
VIRTUALIZATION

24 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y 2 3 2 5 - 6 0 9 5/ 1 5 /$ 31 . 0 0 © 2 0 1 5 I EEE

Containerization
and the PaaS Cloud

Claus Pahl, Irish Centre for Cloud Computing and Commerce

Platform-as-a-service clouds can use containers to manage and
orchestrate applications. This article discusses the requirements that
arise from having to facilitate applications through distributed multicloud
platforms.

he cloud relies on virtualization
techniques to achieve elasticity of
large-scale shared resources. Vir-
tual machines (VMs) have been the
backbone at the infrastructure layer
providing virtualized operating sys-

tems (OSs). Containers are a similar but more light-
weight virtualization concept; they’re less resource
and time-consuming, thus they’ve been suggested as
a solution for more interoperable application pack-
aging in the cloud.

Although VMs and containers are both virtu-
alization techniques, they solve different problems.
Containers are tools for delivering software—that
is, they have a platform-as-a-service (PaaS) focus—
in a portable way aiming at greater interoperability
while still utilizing OS virtualization principles.1

VMs, on the other hand, are about hardware al-
location and management (machines that can be
turned on/off and be provisioned)—that is, there’s
an infrastructure-as-a-service (IaaS) focus on hard-
ware virtualization. Containers can be used as a
replacement for VMs where the allocation of hard-

ware resources is done through containers by com-
ponentizing workloads in between clouds.

For portable, interoperable applications in the
cloud, we need a lightweight distribution of pack-
aged applications for deployment and management.2

One solution, containerization, provides

• a lightweight portable runtime;
• the capability to develop, test, and deploy appli-

cations to a large number of servers; and
• the capability to interconnect containers.

David Bernstein discusses the importance of
container-based application deployment and clus-
ter management for the cloud computing infra-
structure.3 This article reviews the virtualization
principles behind containers, particularly in com-
parison with VMs. Specifi cally, I investigate the
relevance of the new container technology for PaaS
clouds, although containers also relate to the IaaS
level through their sharing and isolation aspects.
Because today’s applications are distributed, I also
discuss the resulting requirements for application

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

M AY/J U N E 2 0 1 5 I EEE CLO U D CO M P U T I N G 2 5

packaging and interoperable orchestration over
clusters of containers. I aim to clarify how contain-
ers can change the PaaS cloud as a virtualization
technique, specifi cally PaaS as a platform tech-
nology. I go beyond Bernstein,3 addressing what’s
needed to evolve PaaS signifi cantly further as a
distributed cloud software platform, resulting in a
discussion of achievements and limitations of the
state of the art. To illustrate concepts, I’ll discuss
some example technologies that exemplify technol-
ogy trends.

Virtualization and the Need for
Containerization
Historically, virtualization technologies have de-
veloped out of the need for scheduling processes
as manageable container units. The processes and
resources in question are the fi le system, memory,
network, and system information.

VMs as the cloud’s core virtualization con-
struct have been improved successively by address-
ing scheduling, packaging, and resource access
(security) problems. VM instances acting as guests
use large, isolated fi les on their hosts to store their
entire fi le system and typically run a single, large
process on the host. Although security concerns are
usually addressed through isolation, several limita-
tions remain. Full guest OS images are required for
each VM in addition to the binaries and libraries
necessary for the applications. Full images create
a space concern that translates into RAM and disk
storage requirements and is slow on startup (boot-
ing might take from 1 to more than 10 minutes4), as
in Figure 1, which shows the different architectural
settings.

Packaging and application management is a re-
quirement that PaaS clouds need to address. In a
virtualized environment, a solution must be ground-
ed in technologies that allow the sharing of the un-
derlying platform and infrastructure in a secure but
also portable and interoperable way. Containers can
meet these requirements, but a more in-depth elici-
tation of specifi c concerns is needed.

A container holds packaged, self-contained,
ready-to-deploy parts of applications and, if neces-
sary, middleware and business logic (in binaries
and libraries) to run applications,5 as Figure 1 il-
lustrates. An example is a Web interface component
with a Tomcat server. Successful tools like Docker
are frameworks built around container engines that
allow container engines to act as a portable mecha-
nism to package and run applications as containers.6

This means that a container covers an application
tier or node in a tier, which results in the problem of

managing dependencies between containers in mul-
titier applications. An orchestration plan describes
components, their dependencies, and their life cy-
cle. A PaaS then enacts the workfl ows from the plan
through agents (which could be a container runtime
engine). PaaSs can support the deployment of appli-
cations from containers.

