Haskell, Go, Erlang)

• But we may need to deal with heterogeneous environments
(e.g., Java communicating with a Python service)

• Common solution
– Interface Definition Language (IDL): describes remote

procedures
– Separate compiler that generates stubs (pre-compiler)

Valeria Cardellini - SDCC 2021/22 50

Interface Definition Language (IDL)
• Allow programmer to specify remote procedure

interfaces (names, parameters, return values)

• IDL compiler can use this to generate client and
server stubs
– Marshaling code
– Unmarshaling code
– Network transport routines

• Conform to defined interface
– An IDL looks similar to function prototypes

Valeria Cardellini - SDCC 2021/22 51

IDL and RPC compiler

Valeria Cardellini - SDCC 2021/22 52

RPC case studies

• Sun RPC

• Java RMI

• Go

• gRPC

Valeria Cardellini - SDCC 2021/22 53

Implementing RPC: Sun RPC

• Example of first generation RPC
• Implementation and RPC middleware provided by

Sun Microsystems: Open Network Computing (ONC)
RPC, aka Sun RPC
– Basic and widely used implementation
– RFC 1831 (1995), RFC 5531 (2009)

• ONC is a suite of products including:
– eXternal Data Representation (XDR) as IDL
– Remote Procedure Call GENerator (RPCGEN): IDL compiler

to automatically generate client stub and server stub
– Port mapper: service to bind client to server
– Network File System (NFS): distributed file system

Valeria Cardellini - SDCC 2021/22 54

How to define RPC program

• Two descriptive parts written in XDR and grouped in
a file with extension .x
– In our example: square.x

1. Definition: specifics of procedures (services) that is,
identify procedures and their parameters’ data types

2. XDR definitions: definitions of parameters’ data
types (if not defined in XDR)

• Example: remote procedure to calculate square of
integer number

Valeria Cardellini - SDCC 2021/22 55

Square example: define remote procedure
struct square_in { /* input (argument) */
long arg1;

};
struct square_out { /* output (result) */
long res1;

};
program SQUARE_PROG {
version SQUARE_VERS {
square_out SQUAREPROC(square_in) = 1; /* procedure number = 1 */
} = 1; /* version number */

} = 0x31230000; /* program number */

Code: square.x

Let’s define the remote procedure SQUAREPROC

– Each procedure has only one input parameter and one output parameter

– Identifiers are written in uppercase

– Each procedure is associated with a procedure number which is unique
within the RPC program (in the example 1)

Valeria Cardellini - SDCC 2021/22 56

How to implement RPC program

• Programmer has to develop:
– Client program: implements main() and the logic needed

to find the remote procedure and bind to it (example:
square_client.c)

– Server program: implements the remote procedures
provided by RPC server (example: square_server.c)

• Note: programmer does not write server-side main()
– Who calls the remote procedure on server side?

Valeria Cardellini - SDCC 2021/22 57

Square example: local procedure
• Let’s first consider a standard solution for the local

procedure
#include <stdio.h>
#include <stdlib.h>

struct square_in { /* input (argument) */
long arg;

};
struct square_out { /* output (result) */

long res;
};
typedef struct square_in square_in;
typedef struct square_out square_out;

square_out *squareproc(square_in *inp) {
static square_out out;

out.res = inp->arg * inp->arg;
return(&out);

}

Code: square_local.c

Valeria Cardellini - SDCC 2021/22 58

Square example: local procedure
• Local procedure (continue)

int main(int argc, char **argv) {
square_in in;
square_out *outp;

if (argc != 2) {
printf("usage: %s <integer-value>\n", argv[0]);
exit(1);

}
in.arg = atol(argv[1]);

outp = squareproc(&in);
printf("result: %ld\n", outp->res);
exit(0);

}

Which changes in case of remote procedure?

Valeria Cardellini - SDCC 2021/22 59

Square example: remote procedure

#include <stdio.h>
#include <rpc/rpc.h>
#include "square.h" /* generated by rpcgen */
square_out *squareproc_1_svc(square_in *inp, struct svc_req

*rqstp) {
static square_out out;

out.res1 = inp->arg1 * inp->arg1;
return(&out);

}

Code: server.c

• Code of remote procedure is almost equal to local
procedure

• Notes:

– Input and output parameters use pointers
– Output parameter must be a pointer to a static variable (i.e., global

memory allocation) so that pointed area exists when procedure
returns

– Name of RPC procedure changes slightly (we add _ suffixed by
version number and _svc, e.g., _1_svc), all in lowercase

Valeria Cardellini - SDCC 2021/22 60

Square example: client
• Launch client with remote hostname and integer

value; it calls the remote procedure
#include <stdio.h>
#include <rpc/rpc.h>
#include "square.h" /* generated by rpcgen */
int main(int argc, char **argv) {

