
Kubernetes

Fabiana Rossi
f.rossi@ing.uniroma2.it

1

Sistemi Distribuiti e Cloud Computing A.A. 2020/21
Laurea Magistrale Ingegneria Informatica



FROM MONOLITHIC TO MICROSERVICES

Fabiana Rossi, SDCC 20/21 2



• What is container orchestration?

• Container orchestration is the automation of much of the operational effort 
required to run containerized workloads and services. 
• This includes a wide range of things software teams need to manage a container’s 

lifecycle, including provisioning, deployment, scaling (up and down), networking, load 
balancing and more.

• Container orchestration versus Docker

• Docker is a specific platform for building containers, including the Docker Engine container 
runtime, whereas container orchestration is a broader term referring to automation of any 
container’s lifecycle. Docker also includes Docker Swarm, which is the platform’s own 
container orchestration tool that can automatically start Docker containers.

Fabiana Rossi, SDCC 20/21 3



ORCHESTRATION FRAMEWORKS

*

* Jawarneh, I.M.A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R., Palopoli, A.:
Container orchestration engines: A thorough functional and performance comparison.

In Proc. of IEEE ICC 2019. pp. 1–6 (2019) Fabiana Rossi, SDCC 20/21 4



What Kubernetes is

• Kubernetes is an open source container orchestration engine for 
automating deployment, scaling, and management of containerized 
application.

• Originally an open source project launched by Google and now part of 
the Cloud Native Computing Foundation (CNCF).

• Kubernetes is highly extensible and portable
• it can run in a wide range of environments and be used in conjunction with 

other technologies, such as service meshes.

• Kubernetes is considered highly declarative
• Developers and administrators use it to describe how they want a system to 

behave, and then Kubernetes executes that desired state in dynamic fashion.

Fabiana Rossi, SDCC 20/21 5



What Kubernetes is

Kubernetes provides you with:

• Service discovery and load balancing: Kubernetes can expose a container 
using the DNS name or using their own IP address. If traffic to a container is 
high, Kubernetes is able to load balance and distribute the network traffic 
so that the deployment is stable.

• Storage orchestration: Kubernetes allows you to automatically mount a 
storage system of your choice, such as local storages, public cloud 
providers, and more.

• Automated rollouts and rollbacks: You can describe the desired state for 
your deployed containers using Kubernetes, and it can change the actual 
state to the desired state at a controlled rate. 

Fabiana Rossi, SDCC 20/21 6



What Kubernetes is

• Scheduling: You provide Kubernetes with a cluster of nodes that it 
can use to run containerized tasks. 

• Self-healing: Kubernetes restarts containers that fail, replaces 
containers, kills containers that don't respond to your user-defined 
health check, and doesn't advertise them to clients until they are 
ready to serve.

• Secret and configuration management: Kubernetes lets you store 
and manage sensitive information, such as passwords, OAuth tokens, 
and SSH keys. You can deploy and update secrets and application 
configuration without rebuilding your container images, and without 
exposing secrets in your stack configuration.

Fabiana Rossi, SDCC 20/21 7



What Kubernetes is not

Kubernetes:

• Does not limit the types of applications supported. 
• Kubernetes aims to support an extremely diverse variety of workloads, including 

stateless, stateful, and data-processing workloads. If an application can run in a 
container, it can run on Kubernetes.

• Does not deploy source code and does not build your application. 

• Does not provide application-level services, such as middleware (e.g., 
message buses), data-processing frameworks (e.g., Spark), databases (e.g., 
MySQL), caches, nor cluster storage systems (e.g., Ceph) as built-in services. 

• Does not dictate logging, monitoring, or alerting solutions. 
• It provides some integrations as proof of concept, and mechanisms to collect and 

export metrics.

Fabiana Rossi, SDCC 20/21 8



Kubernetes Architecture

Fabiana Rossi, SDCC 20/21 9



Kubernetes Components

• When you deploy Kubernetes, you get a cluster.

• A Kubernetes cluster consists of a set of worker machines, 
called nodes, that run containerized applications.
• Every cluster has at least one worker node;

• The worker node(s) host the Pods that are the components of the 
applications. 

• The master manages the worker nodes and the Pods in the cluster

Fabiana Rossi, SDCC 20/21 10



Kubernetes Architecture

• The master is responsible for:
• exposing the Kubernetes (REST) API, 
• scheduling the applications, 
• managing the cluster, 
• directing communications across the entire system, 
• monitoring the containers running in each node as well as the health of all the 

registered nodes. 

• The nodes that are responsible for scheduling and running the 
containerized applications 
• Container images, which act as the deployable artifacts, must be available to 

the Kubernetes cluster through a private or public image registry. 