In PaaSs, there’s a need to defi ne, deploy, and
operate cross-platform-capable cloud services using
lightweight virtualization, for which containers are
a solution.7 There’s also a need to transfer cloud de-
ployments between cloud providers, which requires
lightweight virtualized clusters for container orches-
tration.3 Some PaaSs are lightweight virtualization
solutions in this sense.

Containerization for Lightweight
Virtualization and Application Packaging
Recent OS advances have improved their multi-
tenancy capabilities—that is, the capability to share
a resource.

Linux Containers
As an example of OS virtualization advances, new
Linux distributions provide kernel mechanisms such
as namespaces and control groups to isolate pro-
cesses on a shared OS, supported through the Linux
Container (LXC) project.

Namespace isolation allows groups of processes
to be separated, preventing them from seeing re-
sources in other groups. Container technologies use
different namespaces for process isolation, network
interfaces, access to interprocess communication,
and mount points, and for isolating kernel and ver-
sion identifi ers.

Control groups manage and limit resource ac-
cess for process groups through limit enforcement,
accounting, and isolation—for example, by limit-
ing the memory available to a specifi c container.

Hardware

Hypervisor/host OS

Hardware

Host OS

VM

Bins/libs

App App

Guest OS

VM

Bins/libs

App App

Guest OS

Container engine

Bins/libs

App App

Container

Container

App

Bins/libs

FIGURE 1. Virtualization architecture. The two possible scenarios, a

traditional hypervisor architecture on the left and a container-based

architecture on the right, diff er in their management of guest operating

system components.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

26 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

VIRTUALIZATION

This ensures that containers are good multitenant
citizens on a host. It also provides better isolation
between possibly large numbers of isolated appli-
cations on a host. Control groups allow contain-
ers to share available hardware resources and, if
required, the control groups can set up limits and
constraints.

Docker builds its solution on LXC techniques. A
container-aware daemon, such as dockerd for Dock-
er, can start containers as application processes and
plays a key role as the root of the user space’s pro-
cess tree.

Docker Container Images
Containers are OS virtualization techniques based
on namespaces and cgroups and are particularly
suitable for application management in the PaaS
cloud. A container is represented by lightweight
images; VMs are also based on images but full,
monolithic ones. Processes running in a container
are almost fully isolated. Container images are the
building blocks from which containers are launched.

Because it’s currently the most popular contain-
er solution, I’ll use Docker to illustrate how contain-
erization works. A Docker image is made up of file
systems layered over each other, similar to the Linux
virtualization stack, using the LXC mechanisms, as
Figure 2 illustrates.

In a traditional Linux boot, the kernel first
mounts the root file system as read-only, then
checks its integrity before switching the rootfs vol-
ume to read-write mode. Docker mounts the rootfs
as read-only as in a traditional boot, but instead of
changing the file system to read-write mode, it uses

a union mount to add a writable file system on top of
the read-only file system.

There might be multiple read-only file systems
stacked on top of each other. Using union mount,
several file systems can be mounted on top of each
other, which allows for creating new images by
building on top of base images. Each of these file
system layers is a separate image loaded by the con-
tainer engine for execution.

Only the top layer is writable. This is the con-
tainer itself, which can have state and is executable.
It can be thought of as a directory that contains ev-
erything needed for execution. Containers can be
made into stateless images (and reused in more com-
plex builds), however.

A typical layering could include (top to bottom
in Figure 2)

• a writable container image for applications,
• an Apache image and an Emacs image as sample

platform components,
• a Linux image (a distribution such as Ubuntu),

and
• the rootfs kernel image.

Containers are based on layers composed from indi-
vidual images built on top of a base image that can
be extended. Complete Docker images form portable
application containers. They’re also building blocks
for application stacks. The approach is lightweight
because single images can be changed and distrib-
uted easily.

Containerizing Applications and Managing
Containers
The container ecosystem consists of an application
container engine to run images and a repository or
registry operated via push and pull operations to
transfer images to and from host-based engines.

The repositories play a central role in providing
access to possibly tens of thousands of reusable pri-
vate and public container images, such as for plat-
form components like MongoDB or Node.js. The
container API allows creating, defining, composing,
and distributing containers, running/starting im-
ages, and running commands in images.

Containers for applications can be created by
assembling them from individual images, possibly
based on base images from the repositories, as in
Figure 2, which shows a containerized application.
Containers can encapsulate several application
components through the image layering and exten-
sion process. Different user applications and plat-
form components can be combined in a container.