CLIENT *clnt;
char *host;
square_in in;
square_out *result;

if (argc != 3) {

printf("usage: client <hostname> <integer-value>\n");

exit(1);

}

host = argv[1];
clnt = clnt_create(host, SQUARE_PROG, SQUARE_VERS, "tcp");

Code: client.c

CLIENT *clnt_create(char *host, unsigned long prog,
unsigned number vers, char *proto)

Valeria Cardellini - SDCC 2021/22 61

Square example: client
if (clnt == NULL) {

clnt_pcreateerror(host);
exit(1);

}
in.arg1 = atol(argv[2]);
if ((result = squareproc_1(&in, clnt)) == NULL) {

printf("%s", clnt_sperror(clnt, argv[1]));
exit(1);

}
printf("result: %ld\n", result->res1);
exit(0);

}

Valeria Cardellini - SDCC 2021/22 62

Square example: client
• clnt_create(): creates client transport manager to

handle communication with remote server
– TPC or UDP, default timeout for request retransmission

• Client must know:
– Remote server hostname
– Info to call remote procedure: program name, version number

and remote procedure name
• To call remote procedure:

– Procedure name changes slightly: we add _ followed by
version number (name in lowercase)

– Two input parameters:
• The first is the effective input parameter
• The latter is the client transport manager

– Client gets pointer to result
• Allows it to identify failed RPC (null return)

• Handling of errors that occur during remote call
– clnt_pcreateerror() and clnt_perror()

63Valeria Cardellini - SDCC 2021/22

Basic steps to program with SUN RPC
1. Define the RPC interface: procedures and data types (if

needed) ® writes square.x
2. Compile square.x with rpcgen, which generates client

and server stubs and XDR routines to convert data to
XDR format
⎼ square_clnt.c, square_svc.c, square_xdr.c, square.h

3. Write client program and server functions (client.c and
server.c), compile all source files (client and server,
client and server stubs, and conversion routines) and
link object files

4. When you start server, it publishes services
– Remote procedures are registered with name server (port

mapper or rpcbind)

5. When you start client, it finds the service endpoint
through port mapper

Valeria Cardellini - SDCC 2021/22 64

Sun RPC features
• A program typically contains multiple remote

procedures
– Multiple versions for each procedure
– Single input and output parameter (call by copy-restore)

• Mutual exclusion guaranteed by server: by default, no
concurrency on server side
– Sequential server: only one call can be executed at one time
– Multi-threaded server (no Linux): rpcgen with –M and –A

options

• Client is synchronously blocked waiting for server
reply

• At-least-once semantics
– Request retransmission after a time-out interval expires
– UDP as default transport protocol

Valeria Cardellini - SDCC 2021/22 65

eXternal Data Representation (XDR)
• Sun RPC uses a standard transfer format called XDR

to handle data heterogeneity
– Standard for the description and encoding of machine-

independent data (RFC 4506)

• Built-in XDR conversion functions for:
– Predefined primitive types

• E.g., xdr_bool(), xdr_char(), xdr_int()

– Predefined structured types
• E.g., xdr_string(), xdr_array()

• XDR is a binary format using implicit typing
– Implicit typing: only values are transmitted, not data types or

parameter info

Valeria Cardellini - SDCC 2021/22 66

Definition of file.x
• First part of file

– XDR definition of constants
– XDR definition of data types of input and output parameters for

all data types for which there is no corresponding built-in XDR
function

• Second part of file
– XDR definition of procedures
– Example in square.x: SQUAREPROC is the procedure name,

procedure number 1, version 1 of program number
0x31230000

– According to Sun RPC:
• Procedure number 0 is reserved for NULLPROC

– Each procedure has a single input and output parameter
– Identifiers for program, version and procedure are in

uppercase

Valeria Cardellini - SDCC 2021/22 67

Sun RPC: server binding
• Procedure must be registered before being called

– Unique triple given by: program number (prognum), version
number (versnum), procedure number

– Transport protocol must also be specified
– Client must know the port number on which the server

responds

• RPC server registers the RPC program in the port map
– Dynamic table of RPC services on that host machine
– Each table line contains the triple {prognum, versnum,

protocol} and port
– Procedure number is not specified: all the procedures within a

program share the same transport manager

• The port map table is managed by only one process
(called port mapper) for each host

Valeria Cardellini - SDCC 2021/22 68

Port mapper (rpcbind)
• Port mapper (rpcbind) listens on port 111
• At startup, server stub registers the RPC services it

offers on port mapper
prognum, versnum, protocol and port

• Client stub contacts port mapper to find out the
corresponding port before invoking the remote
procedure

• Port mapper registers the services and supports:
– Insert a service

– Delete a service

– Lookup for service port

– List registered services

Valeria Cardellini - SDCC 2021/22 69

Port mapper (rpcbind)

