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Containerization 
and the PaaS Cloud

Claus Pahl, Irish Centre for Cloud Computing and Commerce

Platform-as-a-service clouds can use containers to manage and 
orchestrate applications. This article discusses the requirements that 
arise from having to facilitate applications through distributed multicloud 
platforms.

he cloud relies on virtualization 
techniques to achieve elasticity of 
large-scale shared resources. Vir-
tual machines (VMs) have been the 
backbone at the infrastructure layer 
providing virtualized operating sys-

tems (OSs). Containers are a similar but more light-
weight virtualization concept; they’re less resource 
and time-consuming, thus they’ve been suggested as 
a solution for more interoperable application pack-
aging in the cloud. 

Although VMs and containers are both virtu-
alization techniques, they solve different problems. 
Containers are tools for delivering software—that 
is, they have a platform-as-a-service (PaaS) focus—
in a portable way aiming at greater interoperability 
while still utilizing OS virtualization principles.1

VMs, on the other hand, are about hardware al-
location and management (machines that can be 
turned on/off and be provisioned)—that is, there’s 
an infrastructure-as-a-service (IaaS) focus on hard-
ware virtualization. Containers can be used as a 
replacement for VMs where the allocation of hard-

ware resources is done through containers by com-
ponentizing workloads in between clouds.

For portable, interoperable applications in the 
cloud, we need a lightweight distribution of pack-
aged applications for deployment and management.2

One solution, containerization, provides 

• a lightweight portable runtime;
• the capability to develop, test, and deploy appli-

cations to a large number of servers; and 
• the capability to interconnect containers. 

David Bernstein discusses the importance of 
container-based application deployment and clus-
ter management for the cloud computing infra-
structure.3 This article reviews the virtualization 
principles behind containers, particularly in com-
parison with VMs. Specifi cally, I investigate the 
relevance of the new container technology for PaaS 
clouds, although containers also relate to the IaaS 
level through their sharing and isolation aspects. 
Because today’s applications are distributed, I also 
discuss the resulting requirements for application 
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packaging and interoperable orchestration over 
clusters of containers. I aim to clarify how contain-
ers can change the PaaS cloud as a virtualization 
technique, specifi cally PaaS as a platform tech-
nology. I go beyond Bernstein,3 addressing what’s 
needed to evolve PaaS signifi cantly further as a 
distributed cloud software platform, resulting in a 
discussion of achievements and limitations of the 
state of the art. To illustrate concepts, I’ll discuss 
some example technologies that exemplify technol-
ogy trends.

Virtualization and the Need for 
Containerization
Historically, virtualization technologies have de-
veloped out of the need for scheduling processes 
as manageable container units. The processes and 
resources in question are the fi le system, memory, 
network, and system information.

VMs as the cloud’s core virtualization con-
struct have been improved successively by address-
ing scheduling, packaging, and resource access 
(security) problems. VM instances acting as guests 
use large, isolated fi les on their hosts to store their 
entire fi le system and typically run a single, large 
process on the host. Although security concerns are 
usually addressed through isolation, several limita-
tions remain. Full guest OS images are required for 
each VM in addition to the binaries and libraries 
necessary for the applications. Full images create 
a space concern that translates into RAM and disk 
storage requirements and is slow on startup (boot-
ing might take from 1 to more than 10 minutes4), as 
in Figure 1, which shows the different architectural 
settings.

Packaging and application management is a re-
quirement that PaaS clouds need to address. In a 
virtualized environment, a solution must be ground-
ed in technologies that allow the sharing of the un-
derlying platform and infrastructure in a secure but 
also portable and interoperable way. Containers can 
meet these requirements, but a more in-depth elici-
tation of specifi c concerns is needed.

A container holds packaged, self-contained, 
ready-to-deploy parts of applications and, if neces-
sary, middleware and business logic (in binaries 
and libraries) to run applications,5 as Figure 1 il-
lustrates. An example is a Web interface component 
with a Tomcat server. Successful tools like Docker 
are frameworks built around container engines that 
allow container engines to act as a portable mecha-
nism to package and run applications as containers.6

This means that a container covers an application 
tier or node in a tier, which results in the problem of 

managing dependencies between containers in mul-
titier applications. An orchestration plan describes 
components, their dependencies, and their life cy-
cle. A PaaS then enacts the workfl ows from the plan 
through agents (which could be a container runtime 
engine). PaaSs can support the deployment of appli-
cations from containers. 

