
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2021/22

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Elective exercise using Go and RPC

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Elective exercise using Go and RPC

• Realize a distributed grep using the
MapReduce paradigm:
– DistGrep returns the lines of text of a large input

file given in input that match a specific pattern (i.e.,
regular expression) specified

• Requirements: use Go and RPC (or gRPC)
• 1 or 2 students per group

Valeria Cardellini - SDCC 2021/22 1

A brief introduction to MapReduce

Valeria Cardellini - SDCC 2021/22 2

Parallel programming: background

• Parallel programming
– Simultaneous use of multiple computing resources (e.g.,

threads, cores, processors, machines) to solve a problem
– How? Break processing into parts that can be executed

concurrently on multiple computing resources

3Valeria Cardellini - SDCC 2021/22

Parallel programming: background
• Simplest environment for parallel programming:

master/worker architecture
– Master

• Gets data and splits it into
chunks according to the
number of workers

• Sends each worker equal
number of chunks

• Receives the results from
each worker

– Workers
• Receive some chunks of data

from master
• Perform processing
• Send back results to master

4Valeria Cardellini - SDCC 2021/22

Parallel programming: background

• Several styles of parallel programming
• Single Program, Multiple Data (SPMD) is the most

commonly used
– Single Program: all computing resources execute the same

program simultaneously
– Multiple Data: all computing resources may use different

data

55Valeria Cardellini - SDCC 2021/22

Key idea behind MapReduce and Spark:
Divide et impera (aka divide and conquer)

• Feasible approach to tackle Big data problems
– Partition a large problem into smaller sub-problems
– Solve independent sub-problems in parallel
– Combine intermediate results from each individual

worker

• Implementation details
are complex
⎼ But are mostly managed

by Big Data processing
frameworks!

6Valeria Cardellini - SDCC 2021/22

Divide et impera: how?

• Decompose original problem in smaller,
parallel tasks

• Schedule tasks on workers distributed in a
cluster, keeping into account:
– Availability of computing resources
– Data locality

• Ensure workers get the data they need
• Coordinate synchronization among workers
• Share partial results
• Handle failures

7Valeria Cardellini - SDCC 2021/22

Other key ideas behind MapReduce and Spark:
Scale out + Shared nothing

• Scale out: a large number of commodity
servers is preferred over a small number of
high-end servers
– Cost of commodity servers is linear

• Shared nothing is preferable over sharing
– Shared nothing: each node is completely

independent of other nodes in the system, no shared
memory or shared disks

• Pros: scalability and fault tolerance

– Sharing: nodes share some common/global state
• Cons: requires synchronization, deadlocks can occur,

shared resources can become bottlenecks
8Valeria Cardellini - SDCC 2021/22

MapReduce
• Programming model for processing huge amounts

of data sets over thousands of servers
– Originally proposed by Google in 2004: “MapReduce:

simplified data processing on large clusters”
http://bit.ly/2iq7jlY

• Also an associated implementation (framework) of
the distributed system that runs the corresponding
programs

• Examples of applications at Google:
– Web indexing
– Reverse Web-link graph
– Distributed sort
– Web access statistics

Valeria Cardellini - SDCC 2021/22 9

http://bit.ly/2iq7jlY

Typical Big Data problem

• Iterate over a large number of records
• Extract something of interest from each record
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

Key idea: provide a functional abstraction of
Map and Reduce operations

10

MapReduce: model

• Processing occurs in two phases: Map and Reduce
• Input and output: sets of key-value pairs
• Programmer specifies map and reduce functions
• map(k1, v1) [(k2, v2)]
• reduce(k2, [v2]) [(k3, v3)]

– (k, v) denotes a (key, value) pair
– […] denotes a list
– Keys do not have to be unique: different pairs can have the

same key
– Keys of input elements are usually not relevant

Map

• Execute a function on a set of key-value pairs to
create a new list of key-value pairs
map(in_key, in_value) list(out_key, intermediate_value)

• Mappers are distributed across machines by
automatically partitioning the input data into blocks
– Parallelism is achieved as keys can be processed by

different machines

• MapReduce framework groups together all
intermediate values associated with the same
intermediate key and passes them to Reduce
function

12

Reduce

• Combine values in sets to create a new value
reduce(out_key, list(intermediate_value)) list(out_key,

out_value)
• Reduce output key is often identical to its input key
• Parallelism is achieved as Reduce functions

operating on different keys can be executed
simultaneously

13

MapReduce computation
1. Some number of Map tasks each are given one or more data

blocks stored in a distributed file system
2. Map tasks turn the chunk into a sequence of key-value pairs