• To list all the RPC programs on a given host:
rpcinfo -p hostname

>$ rpcinfo -p
program vers proto port

100000 4 tcp 111 rpcbind
100000 4 udp 111 rpcbind
824377344 1 udp 59528
824377344 1 tcp 49311

824377344 (= 0x31230000) is the program number in square.x

• Available RPC programs are listed in /etc/rpc

Valeria Cardellini - SDCC 2021/22 70

SUN RPC: Development process

Given a service specification
• Written in XDR: square.x

rpcgen generates
• Header: square.h
• Client stub: square_clnt.c
• Server stub: square_svc.c
• XDR routines: square_xdr.c

Developer writes
• Client program: client.c
• Server program: server.c

Valeria Cardellini - SDCC 2021/22 71

What goes on in the system: server side

• In main() server stub creates a socket and binds any
available local port to it

• Calls svc_register, RPC library function
– To register procedures with port mapper

• Associates the specified program and version number pair with
the specified dispatch routine

• Then waits for requests by calling svc_run, again in
RPC library

Valeria Cardellini - SDCC 2021/22 72

⎼ svc_run invokes service procedures
in response to RPC call messages

What goes on in the system: client side

• When we start the client program, clnt_create
contacts port mapper on server side to find the port
for that interface
– Early binding: done once, not per each procedure call

• Client stub manages communication
– Request timeout
– Marshaling from local representation to XDR format and

unmarshaling from XDR format to local representation

Valeria Cardellini - SDCC 2021/22 73

Examples in SUN RPC

• Examples of RPC programs
http://www.ce.uniroma2.it/courses/sdcc2122/prog_rpc

– square: find square of an integer
• Let’s examine client stub and server stub code

– echo: repeat a sequence of characters
– avg: find average value of a sequence of real

numbers
– rls: print listing of a remote directory

• XDR routines in dir_xdr.c are automatically generated
from the data types defined in dir.x: they allow to convert
from local format to XDR and vice versa

Valeria Cardellini - SDCC 2021/22 74

Second generation of RPC

• In the 1990s second generation of RPC
• Support for object oriented languages: distributed

objects
– Microsoft DCOM
– CORBA
– Java RMI

Valeria Cardellini - SDCC 2021/22 75

Java RMI: motivations

• Goal: extend RPC concepts to distributed objects
– Java RMI (Remote Method Invocation): RPC in Java
– Allows programmer to create distributed applications where

methods of remote objects can be invoked from other JVMs
– Conceptually similar to RPC but supports the semantics of

object invocation in different address spaces

• Java RMI: set of tools, policies and mechanisms that
allow a Java application running on a host to invoke
methods of a remote object running on another host
– Goal: access transparency (local and remote invocations are

as much as possible the same)
– But distribution transparency is not yet complete

Valeria Cardellini - SDCC 2021/22 76

Java RMI references

• “Trail: RMI”, The Java Tutorials
http://docs.oracle.com/javase/tutorial/rmi/
– Note: JDK 8 (current release JDK 17)

• Java Remote Method Invocation Specification
https://docs.oracle.com/en/java/javase/17/docs/specs/rmi/

Valeria Cardellini - SDCC 2021/22 77

Java RMI basics

• Reference to remote object is created locally, but
object is active on remote host

• Client invokes remote method through local reference
• Which are the differences with respect to invoking a

local method?
– Performance, reliability, communication, ...

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

Valeria Cardellini - SDCC 2021/22 78

Java RMI basics
• Separation between behavior definition (interface) and

behavior implementation (class)
• Logical separation between interface and object allows

for their physical separation
• Remote interface: specifies which object methods can be

invoked remotely
– Object internal state is not distributed!

interface

remote

m1

m2

m3

m4

m5

m6

Data

implementation

remoteobject

{ of methods

Valeria Cardellini - SDCC 2021/22 79

Java RMI basics

• When binding client with remote server object, the
copy of the server interface (stub) is loaded into the
client’s space
– Role similar to RPC client stub

• The request arriving at the remote object is handled
by a client agent, which is local to the server
(skeleton)
– Role similar to RPC server stub

• Single working environment as a consequence of
Java language, but underlying systems heterogeneity
– Thanks to Java code portability

Valeria Cardellini - SDCC 2021/22 80

Stub and skeleton
• Like RPC, RMI exploits

proxy pattern: two
proxies (client-side stub
and server-side skeleton)
hide the application
distributed nature to
application layer
– Stub: client-side proxy for

the remote object;
communicates method
invocations on remote
objects to server

– Skeleton: server-side proxy
that calls the actual remote
object implementation

Server machine
Object

Client machine

Proxy

Same
interface
as object

Interface

State

MethodClient
invokes
a method

Network

Skeleton
invokes
same method
at object

Marshalled invocation
is passed across network

Client OS Server OS

Server

Skeleton

Client

• Automatic stub generation
– Automatically built from Java files

(differently from Sun RPC
rpcgen)