In PaaSs, there’s a need to defi ne, deploy, and 
operate cross-platform-capable cloud services using 
lightweight virtualization, for which containers are 
a solution.7 There’s also a need to transfer cloud de-
ployments between cloud providers, which requires 
lightweight virtualized clusters for container orches-
tration.3 Some PaaSs are lightweight virtualization 
solutions in this sense.

Containerization for Lightweight 
Virtualization and Application Packaging
Recent OS advances have improved their multi-
tenancy capabilities—that is, the capability to share 
a resource.

Linux Containers
As an example of OS virtualization advances, new 
Linux distributions provide kernel mechanisms such 
as namespaces and control groups to isolate pro-
cesses on a shared OS, supported through the Linux 
Container (LXC) project.

Namespace isolation allows groups of processes 
to be separated, preventing them from seeing re-
sources in other groups. Container technologies use 
different namespaces for process isolation, network 
interfaces, access to interprocess communication, 
and mount points, and for isolating kernel and ver-
sion identifi ers.

Control groups manage and limit resource ac-
cess for process groups through limit enforcement, 
accounting, and isolation—for example, by limit-
ing the memory available to a specifi c container. 
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FIGURE 1. Virtualization architecture. The two possible scenarios, a 

traditional hypervisor architecture on the left and a container-based 

architecture on the right, diff er in their management of guest operating 

system components.
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This ensures that containers are good multitenant 
citizens on a host. It also provides better isolation 
between possibly large numbers of isolated appli-
cations on a host. Control groups allow contain-
ers to share available hardware resources and, if 
required, the control groups can set up limits and 
constraints.

Docker builds its solution on LXC techniques. A 
container-aware daemon, such as dockerd for Dock-
er, can start containers as application processes and 
plays a key role as the root of the user space’s pro-
cess tree.

Docker Container Images
Containers are OS virtualization techniques based 
on namespaces and cgroups and are particularly 
suitable for application management in the PaaS 
cloud. A container is represented by lightweight 
images; VMs are also based on images but full, 
monolithic ones. Processes running in a container 
are almost fully isolated. Container images are the 
building blocks from which containers are launched. 

Because it’s currently the most popular contain-
er solution, I’ll use Docker to illustrate how contain-
erization works. A Docker image is made up of file 
systems layered over each other, similar to the Linux 
virtualization stack, using the LXC mechanisms, as 
Figure 2 illustrates.

In a traditional Linux boot, the kernel first 
mounts the root file system as read-only, then 
checks its integrity before switching the rootfs vol-
ume to read-write mode. Docker mounts the rootfs 
as read-only as in a traditional boot, but instead of 
changing the file system to read-write mode, it uses 

a union mount to add a writable file system on top of 
the read-only file system. 

There might be multiple read-only file systems 
stacked on top of each other. Using union mount, 
several file systems can be mounted on top of each 
other, which allows for creating new images by 
building on top of base images. Each of these file 
system layers is a separate image loaded by the con-
tainer engine for execution. 

Only the top layer is writable. This is the con-
tainer itself, which can have state and is executable. 
It can be thought of as a directory that contains ev-
erything needed for execution. Containers can be 
made into stateless images (and reused in more com-
plex builds), however.

A typical layering could include (top to bottom 
in Figure 2)

• a writable container image for applications, 
• an Apache image and an Emacs image as sample 

platform components, 
• a Linux image (a distribution such as Ubuntu), 

and 
• the rootfs kernel image. 

Containers are based on layers composed from indi-
vidual images built on top of a base image that can 
be extended. Complete Docker images form portable 
application containers. They’re also building blocks 
for application stacks. The approach is lightweight 
because single images can be changed and distrib-
uted easily.

Containerizing Applications and Managing 
Containers
The container ecosystem consists of an application 
container engine to run images and a repository or 
registry operated via push and pull operations to 
transfer images to and from host-based engines. 

The repositories play a central role in providing 
access to possibly tens of thousands of reusable pri-
vate and public container images, such as for plat-
form components like MongoDB or Node.js. The 
container API allows creating, defining, composing, 
and distributing containers, running/starting im-
ages, and running commands in images. 

Containers for applications can be created by 
assembling them from individual images, possibly 
based on base images from the repositories, as in 
Figure 2, which shows a containerized application. 
Containers can encapsulate several application 
components through the image layering and exten-
sion process. Different user applications and plat-
form components can be combined in a container. 

Linux kernel

rootfs

layer FS namespaces cgroups

Images

Image (Emacs)

Image (Apache)

Writable container

Base image (Ubuntu)

FIGURE 2. Container image architecture. Based on 

namespace and cgroup extensions of a Linux kernel, 

images are layered over each other, with a writable 

container image at the top. 
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Figure 3 shows different scenarios using the con-
tainer capability of combining images for platform 
and application components.