Linux kernel

rootfs

layer FS namespaces cgroups

Images

Image (Emacs)

Image (Apache)

Writable container

Base image (Ubuntu)

FIGURE 2. Container image architecture. Based on

namespace and cgroup extensions of a Linux kernel,

images are layered over each other, with a writable

container image at the top.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

M AY/J U N E 2 0 1 5 I EEE CLO U D CO M P U T I N G 2 7

Figure 3 shows different scenarios using the con-
tainer capability of combining images for platform
and application components.

The granularity of containers (that is, the
number of applications inside a container) varies.
Some favor the one-container-per-app approach,
which still allows composing new stacks easily (for
example, changing the webserver in an applica-
tion) or reusing common components (for example,
monitoring tools or a single storage service like
memcached, either locally or predefined from a
repository such as the Docker Hub). Apps can be
built or rebuilt and managed easily. The downside
is a larger number of containers with the respective
interaction and management overhead compared to
multi-app containers, although container efficiency
should facilitate this.

Containers as application packages for interop-
erable and distributed contexts must facilitate stor-
age and network management. There are two ways
data is managed in Docker—data volumes and data
volume containers. Data storage features can add
data volumes to any container created from an im-
age. A data volume is a specially designated direc-
tory within one or more containers that bypasses the
union file system to provide features for persistent
or shared data. Volumes can be shared and reused
between containers, as Figure 4 illustrates. A data
volume container enables sharing persistent data be-
tween application containers through a dedicated,
separate data storage container.

Network management is based on two meth-
ods for assigning ports on a host—network port
mappings and container linking. Applications can
connect to a service or application running inside
a Docker container via a network port. Container
linking allows linking multiple containers together
and sending information between them. Linked
containers can transfer data about themselves via
environment variables. To establish links and some
relationship types, Docker relies on containers’
names, which must be unique, meaning that links

are often limited to containers of the same host
(managed by the same daemon).

Comparison
Table 1 compares traditional VMs and containers.
Some sources are also concerned about security,
suggesting that it’s preferable to run, for instance,
only one Docker instance per host to avoid isolation
limitations.3

Different Container Models
A range of other container technologies exist for dif-
ferent operating systems types (I single out Linux
and Windows here) as well as specific or generic so-
lutions for PaaS platforms8:

• Linux (Docker, LXC, OpenVZ, and others for
variants such as BSD, HP-UX, and Solaris),

• Windows (Sandboxie), and
• Cloud PaaS (Warden/Garden (in Cloud Found-

ry) and LXC (in OpenShift).

Load
balancer

Auto
scale

App App

Container

Bins/libs

App App

Container

Bins/libs

App

Container

Database

App

Container

FIGURE 3. Container-based application architectures. These illustrate different architectural configurations

with apps running on top of (a) management components such as load balancers and autoscalers, (b and c)

binaries and libraries, and (d) databases.

Link

Cluster

Volume

Volume

Host node Host node

Host node Host node

Container

Container Mounted

Container

Container

Container

Container

Container

Container

Service

Service

FIGURE 4. Container-based cluster architecture.

Clusters assemble host nodes with container and

data volumes, joined through links.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

28 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

VIRTUALIZATION

There’s still an ongoing evolution of OS virtualiza-
tion and containerization, aiming at providing OS
support through standard APIs and tools for con-
tainer management, network management, and
more visible and manageable resource utilization.

The tool landscape is equally in evolution. For
example, Rocket is a new container runtime from
the CoreOS project (CoreOS is Linux for massive
server deployments), which is an alternative to the
Docker runtime. It’s specifically designed for com-
posability, security, and speed. These concerns
highlight the teething concerns that the community
is still engaged with.

Containerization in PaaS Clouds
Although VMs are ultimately the medium to provi-
sion PaaS platform and application components at
the infrastructure layer, containers appear to be
more suitable for application packaging and man-
agement in PaaS clouds.

PaaS Features
A PaaS generally provides mechanisms for deploy-
ing applications, designing applications for the
cloud, pushing applications to their deployment
environment, using services, migrating databases,
mapping custom domains, IDE plugins, or a build
integration tool. PaaSs have features such as built
farms, routing layers, or schedulers that dispatch
workloads to VMs. A container solution supports
these problems through interoperable, lightweight,
and virtualized packaging. Containers for appli-
cation building, deployment, and management
(through a runtime) provide interoperability. Con-
tainers produced outside a PaaS can be moved into
the PaaS so that the container encapsulates the
application. Existing PaaSs have embraced the mo-
mentum caused by containerization and standard-
ized application packaging driven by Docker. Many

PaaSs have a container foundation for running plat-
form tools.