Valeria Cardellini - SDCC 2021/22 81

Serialization/deserialization
• (De)serialization directly supported by Java

– Thanks to bytecode, no need to (un)marshal as in RPC, but
data is (de)serialized using language-level features

• Serialization: transforms the object into a sequence
of bytes
– writeObject method on an output stream

• Deserialization: decodes a sequence of bytes and
builds a copy of the original object
– readObject method from an input stream

• Stub and skeleton use these two features to
exchange input and output parameters with the
remote host

Valeria Cardellini - SDCC 2021/22 82

Serialization/deserialization
• Example of serializable Record object

Record record = new Record();
FileOutputStream fos = new FileOutputStream("data.ser");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(record);

FileInputStream fis = new FileInputStream("data.ser");
ObjectInputStream ois = new ObjectInputStream(fis);
record = (Record)ois.readObject();

• Only instances of serializable objects can be used, that is:
– implement Serializable interface
– contain only serializable objects (or object references)

• Upon deserialization, a copy of the object will be recreated
using its class file and the received information
– Class file must be available locally

Valeria Cardellini - SDCC 2021/22 83

Marshaling versus serialization
• Loosely synonymous but semantically different
• Marshaling: activity by which a stub converts local

application data into network data (e.g., using XDR)
and packages network data into packets for
transmission

• Serialization: activity by which the state of an object
is converted into a byte stream so that byte stream
can be converted back into a copy of the object

• Difference becomes noticeable for objects
– Objects have a codebase that also needs to be marshaled
– Java serialization relies on codebase being present at

receiver

• In Python (pickle module) marshaling and
serialization are considered the same, but not in Java

Valeria Cardellini - SDCC 2021/22 84

Interaction between stub and skeleton
• Steps for communication

1. Client obtains a stub instance (how?)
2. Client invokes methods on the stub

• Remote invocation syntax is identical to local one
3. Stub serializes the information needed for the invocation

(method’s ID and parameters) and sends them to skeleton
in a message

4. Skeleton receives the message and deserializes received
data, invokes the call on the object that implements the
server (dispatching), serializes the return value and sends it
to stub in a message

5. Stub deserializes the return value and returns the result to
the client

Valeria Cardellini - SDCC 2021/22 85

RMI registry

• RMI Registry:
binder for Java
RMI (port 1099)

• Allows server to
publish service
and allows client to
obtain the proxy to
access it

• RMI URL: starts with rmi: and contains the hostname
(optional), the port number (optional) and the name of the
remote object

• Some limit: no location transparency, no security management

Valeria Cardellini - SDCC 2021/22 86

Server-side steps
• Realize server-side remote components

1. Behavior definition: interface that
• is public so that it can be used by any class in any package
• extends java.rmi.Remote so that its methods can be invoked by

other JVMs
• each remote method must declare that it may the remote

exception java.rmi.RemoteException to indicate that either a
communication failure or a protocol error has occurred

2. Behavior implementation: class that
• Implements the remote interface
• Extends java.rmi.UnicastRemoteObject
• unicast: the remote object is non-replicated
• In general each class should at least:

⎼ Declare the remote interface being implemented

⎼ Define the constructor for the remote object

⎼ Provide an implementation for each remote method in the remote

interface

Valeria Cardellini - SDCC 2021/22 87

Server-side and client-side steps
• Realize server-side remote components

3. Server code:
• Create an instance of the remote object
• Register the remote object with the RMI registry, using bind or
rebind (in java.rmi.Naming); rebind replaces any existing
association
⎼ For security reasons, an application can only bind, unbind, or rebind

remote object references with a registry running on the same host

Valeria Cardellini - SDCC 2021/22 88

• Realize client-side local components
1. Obtains the reference to the remote object by invoking

lookup on RMI registry
2. Assigns it to a variable that has the remote interface as its

type

Main steps to use Java RMI

• After coding:
1. Compile classes
2. Start RMI registry (rmiregistry command),

which is launched in a separate process and has
a standard structure and behavior

• Alternatively, you can create your own local registry
using createRegistry method in
java.rmi.registry

• RMI registry is local to the server for security reasons

3. Start server
4. Start client

Valeria Cardellini - SDCC 2021/22 89

Echo example: remote interface
• The interface extends the

Remote interface
• Each remote method

– Has to declare that it throws
a RemoteException

• To handle communication
failure or protocol error

• Remote method invocation
is not completely
transparent

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface EchoInterface

extends Remote{

String getEcho(String echo)

throws RemoteException;

}

– Returns only one result and has zero, one or more input
parameters

– Parameter passing for remote method:
• By value in case of primitive data types (boolean, char, int, …) or

objects that implement the java.io.Serializable interface:
serialization/deserialization managed by stub/skeleton