The granularity of containers (that is, the 
number of applications inside a container) varies. 
Some favor the one-container-per-app approach, 
which still allows composing new stacks easily (for 
example, changing the webserver in an applica-
tion) or reusing common components (for example, 
monitoring tools or a single storage service like 
memcached, either locally or predefined from a 
repository such as the Docker Hub). Apps can be 
built or rebuilt and managed easily. The downside 
is a larger number of containers with the respective 
interaction and management overhead compared to 
multi-app containers, although container efficiency 
should facilitate this. 

Containers as application packages for interop-
erable and distributed contexts must facilitate stor-
age and network management. There are two ways 
data is managed in Docker—data volumes and data 
volume containers. Data storage features can add 
data volumes to any container created from an im-
age. A data volume is a specially designated direc-
tory within one or more containers that bypasses the 
union file system to provide features for persistent 
or shared data. Volumes can be shared and reused 
between containers, as Figure 4 illustrates. A data 
volume container enables sharing persistent data be-
tween application containers through a dedicated, 
separate data storage container.

Network management is based on two meth-
ods for assigning ports on a host—network port 
mappings and container linking. Applications can 
connect to a service or application running inside 
a Docker container via a network port. Container 
linking allows linking multiple containers together 
and sending information between them. Linked 
containers can transfer data about themselves via 
environment variables. To establish links and some 
relationship types, Docker relies on containers’ 
names, which must be unique, meaning that links 

are often limited to containers of the same host 
(managed by the same daemon).

Comparison
Table 1 compares traditional VMs and containers. 
Some sources are also concerned about security, 
suggesting that it’s preferable to run, for instance, 
only one Docker instance per host to avoid isolation 
limitations.3 

Different Container Models
A range of other container technologies exist for dif-
ferent operating systems types (I single out Linux 
and Windows here) as well as specific or generic so-
lutions for PaaS platforms8:

• Linux (Docker, LXC, OpenVZ, and others for 
variants such as BSD, HP-UX, and Solaris),

• Windows (Sandboxie), and
• Cloud PaaS (Warden/Garden (in Cloud Found-

ry) and LXC (in OpenShift).
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FIGURE 3. Container-based application architectures. These illustrate different architectural configurations 

with apps running on top of (a) management components such as load balancers and autoscalers, (b and c) 

binaries and libraries, and (d) databases. 
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Clusters assemble host nodes with container and 

data volumes, joined through links. 
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There’s still an ongoing evolution of OS virtualiza-
tion and containerization, aiming at providing OS 
support through standard APIs and tools for con-
tainer management, network management, and 
more visible and manageable resource utilization.

The tool landscape is equally in evolution. For 
example, Rocket is a new container runtime from 
the CoreOS project (CoreOS is Linux for massive 
server deployments), which is an alternative to the 
Docker runtime. It’s specifically designed for com-
posability, security, and speed. These concerns 
highlight the teething concerns that the community 
is still engaged with.

Containerization in PaaS Clouds
Although VMs are ultimately the medium to provi-
sion PaaS platform and application components at 
the infrastructure layer, containers appear to be 
more suitable for application packaging and man-
agement in PaaS clouds.

PaaS Features
A PaaS generally provides mechanisms for deploy-
ing applications, designing applications for the 
cloud, pushing applications to their deployment 
environment, using services, migrating databases, 
mapping custom domains, IDE plugins, or a build 
integration tool. PaaSs have features such as built 
farms, routing layers, or schedulers that dispatch 
workloads to VMs. A container solution supports 
these problems through interoperable, lightweight, 
and virtualized packaging. Containers for appli-
cation building, deployment, and management 
(through a runtime) provide interoperability. Con-
tainers produced outside a PaaS can be moved into 
the PaaS so that the container encapsulates the 
application. Existing PaaSs have embraced the mo-
mentum caused by containerization and standard-
ized application packaging driven by Docker. Many 

PaaSs have a container foundation for running plat-
form tools. 

PaaS Evolution
The evolution of PaaS is moving toward container-
based, interoperable PaaSs. The first generation con-
sisted of classical fixed proprietary platforms such 
as Azure or Heroku. The second generation was 
built around open source solutions such as Cloud 
Foundry and OpenShift, which let users run their 
own PaaS (on-premise or in the cloud), already built 
around containers. OpenShift has now adopted the 
Docker container model, as has Cloud Foundry 
through its internal Diego solution. The current 
third generation includes platforms such as Dawn, 
Deis, Flynn, Octohost, and Tsuru, which are built 
on Docker from scratch and are deployable on a 
company’s own servers or on public IaaS clouds. 