PaaS Evolution
The evolution of PaaS is moving toward container-
based, interoperable PaaSs. The first generation con-
sisted of classical fixed proprietary platforms such
as Azure or Heroku. The second generation was
built around open source solutions such as Cloud
Foundry and OpenShift, which let users run their
own PaaS (on-premise or in the cloud), already built
around containers. OpenShift has now adopted the
Docker container model, as has Cloud Foundry
through its internal Diego solution. The current
third generation includes platforms such as Dawn,
Deis, Flynn, Octohost, and Tsuru, which are built
on Docker from scratch and are deployable on a
company’s own servers or on public IaaS clouds.

Open PaaSs such as Cloud Foundry and Open-
Shift treat containers differently, however. Where-
as Cloud Foundry supports stateless applications
through containers, stateful services run in VMs.
OpenShift doesn’t distinguish these.

Service Orchestration
Development and architecture are central PaaS
concerns. Recently developed microservice archi-
tectures break monolithic application architectures
into service-oriented architecture (SOA)-style in-
dependently deployable services, which are well
supported by container architectures. Services are
loosely coupled, independent, and can be rapidly
called and mapped to whatever business process
is required. The microservice architectural style is
an approach to developing a single application as a
suite of small services, each running in its own pro-
cess and communicating with lightweight mecha-
nisms. These services are independently deployable
by a fully automated deployment and orchestration

Table 1. Virtual machine versus container-based application architectures.

Feature Virtual machines Containers

Standardization Fairly standardized system images with capabilities
similar to bare-metal computers (for example,
Distributed Management Task Force’s Open
Virtualization Format, or OVF)

Not well standardized, OS- and kernel-specific with
varying degrees of complexity

Host/guest
architecture

Can run guest kernels that are different from the
host, with consequently more limited insight into
host storage and memory management

Run host kernels at guest level only but do so possibly
with a different package tree or distribution such that
the container kernel operates almost like the host

Boot process Started through standard boot process, resulting in
a number of hypervisor processes on the host

Can start containerized applications directly or through
a container-aware init daemon, such as systemd, which
appear as normal processes on the host

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

M AY/J U N E 2 0 1 5 I EEE CLO U D CO M P U T I N G 2 9

framework. They must be able to deploy often and
independently at arbitrary schedules, instead of re-
quiring synchronized deployments at fixed times.
Containerization provides an ideal mechanism for
their deployment and orchestration, particularly, if
they’re to be PaaS-provisioned.

Container Orchestration and Clustering
Containerization facilitates the step from a single
host to clusters of container hosts to run container-
ized applications over multiple clusters in multiple
clouds.9 The built-in interoperability makes this
possible.

Container Clusters
A container-based cluster architecture groups hosts
in clusters.10 Figure 4 illustrates an abstract archi-
tectural scenario based on common container and
cluster concepts. Container hosts are linked in a
cluster configuration:

• Each cluster consists of several (host) nodes,
where nodes are virtual servers on hypervisors or
possibly bare-metal servers. Each host node holds
several containers with common services such as
scheduling, load balancing, and applications.

• Each container can hold continually provided
services such as their payload service, which are
one-off services (for example, print) or function-
al (middleware service) components.

• Application services are logical groups of con-
tainers from the same image. Application ser-
vices allow scaling an application across nodes.

• Volumes are used for applications requiring data
persistence. Containers can mount volumes.
Data stored in these volumes persists even after
a container is terminated.

• Links allow two or more containers, typically on
a single host, to connect and communicate.

This configuration creates an abstraction layer for
cluster-based service management that goes beyond
container solutions like Docker.

A cluster management architecture has the fol-
lowing components:

• The deployment of distributed applications
through containers is supported using a virtual
scalable service node (cluster) with high internal
complexity (supporting scaling, load balancing,
failover) and reduced external complexity.

• An API allows operating clusters from the cre-
ation of services and container sets to other life-
cycle functions.

• A platform service manager looks after the soft-
ware packaging and management.

• An agent manages the container life cycles (at
each host).

• A cluster head node service is the master that
receives commands from the outside and relays
them to container hosts.