• By reference in case of Remote objects
Valeria Cardellini - SDCC 2021/22 90

Echo example: server

• The class that
implements the server
– Has to extend the

UnicastRemoteObject
class

– super() method calls the
class constructor
UnicastRemoteObject
which executes all the
needed initialization to
allow the server to wait for
service requests and
serve them

– Has to implement all the
methods declared in the
interface

public class EchoRMIServer

extends UnicastRemoteObject

implements EchoInterface{
//Costruttore

public EchoRMIServer()
throws RemoteException

{ super(); }
// Implement the remote method declared

// in the interface
public String getEcho(String echo)

throws RemoteException

{ return echo; }
public static void main(String[] args) {

// Service registration
try
{ EchoRMIServer serverRMI =

new EchoRMIServer();
Naming.rebind(“EchoService”, serverRMI); }

catch (Exception e)
{e.printStackTrace(); System.exit(1); }

}
}

Valeria Cardellini - SDCC 2021/22 91

Echo example: server
• In main the server object

instance is created; then, it is
ready to accept remote requests

• The RMI registry local to the
server registers the services
– bind/rebind methods in class

Naming (rebind replaces an
already existing binding)

– Makes as many bind/rebind
as the server objects to register,
each one identified with a
logical name

• Registering service provided by
the RMI registry
– Accepts bind/rebind requests

only by the local registry

public class EchoRMIServer
extends UnicastRemoteObject
implements EchoInterface{
//Costruttore
public EchoRMIServer()
throws RemoteException

{ super(); }
// Implement the remote method declared
// in the interface
public String getEcho(String echo)

throws RemoteException
{ return echo; }

public static void main(String[] args) {

// Service registration
try

{ EchoRMIServer serverRMI =
new EchoRMIServer();

Naming.rebind("EchoService", serverRMI); }

catch (Exception e)
{e.printStackTrace(); System.exit(1); }

}
}

Valeria Cardellini - SDCC 2021/22 92

Echo example: client
• Services used exploiting an

interface variable, obtained by
sending a lookup request to
the RMI registry

• Lookup of a remote reference

– Namely a stub instance of the
remote object (using a lookup
and assigning it to a interface
variable)

• Remote method invocation

– Synchronous blocking call
using the parameters
declared in the interface

public class EchoRMIClient
{
// Start RMI client
public static void main(String[] args)
{
bufferedReader stdIn =
new BufferedReader(
new InputStreamReader(System.in));

try
{
// Connect to remote RMI service
EchoInterface serverRMI = (EchoInterface)

Naming.lookup("EchoService");
// Interact with user
String message, echo;
System.out.print("Message? ");
message = stdIn.readLine();
// Invoke remote service
echo = serverRMI.getEcho(message);
System.out.println("Echo: "+echo+"\n");

}
catch (Exception e)
{e.printStackTrace(); System.exit(1); }
}
}

See code on course site

Valeria Cardellini - SDCC 2021/22 93

Echo example: compile and run
• Server side

1. Compile interface source file and server class
javac EchoInterface.java
javac EchoRMIServer.java

2. Start RMI registry and server
rmiregistry [registryPort]
java EchoRMIServer

• Client client
1. Compile client class

javac EchoRMIClient.java

2. Start client
java EchoRMIClient

Valeria Cardellini - SDCC 2021/22 94

Java RMI: parameter passing

• Local method invocation:
– By value: primitive types
– By reference: all Java objects

• Remote method invocation:
– By value: primitive data types and serializable objects

• Serializable objects: object whose location is not relevant to
the state are passed by value: the instance is serialized, sent to
the destination and deserialized to build a local copy

– By remote reference: remote objects via RMI
• Objects whose utility is bounded to the location in which they

run (the server) are passed by remote reference: their stub gets
serialized and dispatched to the other peer

• Each stub instance identifies a single remote object to which it
refers through an identifier which is unique in the context of the
JVM in which the target object exists

Valeria Cardellini - SDCC 2021/22 95

Java RMI: architecture

Valeria Cardellini - SDCC 2021/22 96

• Remote Reference Layer: manages remote references, parameters
and stream-oriented connection abstraction

• Transport Layer
⎼ Manages connections between different JVMs
⎼ Can use different transport protocols, as long as they are connection-

oriented (typically TCP)
⎼ Uses a proprietary protocol

Java RMI: concurrency support
• Methods of a remote object can be invoked

concurrently by multiple clients
From Java RMI specification: “Since remote method invocation
on the same remote object may execute concurrently, a remote
object implementation needs to make sure its implementation is
thread-safe”
https://docs.oracle.com/en/java/javase/15/docs/specs/rmi/arch.html

• To protect a remote method from “dangerous”
concurrent accesses while guaranteeing thread
safety, it must be defined as synchronized