Fabiana Rossi, SDCC 20/21 11



• API server: the front-end for the Kubernetes control plane that 
exposes the Kubernetes API
• kube-apiserver
• designed to scale horizontally

• etcd: is a persistent, lightweight, distributed key-value data store
that maintains the entire state of the cluster at any given point of 
time

• scheduler: watches for newly created Pods with no assigned node, 
and selects a node for them to run on
• kube-scheduler

• controller: control loop that watches the shared state of the 
cluster through the apiserver and makes changes attempting to 
move the current cluster state to the desired cluster state

The Kubernetes master runs the following components that form the control plane:

Kubernetes Master

Fabiana Rossi, SDCC 20/21 12



Kubernetes Nodes

• Node components run on every node, maintaining running pods and 
providing the Kubernetes runtime environment.

• Kubernetes Nodes components:
• kubelet: agent that makes sure that containers are running in a Pod.
• kube-proxy: implemented as a network proxy and a load balancer.

• It routes traffic to the appropriate container based on its IP address and the port number of the 
incoming request.

• Part of the Kubernetes Service concept.
• container runtime: the software that is responsible for running containers.
• Kubernetes supports several container runtimes:

• Docker,
• containerd,
• CRI-O,
• any implementation of the Kubernetes CRI (Container Runtime Interface).

Fabiana Rossi, SDCC 20/21 13

https://docs.docker.com/engine/
https://containerd.io/docs/
https://cri-o.io/#what-is-cri-o
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/container-runtime-interface.md


Kubernetes Object

• Kubernetes objects are persistent entities provided by Kubernetes for 
deploying, maintaining, and scaling applications.

• Kubernetes uses these entities to represent the state of your cluster.

• The objects can describe:
• What containerized applications are running (and on which nodes)
• The resources available to those applications
• The policies around how those applications behave, such as restart policies, 

upgrades, and fault-tolerance

To work with Kubernetes objects (i.e., to create, modify, or delete them) 
you'll need to use the Kubernetes API.
When you use the kubectl command-line interface, for example, the CLI 
makes the necessary Kubernetes API calls for you.

Fabiana Rossi, SDCC 20/21 14



Label and Selector

• Any object in Kubernetes may have key-value pairs associated with it 
— additional metadata for identifying and grouping objects sharing a 
common attribute or property.

• Kubernetes refers to these key-value pairs as labels.

• Labels do not provide uniqueness
• In general, we expect many objects to carry the same label(s).

• Via a label selector, the client/user can identify a set of objects. 

• The label selector is the core grouping primitive in Kubernetes.

Fabiana Rossi, SDCC 20/21 15



Fabiana Rossi, SDCC 20/21 16



Which version of the Kubernetes API you're using to create this object

Fabiana Rossi, SDCC 20/21 17



What kind of object you want to create

Fabiana Rossi, SDCC 20/21 18



Data that helps uniquely identify the object, including
a name string, UID etc

Fabiana Rossi, SDCC 20/21 19



• spec: What state you
desire for the object.

• The precise format of 
the object spec is
different for every
Kubernetes object, and 
contains nested fields 
specific to that object

Fabiana Rossi, SDCC 20/21 20



Pod label «app: nginx»

Fabiana Rossi, SDCC 20/21 21



The Deployment selects Pods with the label «app:nginx»

Fabiana Rossi, SDCC 20/21 22



Basic Kubernetes Objects

• Pod

• Deployment, ReplicaSet

• DaemonSet

• StatefulSet

• Service

• Secret

Fabiana Rossi, SDCC 20/21 23



Pods

• Pods are the smallest deployable units of computing that you can 
create and manage in Kubernetes.

• A Pod is a group of one or more containers, with shared 
storage/network resources, and a specification for how to run the 
containers. 

• A Pod's contents are always co-located and co-scheduled.

Fabiana Rossi, SDCC 20/21 24



Pod Management
• To create and manage multiple Pods, Kubernetes defines multiple 

resource types:

• Deployment

• StatefulSet

• DaemonSet

Fabiana Rossi, SDCC 20/21 25



Deployment
• Deployment: represents a set of multiple, identical Pods with no unique identities. 

• It runs multiple replicas Pods and automatically replaces any instances that fail or become unresponsive. 
• In this way, Deployments ensure that one or more instances of Pods are available to serve user requests.

• To create the Deployment: kubectl apply –f nginx-deployment.yaml

• Run kubectl get deployments to check if the Deployment was created

• To see the pods: kubectl get pods

Fabiana Rossi, SDCC 20/21 26



PodTemplate

• PodTemplates are specifications for creating Pods, and are included in 
resource objects such as Deployment object.