This architecture allows development without re-
gard to the network topology and requires no manu-
al configuration.11

A cluster architecture is composed of engines to
share service discovery (for example, through shared
distributed key-value stores) and orchestration/de-
ployment (load balancing, monitoring, scaling, and
also file storage, deployment, pushing, and pulling).

This satisfies some of the requirements Nane
Kratzke lists for cluster architectures.8 A lightweight
virtualized cluster architecture should provide sev-
eral management features as part of the abstraction
on top of the container hosts:

• hosting containerized services and providing se-
cure communication between these services,

• autoscalability and load-balancing support,
• distributed and scalable service discovery and

orchestration, and
• transfer/migration of service deployments be-

tween clusters.

Mesos is an example of a cluster management
platform. This Apache project binds distributed
hardware resources into a single pool of resourc-
es. Application frameworks can use Mesos to ef-
ficiently manage workload distribution. Mesos is a
distributed systems kernel following the same prin-
ciples as the Linux kernel but at a different level of
abstraction. The Mesos kernel runs on all cluster
machines and provides applications with APIs for
resource management and scheduling across cloud
environments. It natively supports LXC and also
supports Docker.

An example clustering management solution at a
higher level than Mesos is the Kubernetes architec-
ture, which is supported by Google. Kubernetes can
be configured to allow orchestrating Docker con-
tainers on Mesos at scale. Kubernetes is based on
processes that run on Docker hosts that bind hosts
into clusters and manage containers. Minions are
container hosts that run pods (that is, sets of con-
tainers) on the same host. OpenShift has adopted
Kubernetes. Google expertise incorporated in Ku-
bernetes competes here with platform-specific evo-
lution toward container-based orchestration. Cloud

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

30 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

VIRTUALIZATION

Foundry, for instance, uses Diego as an orchestra-
tion engine for containers.

Network and Data Challenges
Containers in distributed systems require advanced
network support. Containers provide an abstraction
that makes each container a self-contained unit
of computation. Traditionally, containers were ex-
posed on the network via the shared host machine’s
address. In Kubernetes, each group of containers (or
pods) receives its own unique IP address, reachable
from any other pod in the cluster, whether colocat-
ed on the same physical machine or not. This re-
quires advanced routing features based on network
virtualization.

Data storage is another problem in distributed
container management. Managing containers in
Kubernetes clusters might be hampered in terms of
flexibility and efficiency by the need for pods to co-
locate with their data. What is needed is to pair a
container with a storage volume that, regardless of
the container’s location in the cluster, follows it to
the physical machine.

Orchestration Scenarios
Container cluster-based multi-PaaS is a solution
for managing distributed software applications in
the cloud, but this technology still faces challenges.
These include formal descriptions or user-defined
metadata for containers beyond image tagging with
simple IDs but also clusters of containers and their

orchestration. The topology of distributed contain-
er architectures needs to be specified and its de-
ployment and execution orchestrated, as Figure 5
illustrates.

There’s currently no accepted solution for the
orchestration problem; however, I briefly illustrate
its relevance using a possible solution. Although
Docker has started to develop its own orchestration
solution and Kubernetes also provides an orchestra-
tion mechanism for containers onto nodes, a more
comprehensive solution that would tackle orches-
tration of complex application stacks could involve
Docker orchestration based on the Topology and
Orchestration Specification for Cloud Applications
(TOSCA),12 a topology-based service orchestra-
tion standard that’s supported, for example, by the
Cloudify PaaS. Cloudify uses TOSCA to enhance
the portability of cloud applications and services
(see Figure 5). TOSCA enables

• the interoperable description of application and
infrastructure cloud services (here, containers
hosted on nodes),

• the relationships between parts of the service
(here, service compositions and links, as illus-
trated in Figure 4), and

• the operational behavior of these services (for
example, deploy, patch, and shutdown) in an or-
chestration plan.

The TOSCA framework is independent of the
supplier creating the service and any particular
cloud provider or hosting technology. TOSCA will
also make it possible to associate higher-level op-
erational behavior with cloud infrastructure man-
agement. Using TOSCA templates for container
clusters and abstract node and relationship types, an
application stack template can be specified.

Observations
Some PaaSs have started to address limitations in
the context of programming (such as orchestration)
and DevOps for clusters. The examples I’ve used al-
low for some observations. First, containers are by
now largely adopted for PaaS clouds.3 Second, stan-
dardization through adoption of emerging de facto
standards such as Docker or Kubernetes is also tak-
ing place, although at a slower pace. Third, develop-
ment and operations are still at an early stage.