• Example: remote method to increase a counter

Valeria Cardellini - SDCC 2021/22 97

Java RMI: distributed garbage collection

• How to delete remote objects that are no longer
referenced by clients?
– The remote object mush know how many client stubs are

using it
– But network failures, client crashes, …

• To address distributed garbage collection, RMI
requires a high degree of coordination
– Con: no large-scale apps

Valeria Cardellini - SDCC 2021/22 98

remote object

Java RMI: distributed garbage collection
• Within a JVM, Java uses reference counting and

schedules objects for garbage collection when the
reference count goes to zero

• Across JVMs, with RMI, Java supports two operations
(dirty and clean) to realize a lease-based garbage
collection
– Client JVM periodically sends dirty message to server JVM

when a remote object is in use
• Dirty is refreshed based on lease time given by server

– Client JVM sends clean message when there are no more
local references to the object

– If server JVM does not receive either dirty or clean before
the lease time expires, object can be scheduled for deletion if
it is not referenced by anyone

• If a client does not renew the lease before it expires, server
assumes that remote object is no longer referenced by that client

Valeria Cardellini - SDCC 2021/22 99

Example: compute engine

• Realize a compute engine
– Remote object on server that that takes tasks from clients, runs

tasks, and returns any result
– Tasks are defined by clients but executed on server machine

• Powerful server machine or specialized hardware
– Tasks can be arbitrary: the task class only needs to implement

a particular interface
– Compute engine downloads task code and runs it into its JVM

• Two interfaces to implement the compute engine
– Remote interface Compute enables tasks to be submitted to the

engine
– Interface Task defines how the compute engine executes a

submitted task

Code: http://docs.oracle.com/javase/tutorial/rmi/

Valeria Cardellini - SDCC 2021/22 100

Compute engine: remote interface and argument
• Compute engine's remote interface
package compute;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Compute extends Remote {
<T> T executeTask(Task<T> t) throws RemoteException;

}

Valeria Cardellini - SDCC 2021/22 101

• Task interface: type of parameter to executeTask method in
Computeinterface

package compute;

public interface Task<T> {
T execute();

}

Compute engine: server
package engine;

import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import compute.Compute;
import compute.Task;

public class ComputeEngine implements Compute {
public ComputeEngine() { super(); }
public <T> T executeTask(Task<T> t) {

return t.execute();
}

Valeria Cardellini - SDCC 2021/22 102

Compute engine: server
public static void main(String[] args) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new SecurityManager());

}
try {

String name = "Compute";
Compute engine = new ComputeEngine();
Compute stub =
(Compute) UnicastRemoteObject.exportObject(engine,0);

Registry registry = LocateRegistry.getRegistry();
registry.rebind(name, stub);
System.out.println("ComputeEngine bound");

} catch (Exception e) {
System.err.println("ComputeEngine exception:");
e.printStackTrace();

}
}

} Valeria Cardellini - SDCC 2021/22 103

Compute engine: client
public class ComputePi {

public static void main(String args[]) {
if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());
}
try {

String name = "Compute";
Registry registry = LocateRegistry.getRegistry(args[0]);
Compute comp = (Compute) registry.lookup(name);
Pi task = new Pi(Integer.parseInt(args[1]));
BigDecimal pi = comp.executeTask(task);
System.out.println(pi);

} catch (Exception e) {
System.err.println("ComputePi exception:");
e.printStackTrace();

}
}

} Valeria Cardellini - SDCC 2021/22 104

Compute engine: client’s compute object
package client;

import compute.Task;
import java.io.Serializable;
import java.math.BigDecimal;

public class Pi implements Task<BigDecimal>, Serializable {
private final int digits;
public Pi(int digits) { this.digits = digits; }
// lot of stuff deleted ...
public BigDecimal execute() {

return computePi(digits);
}
// more stuff deleted ...

}

Valeria Cardellini - SDCC 2021/22 105

Example: compute engine
• Java RMI can use dynamic class loading and security

manager to transport Java classes safely
• In Compute engine example:

– Dynamic class loading through web server

– Install security manager and define related security policy files
• So that loaded classes can perform only granted operations
https://docs.oracle.com/javase/tutorial/rmi/running.html

Valeria Cardellini - SDCC 2021/22 106

Comparing SUN RPC and Java RMI
• SUN RPC: process oriented, incomplete access

transparency, no location transparency
• Entities that can be requested: operations or functions
• Communication: synchronous and asynchronous
• Communication semantics (default): at-least-once
• Maximum duration and exceptions: timeout for

retransmission and error handling
• Server binding: port mapper on the server
• Data presentation: specific IDL (XDR) and automatic

generation of client stubs and server stubs
• Parameter passing: by copy-restore
• Various extensions, including broadcast (multiple

responses from multiple servers rather than just one)
and security

Valeria Cardellini - SDCC 2021/22 107

Comparing SUN RPC and Java RMI
• Java RMI: object oriented, access transparency, no

location transparency, distribution is not totally
transparent (semantics of parameter passing, remote
interface definition and remote exceptions)

