
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Communication in Distributed Systems
Part 2

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Message-oriented communication

• RPC improves distribution transparency with respect
to socket programming

• But still synchrony between interacting entities
– Over time: caller waits the reply

– In space: shared data

– Functionality and communication are coupled

• Which communication models to improve decoupling
and flexibility?

• Message-oriented communication
– Transient

• Berkeley socket
• Message Passing Interface (MPI): see "Sistemi di calcolo

parallelo e applicazioni" course
– Persistent

• Message Oriented Middleware (MOM)

Valeria Cardellini – SDCC 2022/23 1

Message-oriented middleware
• Communication middleware that supports sending

and receiving messages in a persistent way
• Loose coupling among system/application

components
– Decoupling in time and space

– Can also support synchronization decoupling

– Goals: increase performance, scalability and reliability

– Typically used in serverless and microservice architectures

• Two patterns:
– Message queue
– Publish-subscribe (pub/sub)

• And two related types of systems:
– Message queue system (MQS)

– Pub/sub system

Valeria Cardellini – SDCC 2022/23 2

Queue message pattern
• Messages are stored on the queue until they are

processed and deleted
• Multiple consumers can read from the queue
• Each message is delivered only once, to a single

consumer

• Example of apps:
– Task scheduling, load balancing, collaboration

Valeria Cardellini – SDCC 2022/23 3

Queue message pattern

Valeria Cardellini – SDCC 2022/23 4

A sends a message to B B issues a response message back to A

Message queue API
• Basic interface to a queue in a MQS:

– put: nonblocking send
• Append a message to a specified queue

– get: blocking receive
• Block until the specified queue is nonempty and remove the

first message

• Variations: allow searching for a specific message in the

queue, e.g., using a matching pattern

– poll: nonblocking receive
• Check a specified queue for message and remove the first

• Never block

– notify: nonblocking receive
• Install a handler (callback function) to be automatically

called when a message is put into the specified queue

Valeria Cardellini – SDCC 2022/23 5

Publish/subscribe pattern

Valeria Cardellini – SDCC 2022/23 6

• Application components can publish asynchronous
messages (e.g., event notifications), and/or declare
their interest in message topics by issuing a
subscription

• Each message can be delivered to multiple consumers

Publish/subscribe pattern

Valeria Cardellini – SDCC 2022/23 7

• Multiple consumers can subscribe to topic with or
without filters

• Subscriptions are collected by an event dispatcher
component, responsible for routing events to all
matching subscribers
– For scalability reasons, its implementation is distributed

• High degree of decoupling among components
– Easy to add and remove components: appropriate for

dynamic environments

Publish/subscribe pattern

• A sibling of message queue pattern but further
generalizes it by delivering a message to multiple
consumers
– Message queue: delivers messages to only one receiver,

i.e., one-to-one communication

– Pub/sub channel: delivers messages to multiple receivers,

i.e., one-to-many communication

Valeria Cardellini – SDCC 2022/23 8

Publish/subscribe API
• Calls that capture the core of any pub/sub system:

– publish(event): to publish an event

• Events can be of any data type supported by the given
implementation languages and may also contain meta-data

– subscribe(filter expr, notify_cb, expiry) → sub handle: to

subscribe to an event

• Takes a filter expression, a reference to a notify callback for
event delivery, and an expiry time for the subscription
registration.

• Returns a subscription handle
– unsubscribe(sub handle)

– notify_cb(sub_handle, event): called by the pub/sub system to

deliver a matching event

Valeria Cardellini – SDCC 2022/23 9

MOM functionalities
• MOM handles the complexity of addressing,

routing, availability of communicating application
components (or applications), and message
format transformations

Source: Cloud Computing Patterns
https://www.cloudcomputingpatterns.org/message_oriented_middleware

Valeria Cardellini – SDCC 2022/23 10

MOM functionalities

• Let us analyze
– Delivery semantics
– Message routing
– Message transformations

Valeria Cardellini – SDCC 2022/23 11

Delivery semantics in MOM

At-least-once delivery
How can MOM ensure that messages are received
successfully?

– By sending ack for each retrieved message and resending

message if ack is not received

– Be careful, app should be tolerant to message

duplications, i.e., it should be idempotent (not be affected

adversely when processing the same message more than

once)

Valeria Cardellini – SDCC 2022/23 12

Delivery semantics in MOM

Exactly-once delivery
How can MOM ensure that a message is delivered only
exactly once to a receiver?