Open PaaSs such as Cloud Foundry and Open-
Shift treat containers differently, however. Where-
as Cloud Foundry supports stateless applications 
through containers, stateful services run in VMs. 
OpenShift doesn’t distinguish these.

Service Orchestration
Development and architecture are central PaaS 
concerns. Recently developed microservice archi-
tectures break monolithic application architectures 
into service-oriented architecture (SOA)-style in-
dependently deployable services, which are well 
supported by container architectures. Services are 
loosely coupled, independent, and can be rapidly 
called and mapped to whatever business process 
is required. The microservice architectural style is 
an approach to developing a single application as a 
suite of small services, each running in its own pro-
cess and communicating with lightweight mecha-
nisms. These services are independently deployable 
by a fully automated deployment and orchestration 

Table 1. Virtual machine versus container-based application architectures.

Feature Virtual machines Containers

Standardization Fairly standardized system images with capabilities 
similar to bare-metal computers (for example, 
Distributed Management Task Force’s Open 
Virtualization Format, or OVF)

Not well standardized, OS- and kernel-specific with 
varying degrees of complexity

Host/guest 
architecture

Can run guest kernels that are different from the 
host, with consequently more limited insight into 
host storage and memory management

Run host kernels at guest level only but do so possibly 
with a different package tree or distribution such that 
the container kernel operates almost like the host

Boot process Started through standard boot process, resulting in 
a number of hypervisor processes on the host

Can start containerized applications directly or through 
a container-aware init daemon, such as systemd, which 
appear as normal processes on the host
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framework. They must be able to deploy often and 
independently at arbitrary schedules, instead of re-
quiring synchronized deployments at fixed times. 
Containerization provides an ideal mechanism for 
their deployment and orchestration, particularly, if 
they’re to be PaaS-provisioned.

Container Orchestration and Clustering
Containerization facilitates the step from a single 
host to clusters of container hosts to run container-
ized applications over multiple clusters in multiple 
clouds.9 The built-in interoperability makes this 
possible.

Container Clusters
A container-based cluster architecture groups hosts 
in clusters.10 Figure 4 illustrates an abstract archi-
tectural scenario based on common container and 
cluster concepts. Container hosts are linked in a 
cluster configuration: 

• Each cluster consists of several (host) nodes, 
where nodes are virtual servers on hypervisors or 
possibly bare-metal servers. Each host node holds 
several containers with common services such as 
scheduling, load balancing, and applications. 

• Each container can hold continually provided 
services such as their payload service, which are 
one-off services (for example, print) or function-
al (middleware service) components. 

• Application services are logical groups of con-
tainers from the same image. Application ser-
vices allow scaling an application across nodes.

• Volumes are used for applications requiring data 
persistence. Containers can mount volumes. 
Data stored in these volumes persists even after 
a container is terminated.

• Links allow two or more containers, typically on 
a single host, to connect and communicate.

This configuration creates an abstraction layer for 
cluster-based service management that goes beyond 
container solutions like Docker. 

A cluster management architecture has the fol-
lowing components: 

• The deployment of distributed applications 
through containers is supported using a virtual 
scalable service node (cluster) with high internal 
complexity (supporting scaling, load balancing, 
failover) and reduced external complexity. 

• An API allows operating clusters from the cre-
ation of services and container sets to other life-
cycle functions. 

• A platform service manager looks after the soft-
ware packaging and management. 

• An agent manages the container life cycles (at 
each host). 

• A cluster head node service is the master that 
receives commands from the outside and relays 
them to container hosts. 

This architecture allows development without re-
gard to the network topology and requires no manu-
al configuration.11

A cluster architecture is composed of engines to 
share service discovery (for example, through shared 
distributed key-value stores) and orchestration/de-
ployment (load balancing, monitoring, scaling, and 
also file storage, deployment, pushing, and pulling).

This satisfies some of the requirements Nane 
Kratzke lists for cluster architectures.8 A lightweight 
virtualized cluster architecture should provide sev-
eral management features as part of the abstraction 
on top of the container hosts: 

• hosting containerized services and providing se-
cure communication between these services, 

• autoscalability and load-balancing support, 
• distributed and scalable service discovery and 

orchestration, and 
• transfer/migration of service deployments be-

tween clusters.

Mesos is an example of a cluster management 
platform. This Apache project binds distributed 
hardware resources into a single pool of resourc-
es. Application frameworks can use Mesos to ef-
ficiently manage workload distribution. Mesos is a 
distributed systems kernel following the same prin-
ciples as the Linux kernel but at a different level of 
abstraction. The Mesos kernel runs on all cluster 
machines and provides applications with APIs for 
resource management and scheduling across cloud 
environments. It natively supports LXC and also 
supports Docker.