The PodTemplate is part of 
the object desired state 

PodTemplate

Fabiana Rossi, SDCC 20/21 27



ReplicaSet
• A ReplicaSet is the next-generation of ReplicationControllers

• It ensures that a specified number of pod replicas are running at any 
given time.
• It fulfills its purpose by creating and deleting Pods as needed to reach the 

desired number. When a ReplicaSet needs to create new Pods, it uses its Pod 
template.

• To see the ReplicaSet run kubectl get rs

• A Deployment is a higher-level concept that manages ReplicaSets and 
provides declarative updates to Pods

Fabiana Rossi, SDCC 20/21 28



Pod Management
• StatefulSet: manages deployment and scaling of a set of Pods, with 

durable storage and persistent identifiers for each pod. 
• Unlike a Deployment, a StatefulSet maintains a sticky identity for each of 

its Pods.

• DaemonSet: ensures that all (or some) nodes run a copy of a Pod. 
• As nodes are added to the cluster, Pods are added to them. 

• As nodes are removed from the cluster, those Pods are garbage collected.

• Deleting a DaemonSet will clean up the Pods it created.

Fabiana Rossi, SDCC 20/21 29



Controller

• In Kubernetes, controllers are control loops that watch the state of 
the cluster, then make or request changes where needed. 

• A controller tracks at least one Kubernetes resource object.

• The controller(s) for that resource are responsible for making the 
current state come closer to that desired state (specified in the spec
field).

• Kubernetes comes with a set of controllers that run inside the kube-
controller-manager

• The Deployment controller is an example of controller that come as 
part of Kubernetes itself ("built-in" controllers). 

Fabiana Rossi, SDCC 20/21 30



Service

• The services model in Kubernetes relies upon the most basic, though most 
important, aspect of services: discovery.

• In Kubernetes, a Service is an abstraction which defines a logical set of 
Pods and a policy by which to access them. 

• The set of Pods targeted by a Service is usually determined by a selector.

• Services ensure that traffic is always routed to the appropriate Pod within 
the cluster, regardless of the node on which it is scheduled.

• Each service exposes an IP address, and may also expose a DNS endpoint, 
both of which will never change. 
• Internal or external consumers that need to communicate with a set of pods will use 

the service’s IP address, or its more generally known DNS endpoint.

Fabiana Rossi, SDCC 20/21 31



Fabiana Rossi, SDCC 20/21 32



Service

• Services may be configured to expose pods
to internal and external consumers.

• Different Service Types:
• ClusterIP: Exposes the Service on a cluster-internal IP.

• Choosing this value makes the Service only reachable from within the cluster. This is the 
default ServiceType.

• NodePort: Exposes the Service on each Node's IP at a static port (the NodePort).
• A ClusterIP Service, to which the NodePort Service routes, is automatically created. 
• To contact the NodePort Service from outside the cluster: <NodeIP>:<NodePort>.

Fabiana Rossi, SDCC 20/21 33



Service
• nodePort: This setting makes the service 

visible outside the Kubernetes cluster by 
the node’s IP address and the port 
number declared in this property. 
• The service also has to be of type 

NodePort.

• port: Expose the service on the specified 
port internally within the cluster. That is, 
the service becomes visible on this port, 
and will send requests made to this port 
to the pods selected by the service.

• targetPort: This is the port on 
the pod that the request gets sent to. Your 
application needs to be listening for 
network requests on this port for the 
service to work.Fabiana Rossi, SDCC 20/21 34



Secret

• Secrets are secure objects which store sensitive data, such as 
passwords, OAuth tokens, and SSH keys, in your clusters. 

• Storing sensitive data in Secrets is more secure than plaintext in Pod 
specifications. 

• Using Secrets gives you control over how sensitive data is used, and 
reduces the risk of exposing the data to unauthorized users.

Fabiana Rossi, SDCC 20/21 35



• Kubernetes includes a default scheduler, named kube-scheduler, 
which allocates pods on worker nodes according to an extensible 
policy. 

• The default scheduling strategy is spread

• For each pod, Kube-scheduler chooses a destination node through 
two-steps: 
• filtering step

• Scoring step

Kube-scheduler

Fabiana Rossi, SDCC 20/21 36



Kube-scheduler

• Filtering step: Kube-scheduler identifies those worker nodes that can 
run the pod by applying a set of filters (i.e., predicates). 
• The first step discards the nodes that cannot satisfy the required resources 

and the label matching defined in the pod configuration file.