• Entities that can be requested: methods of objects via
interfaces

• Communication: synchronous
• Communication semantics: at-most-once
• Maximum duration and exceptions: error handling
• Server binding: RMI registry
• Data presentation: Java as IDL and automatic

generation of stubs and skeletons
• Parameter passing : by value (primitive types and

serializable objects), by reference in case of objects
with remote interfaces (remote objects)

Valeria Cardellini - SDCC 2021/22 108

RPC in Go

• Let us analyze:

– Main features of Go programming language
– How Go supports RPC
http://www.ce.uniroma2.it/courses/sdcc2122/slides/Go.pdf

Valeria Cardellini - SDCC 2021/22 109

Comparing RPC implementations

• How do SUN RPC, Java RMI and Go differ in terms
of distribution transparency?

Valeria Cardellini - SDCC 2021/22 110

Motivation for new RPC middleware

• Large-scale distributed applications composed of
microservices
– Microservices architecture: building a software application as

a collection of independent, autonomous (developed,
deployed, and scaled independently), business capability–
oriented, and loosely coupled services

– Even multi-language (i.e. polyglot) development
– Use communication predominantly structured as RPCs

Valeria Cardellini - SDCC 2021/22 111

gRPC
• High-performance, open source universal RPC

framework https://grpc.io/
• Can run in any environment

– Multi-language, multi-platform framework

• Main usage scenarios
– Connect polyglot microservices that use request-response

style communication
– Connect mobile devices to backend services
– Generate efficient client libraries

• Used by many companies and in many distributed
systems
– Google, IBM, Netflix, Dropbox, …, etcd, CockroachDB , …

• Reference
– Indrasiri and Kuruppu, "gRPC - Up and Running", O'Reilly,

2020
Valeria Cardellini - SDCC 2021/22 112

gRPC: Main features

• HTTP/2 for transport

• Protocol buffers as IDL

• Plus authentication, bidirectional streaming and flow
control, blocking or non-blocking bindings, and
cancellation and timeouts

Valeria Cardellini - SDCC 2021/22 113

gRPC: HTTP/2
• Transport over HTTP/2

– Basic idea of gRPC: treat RPCs as references to HTTP objects

• HTTP/2: major revision of HTTP that provides
significant performance benefits over HTTP 1.x

• HTTP/2 in a nutshell
– Binary framing layer: HTTP/2 request/response is divided into

small messages and framed in binary format, making message
transmission efficient

Valeria Cardellini - SDCC 2021/22 114

gRPC: HTTP/2
• HTTP/2 in a nutshell

– From request/response messages to streams
• Stream: bidirectional flow of bytes within an established

connection, which may carry one or more messages
• Message: complete sequence of frames that map to a logical

request or response message
• Frame: smallest unit of communication in HTTP/2, each

containing a frame header, which at a minimum identifies the
stream to which the frame belongs

– Request/response multiplexing (usage of a single connection
per client): allows for efficient use of TCP connections and
avoids head-of-line blocking at HTTP level

– Native support for bidirectional streaming
– HTTP header compression: to reduce protocol overhead

Valeria Cardellini - SDCC 2021/22 115

https://developers.google.com/web/fundamentals/performance/http2?hl=it

gRPC: Protocol buffers
• gRPC can use protocol buffers as both its IDL to

define the service interface and as its underlying
message interchange format
– Automatically generates client stubs and abstract server

classes

• Based on usual proxy pattern (stub and server)

Valeria Cardellini - SDCC 2021/22 116

Protocol buffers
• Google’s mature open-source mechanism for

serializing structured data
• Binary data representation
• Strongly typed

• Data types are structured as messages
– Each message is a small logical record of information

containing a series of name-value pairs called fields
– Fields have unique field numbers (e.g., string name = 1)

that are used to identify the fields in the message binary
format

Valeria Cardellini - SDCC 2021/22 117

Protocol buffers: example
• ProductInfo service interface (slide 114)
// ProductInfo.proto
syntax = "proto3";
package ecommerce;

service ProductInfo {
rpc addProduct(Product) returns (ProductID);
rpc getProduct(ProductID) returns (Product);

}

message Product {
string id = 1;
string name = 2;
string description = 3;

}

message ProductID {
string value = 1;

}
Valeria Cardellini - SDCC 2021/22 118

Client-server interaction: example

Valeria Cardellini - SDCC 2021/22 119

gRPC: basic steps

1. Define the service (collection of remote methods)
and the message types that are exchanged between
client and service in a .proto file using protocol
buffers as IDL

2. Generate server and client code using protoc
(protocol buffer compiler) in your preferred
language(s) from your proto definition
– Go: compile manually
– Java: use build automation tools like Bazel, Maven, or