An example clustering management solution at a 
higher level than Mesos is the Kubernetes architec-
ture, which is supported by Google. Kubernetes can 
be configured to allow orchestrating Docker con-
tainers on Mesos at scale. Kubernetes is based on 
processes that run on Docker hosts that bind hosts 
into clusters and manage containers. Minions are 
container hosts that run pods (that is, sets of con-
tainers) on the same host. OpenShift has adopted 
Kubernetes. Google expertise incorporated in Ku-
bernetes competes here with platform-specific evo-
lution toward container-based orchestration. Cloud 
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Foundry, for instance, uses Diego as an orchestra-
tion engine for containers.

Network and Data Challenges
Containers in distributed systems require advanced 
network support. Containers provide an abstraction 
that makes each container a self-contained unit 
of computation. Traditionally, containers were ex-
posed on the network via the shared host machine’s 
address. In Kubernetes, each group of containers (or 
pods) receives its own unique IP address, reachable 
from any other pod in the cluster, whether colocat-
ed on the same physical machine or not. This re-
quires advanced routing features based on network 
virtualization.

Data storage is another problem in distributed 
container management. Managing containers in 
Kubernetes clusters might be hampered in terms of 
flexibility and efficiency by the need for pods to co-
locate with their data. What is needed is to pair a 
container with a storage volume that, regardless of 
the container’s location in the cluster, follows it to 
the physical machine.

Orchestration Scenarios
Container cluster-based multi-PaaS is a solution 
for managing distributed software applications in 
the cloud, but this technology still faces challenges. 
These include formal descriptions or user-defined 
metadata for containers beyond image tagging with 
simple IDs but also clusters of containers and their 

orchestration. The topology of distributed contain-
er architectures needs to be specified and its de-
ployment and execution orchestrated, as Figure 5 
illustrates.

There’s currently no accepted solution for the 
orchestration problem; however, I briefly illustrate 
its relevance using a possible solution. Although 
Docker has started to develop its own orchestration 
solution and Kubernetes also provides an orchestra-
tion mechanism for containers onto nodes, a more 
comprehensive solution that would tackle orches-
tration of complex application stacks could involve 
Docker orchestration based on the Topology and 
Orchestration Specification for Cloud Applications 
(TOSCA),12 a topology-based service orchestra-
tion standard that’s supported, for example, by the 
Cloudify PaaS. Cloudify uses TOSCA to enhance 
the portability of cloud applications and services 
(see Figure 5). TOSCA enables

• the interoperable description of application and 
infrastructure cloud services (here, containers 
hosted on nodes),

• the relationships between parts of the service 
(here, service compositions and links, as illus-
trated in Figure 4), and 

• the operational behavior of these services (for 
example, deploy, patch, and shutdown) in an or-
chestration plan. 

The TOSCA framework is independent of the 
supplier creating the service and any particular 
cloud provider or hosting technology. TOSCA will 
also make it possible to associate higher-level op-
erational behavior with cloud infrastructure man-
agement. Using TOSCA templates for container 
clusters and abstract node and relationship types, an 
application stack template can be specified.

Observations
Some PaaSs have started to address limitations in 
the context of programming (such as orchestration) 
and DevOps for clusters. The examples I’ve used al-
low for some observations. First, containers are by 
now largely adopted for PaaS clouds.3 Second, stan-
dardization through adoption of emerging de facto 
standards such as Docker or Kubernetes is also tak-
ing place, although at a slower pace. Third, develop-
ment and operations are still at an early stage.

Cloud management platforms are still at an ear-
lier stage than the container platforms they build on. 
Whereas clusters in general are about distribution, 
the question emerges as to what extent this distribu-
tion reaches the edge of the cloud with small devices 
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Host
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FIGURE 5. Cluster topology orchestration (adapted from the Topology 

and Orchestration Specification for Cloud Applications [TOSCA] by 

applying the generic TOSCA service template to the container and 

cluster technology context). 
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and embedded systems and whether devices running 
small Linux distributions such as the Debian-based 
DSL (which requires around 50 Mbytes of storage) 
can support container host and cluster management. 

ontainer technology has a huge potential to 
substantially advance PaaS technology toward 

distributed heterogeneous clouds through light-
weightness and interoperability, as Bernstein and 
other have recognized.3 However, we still need sig-
nificant improvements to deal with data and net-
work management aspects as well as an abstract 
development and architecture layer.
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