Cloud management platforms are still at an ear-
lier stage than the container platforms they build on.
Whereas clusters in general are about distribution,
the question emerges as to what extent this distribu-
tion reaches the edge of the cloud with small devices

Topology template

Node type

Node

Link/service

Relationship type

 Orchestration plan

Cluster
template

node
type

relationship
type

Host
node

Host
node

Host
node

Host
node

Container

Container

Container

FIGURE 5. Cluster topology orchestration (adapted from the Topology

and Orchestration Specification for Cloud Applications [TOSCA] by

applying the generic TOSCA service template to the container and

cluster technology context).

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

M AY/J U N E 2 0 1 5 I EEE CLO U D CO M P U T I N G 3 1

and embedded systems and whether devices running
small Linux distributions such as the Debian-based
DSL (which requires around 50 Mbytes of storage)
can support container host and cluster management.

ontainer technology has a huge potential to
substantially advance PaaS technology toward

distributed heterogeneous clouds through light-
weightness and interoperability, as Bernstein and
other have recognized.3 However, we still need sig-
nificant improvements to deal with data and net-
work management aspects as well as an abstract
development and architecture layer.

Acknowledgments
This work was supported in part by the Irish Cen-
tre for Cloud Computing and Commerce (IC4), an
Irish National Technology Centre funded by Enter-
prise Ireland and the Irish Industrial Development
Authority, and by Science Foundation Ireland grant
13/RC/2094 to Lero, the Irish Software Research
Centre.

References
1. R. Ranjan, “The Cloud Interoperability Chal-

lenge,” IEEE Cloud Computing, vol. 1, no. 2,
2014, pp. 20–24.

2. B. Di Martino, “Applications Portability and Ser-
vices Interoperability among Multiple Clouds,”
IEEE Cloud Computing, vol. 1, no. 1, 2014, pp.
74–77.

3. D. Bernstein, “Containers and Cloud: From LXC
to Docker to Kubernetes,” IEEE Cloud Comput-
ing, vol. 1, no. 3, 2014, pp. 81–84.

4. M. Mao and M. Humphrey, “A Performance
Study on the VM Startup Time in the Cloud,”
Proc. IEEE 5th Int’l Conf. Cloud Computing
(Cloud 12), 2012, pp. 423–430.

5. S. Soltesz et al., “Container-Based Operating Sys-
tem Virtualization: A Scalable, High-Performance
Alternative to Hypervisors,” ACM SIGOPS Op-
erating Systems Rev., vol. 41, no. 3, 2007, pp.
275–287.

6. J. Turnbull, The Docker Book, 2014; www
.dockerbook.com.

7. T.H. Noor et al., “Analysis of Web-Scale Cloud
Services,” IEEE Internet Computing, vol.18, no.
4, 2014, pp. 55–61.

8. N. Kratzke, “A Lightweight Virtualization Clus-
ter Reference Architecture Derived from Open
Source PaaS Platforms,” Open J. Mobile Com-
puting and Cloud Computing, vol. 1, no. 2, 2014,
pp. 17–30.

9. B. Satzger et al., “Winds of Change: From Ven-
dor Lock-In to the Meta Cloud,” IEEE Internet
Computing, vol. 17, no. 1, 2013, pp. 69–73.

10. V. Koukis, C. Venetsanopoulos, and N. Koziris,
“~okeanos: Building a Cloud, Cluster by Clus-
ter,” IEEE Internet Computing, vol. 17, no. 3,
2013, pp. 67–71.

11. O. Gass, H. Meth, and A. Maedche, “PaaS Char-
acteristics for Productive Software Develop-
ment: An Evaluation Framework,” IEEE Internet
Computing, vol. 18, no. 1, 2014, pp. 56–64.

12. T. Binz et al., “Portable Cloud Services Using
TOSCA,” IEEE Internet Computing, vol. 16, no.
3, 2012, pp. 80–85.

CLAUS PAHL is the lead principal investigator of
the Irish Centre for Cloud Computing and Com-
merce (IC4) and a funded investigator and executive
member of the Irish Software Research Centre, Lero.
His research interests include software engineering in
service and cloud computing, specifically migration
and scalability concerns. Pahl has a PhD in comput-
ing from the University of Dortmund. Contact him at
cpahl@computing.dcu.ie.

Newsletters
Stay Informed on Hot Topics

computer.org/newsletters

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Authorized licensed use limited to: Universita degli Studi di Roma Tor Vergata. Downloaded on November 26,2020 at 08:04:32 UTC from IEEE Xplore. Restrictions apply.