– By filtering possible message duplicates automatically

– Upon creation, each message is associated with a unique

message ID, which is used to filter message duplicates

during their traversal from sender to receiver

– Messages must also survive MOM components’ failures

Valeria Cardellini – SDCC 2022/23 13

Delivery semantics in MOM

Transaction-based delivery
How can MOM ensure that messages are only deleted
from a message queue if they have been received
successfully?

– MOM and the receiver participate in a transaction: all

operations involved in the reception of a message are

performed under one transactional context guaranteeing

ACID behavior

Valeria Cardellini – SDCC 2022/23 14

Delivery semantics in MOM

Timeout-based delivery
How can MOM ensure that messages are only deleted
from a message queue if they have been received
successfully at least once?

– Message is not deleted immediately from queue, but marked

as being invisible until visibility timeout expires

– Invisible message cannot be read by another receiver

– After receiver’s ack of message receipt, message is deleted

from queue

Valeria Cardellini – SDCC 2022/23 15

Message routing: general model
• Queues are managed by queue managers (QMs)

– An application can put messages only into a local queue

– Getting a message is possible by extracting it from a local

queue only

• QMs need to route messages
– Work as message-queuing “relays” that interact with

distributed applications and each other

– Realize an overlay network

– There can also be special QMs that operate only as routers

Valeria Cardellini – SDCC 2022/23 16

Message routing: overlay network

• Overlay network is used to route messages
– By using routing tables

– Routing tables are stored and managed by QMs

Valeria Cardellini – SDCC 2022/23

• Overlay network needs to
be maintained over time
– Routing tables are often set

up and managed manually:

easier but …

– Dynamic overlay networks

require to dynamically

manage mapping between

queue names and their

location

17

Message transformation: message broker

• New/existing apps that need to be integrated into a
single, coherent system rarely agree on a common
data format

• How to handle data heterogeneity?
⎼ We have already examined different solutions in the context

of RPC

• Let’s focus on message broker
– Message broker: component that usually takes care of

application heterogeneity in a MOM

Valeria Cardellini – SDCC 2022/23 18

Message broker: general architecture
• Message broker handles application heterogeneity

– Converts incoming messages to target format providing

access transparency

– Very often acts as an application gateway

– Manages a repository of conversion rules and programs to

transform a message of one type to another

– May provide subject-based routing capabilities

– To be scalable and reliable can be implemented in a

distributed way

Valeria Cardellini – SDCC 2022/23 19

MOM frameworks

• Examples of MOM systems and libraries
– Apache ActiveMQ http://activemq.apache.org

– Apache Kafka
– Apache Pulsar https://pulsar.apache.org

– IBM MQ

– NATS https://nats.io

– Open MQ (JMS specification implementation)

– RabbitMQ https://www.rabbitmq.com

– ZeroMQ https://zeromq.org

• Clear distinction between queue message and
pub/sub patterns often lacks
– Some frameworks support both (e.g., Kafka, NATS)

– Others not (e.g., Redis is pub/sub https://redis.io/topics/pubsub)

Valeria Cardellini – SDCC 2022/23 20

MOM frameworks

• Also Cloud-based products
– Amazon Simple Queue Service (SQS)
– Amazon Simple Notification Service (SNS)
– CloudAMQP: RabbitMQ as a Service

– Google Cloud Pub/Sub

– Microsoft Azure Service Bus

Valeria Cardellini – SDCC 2022/23 21

RabbitMQ
• Popular open-source message broker

https://www.rabbitmq.com

• Supports multiple messaging protocols
– AMQP, STOMP and MQTT

• FIFO ordering guarantees at queue level
• Installation https://www.rabbitmq.com/download.html

• RabbitMQ CLI tool: rabbitmqctl
$ rabbitmqctl status
$ rabbitmqctl shutdown

• Also web UI for management and monitoring
• RabbitMQ broker can be distributed, for example

forming a cluster https://www.rabbitmq.com/distributed.html
Valeria Cardellini – SDCC 2022/23 22

Using message queues: use cases
1. Store and forward messages which

are sent by a producer and received

by a consumer (message queue

pattern)

2. Distribute tasks among multiple

workers (competing consumers

pattern)

3. Deliver messages to many

consumers at once (pub/sub pattern)

using a message exchange
4. Receive messages selectively:

producer sends messages to

an exchange, that selects the queue

5. Run a function on a remote node

and wait for the result (request /reply

pattern)

Valeria Cardellini – SDCC 2022/23

Source: RabbitMQ tutorial
23

Using message queues: RabbitMQ and Go
• Let’s use RabbitMQ, Go and AMQP (messaging

protocol, see next slides) to use a message queue
for:

Ex. 1: Message queue pattern
https://www.rabbitmq.com/tutorials/tutorial-one-go.html

Ex. 2: Competing consumers pattern
https://www.rabbitmq.com/tutorials/tutorial-two-go.html

Valeria Cardellini – SDCC 2022/23 24

Code available on course site:
rabbitmq_1_hello.zip
rabbitmq_2_worker.zip

Using message queues: RabbitMQ and Go

• Preliminary steps:
1. Install RabbitMQ and start a RabbitMQ server on

localhost on default port
$ rabbitmq-server
Some useful commands for rabbitmqctl
list_channels
list_consumers
list_queues
stop_app
reset

2. Install Go AMQP client library
$ go get github.com/streadway/amqp
See https://godoc.org/github.com/streadway/amqp for details on Go

package ampq

Valeria Cardellini – SDCC 2022/23 25

Using message queues: RabbitMQ and Go
1. Message queue pattern

– Run with single producer/single consumers, multiple

producers/multiple consumers

– Note that message is delivered to only one consumer

– Note that delivery is push-based

Valeria Cardellini – SDCC 2022/23 26

Using message queues: RabbitMQ and Go
2. Competing consumers (i.e., workers) pattern

– Version 1 (new_task_v1.go and worker_v1.go):

• Use multiple consumers to see how queue can be used to
distribute tasks among consumers in round-robin fashion

• If consumer crashes after RabbitMQ delivers the message but
before completing the task, the corresponding message is lost
(i.e., cannot be delivered to another consumer)
auto-ack=true: message is considered to be successfully
delivered immediately after it is sent ("fire-and-forget")

– Version 2 (new_task_v1.go and worker_v2.go):

• Let’s set auto-ack=false in Consume and add explicit
(“manual”) ack in consumer to tell RabbitMQ that a particular
message has been received, processed and that RabbitMQ
can discard it

• Shutdown and restart RabbitMQ: what happens to pending
messages?

• Which delivery semantics when using acks?

Valeria Cardellini – SDCC 2022/23 27

Using message queues: RabbitMQ and Go
2. Competing consumers (i.e., workers) pattern

– Version 3 (new_task_v3.go and worker_v3.go):

• Let’s use a durable queue so it is persisted to disk and
survives RabbitMQ crash and restart

• We need to use a new queue
• Set durable=true in QueueDeclare

– Version 4 (new_task_v3.go and worker_v4.go):

• Improve task distribution among multiple consumers by
looking at the number of unacknowledged messages for
each consumer, so to not dispatch a new message to a
worker until it has processed and acknowledged the
previous one

• Use channel prefetch setting (Qos)

Valeria Cardellini – SDCC 2022/23 28

Amazon Simple Queue Service (SQS)
• Cloud-based message queue service based on polling

model
– Goal: decouple Cloud app components

– Message queues are fully managed by AWS

– Messages are stored in queues for a limited period of time

• Application components using SQS can run
independently and asynchronously and be developed
with different technologies

• Provides timeout-based delivery
– Messages are only deleted from a message queue if they have

been received properly

– A received message is locked during processing (visibility
timeout); if processing fails, the lock expires and the message is

available again

• Can be combined with Amazon SNS
– To push a message to multiple SQS queues in parallelVa

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

2/
23

29

Amazon SQS: API
• CreateQueue, ListQueues, DeleteQueue

– Create, list, delete queues

• SendMessage, ReceiveMessage
– Add/receive messages to/from a specified queue (message

size up to 256 KB)

– Message larger than 256 KB?

• Put in queue reference to message payload stored in S3

• DeleteMessage
– Remove a received message from a specified queue (the

component must delete the message after receiving and

processing it)

Valeria Cardellini – SDCC 2022/23 30

Amazon SQS: API
• ChangeMessageVisibility

– Change the visibility timeout of a specified message in a

queue (when received, the message remains in the queue

upon it is deleted explicitly by the receiver)

– Default visibility timeout is 30 seconds

• SetQueueAttributes, GetQueueAttributes
– Control queue settings, get information about a queue

Valeria Cardellini – SDCC 2022/23 31

Amazon SQS: example

Valeria Cardellini – SDCC 2022/23

• Cloud app for online photo processing service
• Let’s use SQS to achieve app components decoupling,

load balancing and fault tolerance http://bit.ly/2gwJFBw

32

Apache Kafka
• General-purpose, distributed pub/sub system
• Originally developed in 2010 by LinkedIn
• Used at scale by tech giants (Netflix, Uber, LinkedIn, …)
• Written in Scala
• Horizontally scalable
• Fault-tolerant
• High throughput ingestion