– The way key-value pairs are produced from the input data is
determined by Map function

3. Key-value pairs from each Map task are grouped by and sorted
by key

4. Keys are divided among Reduce tasks, so that all key-value pairs
with the same key wind up at the same Reduce task

5. Reduce tasks work on one key at a time, and combine all the
values associated with that key in some way
– The way values are combined is determined by Reduce function

6. Output key-value pairs from each reducer are written back onto
the distributed file system

7. The output ends up in r files, where r is the number of reducers
– Such output may be the input to a subsequent MapReduce phase

14

Shuffle and sort
• Implicit between the map and reduce phases there is

a distributed “group by” operation on intermediate
keys, called shuffle and sort
– Transfer mappers output to reducers, merging and sorting it
– Intermediate data arrive at every reducer sorted by key

• Intermediate outputs are transient
– Not stored on the distributed file system, but “spilled” to the

local disk of each machine

(k, v)
Pairs

Map
Function

(k’, v’)
Pairs

Reduce
Function

(k’’, v’’)
Pairs

Input Splits Intermediate Outputs Final Outputs

15

A simplified view of MapReduce

• Mappers are applied to all input key-value pairs, to generate an
arbitrary number of intermediate pairs

• Reducers are applied to all intermediate values associated with the
same intermediate key

• Between map and reduce phases lies a barrier that involves a large
distributed sort and group by

16

“Hello World” in MapReduce: WordCount

• Problem: count the number of occurrences for each word in
a large collection of documents

• Input: repository of documents, each document is an
element

• Map: read a document and emit a sequence of key-value
pairs where:
– Keys are words of the documents and values are equal to 1:

(w1, 1), (w2, 1), … , (wn, 1)

• Shuffle and sort: group by key and generates pairs of the
form (w1, [1, 1, … , 1]) , . . . , (wn, [1, 1, … , 1])

• Reduce: add up all the values and emits (w1, k) ,…, (wn, l)
• Output: (w,m) pairs where:

– w is a word that appears at least once among all the input documents and m
is the total number of occurrences of w among all those documents

V. Cardellini - CESMA 2020/21 17

WordCount in practice
Map Shuffle Reduce

18Valeria Cardellini - SDCC 2021/22

Back to our exercise

Valeria Cardellini - SDCC 2021/22 19

Architecture overview
• Exploit master-worker architecture

- Distribute work among workers
- Use RPC for client-master and master-workers communication

• Implement a master that assigns map and reduce
tasks to workers (let’s assume N workers)

• Do not consider failures of master and workers
– Assume that set of workers is known and does not change

during computation; no worker fails
– Master does not fail

Valeria Cardellini - SDCC 2021/22

Master

Worker1

Worker2

WorkerN

.

.

.

20

Architecture overview
• 3 phases

– Map
– Shuffle and sort
– Reduce

• Master distributes work among parallel workers
• Need a synchronization point (i.e., barrier) between

map and reduce phases
– No reduce task can start until all the map tasks have finished

their processing

• Need a synchronization point after reduce phase
– Master must wait all the reduce tasks before merging their

results

Valeria Cardellini - SDCC 2021/22 21

Main ideas
• Map phase: process the N files/blocks in parallel

on workers, applying the map function (i.e., local
grep) to each file/block
– Master assigns the N files/blocks to workers, that execute

the map task
– To implement the local grep, you can use the package

strings and the functions it provides
– Each map task can either write its results to (some

number of) intermediate file(s) or send its results to the
master or the reduce tasks

• You can choose to realize the shuffle and sort phase either
in a centralized or decentralized way

Valeria Cardellini - SDCC 2021/22 22

Main ideas

• Shuffle and sort phase: organize output of map
tasks in such a way that input data received by
reduce tasks is grouped by key

• Reduce phase: each reduce task processes its input
and sends it to the master
– In our case, the reduce phase uses the identity function
– Master merges all outputs from reduce tasks and produces

final result

Valeria Cardellini - SDCC 2021/22 23

Delivery

• When
– By December 20, 2021

• What
– Your code, including instructions to run it
– Optional: very short report describing the

application architecture and main ideas
• How

– By email
– Use as mail subject: [SDCC] consegna esercizio

Valeria Cardellini - SDCC 2021/22 24