• Scoring step: the Kube-scheduler ranks the remaining nodes through 
a set of priority functions. 
• Each priority function assigns a score to each node and the final score of each 

node is calculated by adding up all the given weighted scores. 
• The one having the highest score is chosen to run the pod. 
• If multiple nodes achieve the same score, one of them is randomly selected. 

Fabiana Rossi, SDCC 20/21 37



Kubernetes and a Geo-distributed Environment
Case study*: 
• Deployment of a Redis Cluster (3 master nodes)

• Redis is a popular key–value data store often included in web applications to implement in-
memory distributed caching.

• Computing infrastructure: 12 VMs in 4 Cloud regions

* Source: F. Rossi, V. Cardellini, F. Lo Presti, M. Nardelli, 
"Geo-distributed efficient deployment of containers with Kubernetes", Computer Communications, Vol. 159, pp. 161-174, June 2020Fabiana Rossi, SDCC 20/21 38



ELASTIC APPLICATIONS

• Cloud computing provides resources on demand

• Dynamism of working conditions

• Calling for development of elastic applications

• to change application deployment at run-time

• to meet Quality of Service requirements

Fabiana Rossi, SDCC 20/21 39



ELASTIC APPLICATIONS

Horizontal Elasticity

scale-in scale-out

To react to workload
variations

Fabiana Rossi, SDCC 20/21 40



Horizontal Pod Autoscaler (HPA)

• The Horizontal Pod Autoscaler automatically scales the number of 
Pods in a deployment, replica set or stateful set based on observed 
CPU utilization (or, with custom metrics support, on some other 
application-provided metrics). 

• Note that Horizontal Pod Autoscaling does not apply to objects that 
can't be scaled, for example, DaemonSets.

Fabiana Rossi, SDCC 20/21 41



Horizontal Pod Autoscaler (HPA)

• The Horizontal Pod Autoscaler is implemented 
as a Kubernetes API resource and a controller.

• The resource determines the behavior of the 
controller. 

• The controller periodically adjusts the number 
of replicas in a deployment to match the 
observed average CPU utilization to the target 
specified by user.

kubectl autoscale deployment FILENAME --cpu-percent=50 --min=1 --max=10

Fabiana Rossi, SDCC 20/21 42



HPA: Algorithm Details

Example:

• If currentMetricValue = 200m and desiredMetricValue = 100m, the number of 
replicas will be double.

• If currentMetricValue = 50m and desiredMetricValue = 100m, we’ll halve the 
number of replicas.

Fabiana Rossi, SDCC 20/21 43



HPA: Algorithms Details (1)

• Tuning the (static) scaling threshold is a cumbersome task!

Source: F. Rossi, V. Cardellini, F. Lo Presti, 

"Hierarchical scaling of microservices in Kubernetes", Proceedings of the 1st IEEE International Conference on Autonomic Computing 

and Self- Organizing Systems (ACSOS 2020), Washington, DC, Washington, USA, August 17-21 2020.Fabiana Rossi, SDCC 20/21 44



…but we can use more sophisticated approaches (e.g., queuing-based
elasticity policy) 

HPA: Algorithms Details (2)

Source: F. Rossi, V. Cardellini, F. Lo Presti, 

"Hierarchical scaling of microservices in Kubernetes", Proceedings of the 1st IEEE International Conference on Autonomic Computing 

and Self- Organizing Systems (ACSOS 2020), Washington, DC, Washington, USA, August 17-21 2020.Fabiana Rossi, SDCC 20/21 45



Kubernetes 1.6 and HPA

• Recently, the HPA adds support for 
• multiple metrics

• HPA controller will evaluate each metric and propose a new scale based on that metric.

• The largest of the proposed scales will be used as the new scale.

• making use of custom metrics

• configurable scaling behavior
• Behaviors are specified separately for scaling up and down

• The stabilization window is used to restrict the flapping of replicas when the metrics 
used for scaling keep fluctuating

The current stable version, which only includes support for CPU autoscaling, can be found in the autoscaling/v1 API version.
The beta version, which includes support for scaling on memory and custom metrics, can be found in autoscaling/v2beta2.

Fabiana Rossi, SDCC 20/21 46



References

• https://kubernetes.io/docs/home/

• https://linuxacademy.com/site-content/uploads/2019/04/Kubernetes-Cheat-
Sheet_07182019.pdf

• Jawarneh, I.M.A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R., 
Palopoli, A.: Container orchestration engines: A thorough functional and 
performance comparison. In Proc. of IEEE ICC 2019. pp. 1–6 (2019)

Fabiana Rossi, SDCC 20/21 47

https://kubernetes.io/docs/home/
https://linuxacademy.com/site-content/uploads/2019/04/Kubernetes-Cheat-Sheet_07182019.pdf