– Billions of messages

• Not only messaging, also
data processing
⎼ We focus on messaging

https://kafka.apache.org/documentation/
Kreps et al., Kafka: A Distributed Messaging System for Log Processing,

NetDB’11

33Valeria Cardellini – SDCC 2022/23

Kafka at a glance

• Kafka stores feeds of messages (or records) in categories
called topics
– A topic can have 0, 1, or many consumers subscribing to data written to it

• Producers: publish messages to a Kafka topic
• Consumers: subscribe to topics and process the feed of

published messages
• Kafka cluster: distributed log of data over servers known

as brokers
– A broker is responsible for receiving and storing published dataVa

le
ria

 C
ar

de
llin

i –
SD

C
C

 2
02

2/
23

34

Kafka: topics and partitions
• Topic: category to which a message is published
• For each topic, Kafka cluster maintains a partitioned log

– Log (data structure!): append-only, totally-ordered sequence of

messages ordered by time

• Partitioned log: each topic is split into a pre-defined
number of partitions
– Partition: unit of parallelism for the topic (allows for parallel

access)

35Valeria Cardellini – SDCC 2022/23

Kafka: partitions
• Producers publish their records to partitions of a topic
• Consumers consume records published on a topic
• Each partition is an ordered, numbered, immutable

sequence of records that is continually appended to
– Like a commit log

• Each record is associated with a monotonically
increasing sequence number, called offset

Valeria Cardellini – SDCC 2022/23 36

Kafka: partitions and design choices
• To improve scalability: partitions are distributed

across brokers
– By distributing partitions on multiple brokers, IO throughput

increases

– Parallel reads and writes on partitions of the same topic

• Multiple producers can write in parallel
• A single topic can be read by multiple consumers

• To improve fault tolerance: each partition can be
replicated across a configurable number of brokers
– Driven by replication-factor

• Each partition has one leader broker and 0 or more
followers
– followers > 0 in case of replication

Valeria Cardellini – SDCC 2022/23 37

Kafka: partition leader and followers

Valeria Cardellini – SDCC 2022/23 38

Kafka: partitions and design choices

• To simplify data consistency management: leader
handles read and write requests
– Producers read from leader, consumers write to leader

– Followers replicates the leader and acts as backups

– Followers can be in-sync (i.e., fully updated replica) with the

leader or out-of-sync

• To share responsibility and balance load: each broker
is leader for some of its partitions and follower for
others
– Brokers rely on Apache Zookeeper for coordination

Valeria Cardellini – SDCC 2022/23 39

Kafka: producers
• Producers = data sources
• Publish data to topics of their choice

– Producer sends data directly (i.e., without any routing tier) to

the broker that is the leader for the partition

• Producer is responsible for choosing which record to
assign to which partition within the topic: how?
– Key-based partitioned, i.e., the producer uses a partition key

to direct messages to a specific partition

• E.g., if user id is the key, all data for a given user will be published in
the same partition

– Round-robin (default, if key is not specified)

• Multiple producers can write to the same partition

Valeria Cardellini – SDCC 2022/23 40

Design choice for consumers
• Push or pull model for consumers?
• Push model

– Broker actively pushes messages to consumers

– Challenging for broker to deal with different types of

consumers as it controls the rate at which data is transferred

– Need to decide whether to send a message immediately or

accumulate more data and then send

• Pull model
– Consumer is in charge of retrieving messages from broker

– Consumer has to maintain an offset to identify the next

message to be transmitted and processed

✓ Better scalability (less burden on brokers) and flexibility

(different consumers with diverse needs and capabilities)

✗ In case broker has no data, consumers may end up busy

waiting for data to arrive

Valeria Cardellini – SDCC 2022/23 41

Kafka: consumers
• Kafka uses a pull approach for consumers

http://kafka.apache.org/documentation.html#design_pull

• Consumer uses the offset to keep track of which
messages it has already consumed

• A partition can be consumed by
more consumers, each reading
at different offsets

• How can consumer read in a fault-tolerant way?
– Once the consumer reads message, it stores its committed

offset in a safe place (either Zookeeper or a special Kafka

topic called __consumer_offsets)

– After recovering from crash, consumer can replay messages

using committed offset

– By default, auto-commit is enabled

Valeria Cardellini – SDCC 2022/23 42

Hands-on Kafka
• Preliminary steps:

– Download and install Kafka http://kafka.apache.org/downloads

• Configure Kafka properties in server.properties (e.g.,
listeners and advertised.listeners)

– Start Kafka environment

Start ZooKeeper (default port: 2181)
$ zookeeper-server-start zookeeper.properties

Alternatively $ zKserver start
Start Kafka broker (default port: 9092)
$ kafka-server-start server.properties

• Let’s use Kafka CLI tools to create a topic, publish and
consume some events to/from the topic and delete the
topic

Valeria Cardellini – SDCC 2022/23 43

Hands-on Kafka

• Create a topic named test with 1 partition and non-
replicated
bootstrap_servers: specify one broker to bootstrap initial cluster metadata

$ kafka-topics --create --bootstrap-server
localhost:9092 --replication-factor 1 --partitions
1 --topic test

• Write some messages into topic
$ kafka-console-producer --broker-list localhost:9092

--topic test

> first message

> another message

• Read messages from beginning of topic partition
$ kafka-console-consumer --bootstrap-server
localhost:9092 --topic test --from-beginning

Valeria Cardellini – SDCC 2022/23 44

Hands-on Kafka

• Read messages using some offset (e.g., 2)
$ kafka-console-consumer --bootstrap-server
localhost:9092 --topic test --offset 2 --partition 0

• List available topics
$ kafka-topics --list --bootstrap-server localhost:9092

• Delete topic
$ kafka-topics --delete --bootstrap-server localhost:9092
--topic test

• Stop Kafka and Zookeeper
$ kafka-server-stop
$ zookeeper-server-stop

Alternatively $ zKserver stop

Valeria Cardellini – SDCC 2022/23 45

Kafka: consumer group

• Consumer Group: set of consumers which cooperate to
consume data from some topics and share a group ID
– A Consumer Group maps to a logical subscriber

– Topic partitions are divided among consumers in the group for

load balancing and can be reassigned in case of consumer

join/leave

– Every message will be delivered to only one consumer in group

– Every group maintains its offset per topic partition

Valeria Cardellini – SDCC 2022/23 46

Kafka: consumer group

Valeria Cardellini – SDCC 2022/23 47

• How to have many consumers reading the same
messages from the topic?
– Need to use different group IDs

• Example: 2 microservices communicating using Kafka

• How to scale?

Kafka: ordering guarantees

• Messages published by producer to topic partition will
be appended in the order they are sent

• Consumer sees records in the order they are stored
in the partition

• Strong guarantee about ordering only within a
partition
– Total order over messages within a partition, i.e., per-

partition ordering
– Kafka cannot preserve message order between different

topic partitions

• However, per-partition ordering plus ability to partition
messages by key among topic partitions, is sufficient
for most applications

Valeria Cardellini – SDCC 2022/23 48

Kafka: delivery semantics

• Delivery guarantees supported by Kafka
– At-least-once (default): guarantees no message loss but

duplicated messages, possibly out-of-order

• Which mechanism on producer side?
• Set acks=1 on producer
• On consumer side: pull model and offset commit

– Exactly-once: guarantees no loss and no duplicates, but

requires expensive end-to-end 2PC

• Set acks=all on producer
• Not fully exactly-once
• Support depends on destination system

– User can also implement at-most-once: messages may be

lost but are never re-delivered

• By disabling retries on producer (i.e., acks=0) and committing
offsets on consumer prior to processing a message

See https://kafka.apache.org/documentation/#semantics

Valeria Cardellini – SDCC 2022/23 49

Kafka: fault tolerance
• Kafka replicates partitions for fault tolerance

– Leader coordinates to update followers with new

messages

• In case of leader crash, a follower can be elected
as new leader with the help of Zookeeper

Valeria Cardellini – SDCC 2022/23 50

Kafka: fault tolerance
• Kafka makes a message available for consumption

only after all the followers acknowledge to the
leader a successful write
– Messages may not be immediately available for

consumption (tradeoff between consistency and

availability)

– This behavior can be relaxed if strong guarantee is not

required (setting acks=1)

• Kafka retains messages for a configured period of
time
– Messages can be replayed in case of consumer crash

– To free up disk space, messages have a TTL; upon TTL expiry,
messages are marked for deletion

Valeria Cardellini – SDCC 2022/23 51

Kafka and ZooKeeper
• Zookeeper: hierarchical, distributed key-value store

– Coordination and synchronization service for large distributed

systems

– Often used for leader election

– Used within many open-source distributed systems besides

Kafka (Apache Mesos, Storm, …)