Gradle

3. Use the gRPC API in your preferred language (e.g.,
Go, Java, Python) to write the service client and
server

Valeria Cardellini - SDCC 2021/22 120

gRPC: greeting example in Go
• See Quick start/ and helloworld example
1. Define the service (helloworld.proto file)
package helloworld;

// The greeting service definition.
service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {
string name = 1;

}

// The response message containing the greetings
message HelloReply {
string message = 1;

}
Valeria Cardellini - SDCC 2021/22 121

gRPC: greeting example
2. Compile the service definition:
$ protoc --go_out=. --go_opt=paths=source_relative \

--go-grpc_out=. --go-grpc_opt=paths=source_relative \
helloworld/helloworld.proto

• Generated files:
– helloworld.pb.go: contains all the protocol buffer code to

populate, serialize, and retrieve request and response
message types

– helloworld_grpc.pb.go: contains
• An interface type (or stub) for clients to call with the methods

defined in the Helloworld service
• An interface type for servers to implement, also with the

methods defined in the Helloworld service

Valeria Cardellini - SDCC 2021/22 122

gRPC: greeting example
3. Create the server: two parts

a. Implement the service interface generated from the service
definition: doing the actual “work” of the service

func (s *server) SayHello(ctx context.Context,
in *pb.HelloRequest) (*pb.HelloReply, error) {
…

}

b. Run a gRPC server to listen for requests from clients and
dispatch them to the right service implementation

lis, err := net.Listen("tcp", port)
if err != nil {

log.Fatalf("failed to listen: %v", err)
}
s := grpc.NewServer()
pb.RegisterGreeterServer(s, &server{})
s.Serve(lis)

Valeria Cardellini - SDCC 2021/22 123

gRPC: greeting example
4. Create the client

– To call service methods, we first need to create a gRPC
channel to communicate with the server using Dial

conn, err := grpc.Dial(address, opts…)
– Then we need a client stub to perform RPCs: we get it using

pb.NewGreeterClient provided by the pb package
generated from .proto file.

c := pb.NewGreeterClient(conn)
– Then we call the service method on the client stub: we

create and populate a request protocol buffer object
(HelloRequest) and also pass a context object which lets
us change our RPC’s behavior if necessary, such as time-
out/cancel an RPC in flight

r, err := c.SayHello(ctx, &pb.HelloRequest{Name: name})

Valeria Cardellini - SDCC 2021/22 124

gRPC: greeting example
• As next step, we can update the gRPC service

adding a new SayHelloAgain() method
1. Update .proto file
2. Regenerate gRPC code using protoc
3. Update server code to implement new method

func (s *server) SayHelloAgain(ctx context.Context, in
*pb.HelloRequest) (*pb.HelloReply, error) {

log.Printf("Received: %v", in.GetName())
return &pb.HelloReply{Message: "Hello again " +

in.GetName()}, nil
}

4. Update client code to call new method
r, err = c.SayHelloAgain(ctx, &pb.HelloRequest{Name: name})
if err != nil {

log.Fatalf("could not greet: %v", err)
}
log.Printf("Greeting: %s", r.GetMessage())

Valeria Cardellini - SDCC 2021/22 125

gRPC: ProductInfo example

• Let’s analyze the ProductInfo example
1. Define the service
2. Implement server in Go
3. Implement client in Go
4. Implement client/server in Java

See Go code on course web site
See Java code on github

Valeria Cardellini - SDCC 2021/22 126

gRPC: types of RPC methods
• Multiple types of methods can be defined in .proto file
• Simple RPC: client sends a request to server and waits

for a response to come back
rpc SayHello (HelloRequest) returns (HelloReply) {}

• Server-side streaming RPC: client sends a request to
server and gets a stream to read a sequence of
messages back

rpc ListFeatures(Rectangle) returns (stream Feature) {}

• Client-side streaming RPC: client writes a sequence of
messages and sends them to server

rpc RecordRoute(stream Point) returns (RouteSummary) {}

• Bidirectional streaming RPC: both sides send a
sequence of messages using a read-write stream

rpc RouteChat(stream RouteNote) returns (stream RouteNote) {}
See routeguide example

Valeria Cardellini - SDCC 2021/22 127

gRPC: Weaknesses
• Limited browser support

– Impossible to directly call a gRPC service from a browser
because of lack of HTTP/2 support

– gRPC-Web can be used to provide gRPC support in
browser, but limited features (only simple RPC and limited
server streaming)

• Non-human readable format
– Protocol bufffers is efficient to send and receive, but its

binary format is not human readable
– Developers need additional tools (e.g., gRPC command-line

tool) to analyze Protobuf payloads on the wire, write manual
requests, and perform debugging

Valeria Cardellini - SDCC 2021/22 128