• Kafka uses ZooKeeper to coordinate between
producers, consumers and brokers

Valeria Cardellini – SDCC 2022/23

• ZooKeeper stores Kafka
metadata
- List of brokers

- List of producers

- List of consumers and

their offsets

52

From ZooKeeper to KRaft
• Zookeeper cons

✗ Different system for metadata management and consensus

✗ Can become bottleneck as Kafka cluster grows

• New release: Zookeeper Apache Kafka Raft (KRaft)
– Kafka cluster metadata is stored in Kafka cluster itself

✓ Simpler architecture

✓ Faster and more scalable metadata update operations

– Metadata is also replicated to all brokers, making failover

from failure faster

– Consensus protocol based on Raft

Valeria Cardellini – SDCC 2022/23 53

Kafka: APIs
• Four core APIs
• Producer API: allows apps to

publish records to topics
• Consumer API: allows apps to

read records from topics
• Connect API: allows

implementing reusable
connectors (producers or
consumers) that connect Kafka
topics to apps or data systems

Valeria Cardellini – SDCC 2022/23

⎼ Many connectors are already available:

AWS S3, ActiveMQ, RabbitMQ, MySQL,

Postgres, AWS Lambda, …

https://kafka.apache.org/documentation/#api

54

Kafka: APIs
• Streams API: allows transforming streams of data

from input topics to output topics
– Kafka is not only a pub/sub system but also a real-time

streaming platform

• Use Kafka Streams to process data in pipelines consisting of
multiple stages

• Kafka APIs support Java and Scala only

Valeria Cardellini – SDCC 2022/23 55

Kafka: client library

• JVM internal client
• Plus rich ecosystem of client library, among which:

– Go

https://github.com/Shopify/sarama
https://github.com/segmentio/kafka-go

– Python

https://github.com/confluentinc/confluent-kafka-python/

Valeria Cardellini – SDCC 2022/23 56

Protocols for MOM
• Not only systems but also open standard protocols

for message queues
– AMQP Advanced Message Queueing Protocol

• Binary protocol
– MQTT Message Queue Telemetry Transport

• Binary protocol
– STOMP Simple (or Streaming) Text Oriented Messaging

Protocol

• Text-based protocol

• Goals:
– Platform- and vendor-agnostic

– Provide interoperability between different MOMs

Valeria Cardellini – SDCC 2022/23 57

Messaging protocols and IoT
• Often used in Internet of Things (IoT)

– Use message queueing protocol to send data from sensors

to services that process those data

– Exploit all MOM advantages seen so far:

• Decoupling
• Resiliency: MOM provides a temporary message storage
• Traffic spikes handling: data will be persisted in MOM and

processed eventually

Valeria Cardellini – SDCC 2022/23 58

AMQP: characteristics
• Open-standard protocol for MOM, supported by

industry
– Current version: 1.0 http://docs.oasis-open.org/amqp/core/v1.0/amqp-

core-complete-v1.0.pdf

– Approved in 2014 as ISO and IEC International Standard

• Binary, application-level protocol
– Based on TCP protocol with additional reliability

mechanisms (at-most once, at-least once, exactly once

delivery)

• Programmable protocol
– Several entities and routing schemes are primarily defined

by apps

• Implementations
– Apache ActiveMQ, RabbitMQ, Apache Qpid, Azure Event

Hubs, Pika (Python implementation), …

Valeria Cardellini – SDCC 2022/23 59

AMQP: model
• AMQP architecture involves 3 main actors:

– Publishers, subscribers, and brokers

• AMQP entities (within broker): queues, exchanges and
bindings
– Messages are published to exchanges (like post offices or

mailboxes)

– Exchanges distribute message copies to queues using rules

called bindings
– AMQP brokers either push messages to consumers

subscribed to queues, or consumers pull messages from

queues on demand
Valeria Cardellini – SDCC 2022/23 https://bit.ly/2oP683F

60

AMQP: routing

• Bindings:
– Direct exchange:

delivers messages to
queues based on
message routing key

– Fanout exchange:
delivers messages to all
queues that are bound
to it

Valeria Cardellini – SDCC 2022/23 61

AMQP: routing

• Bindings:
– Topic Exchange: delivers messages to one or

many queues based on topic matching
• Often used to implement various publish/subscribe

pattern variations

• Commonly used for multicast routing of messages

• Example use: distributing data relevant to specific

geographic location (e.g., points of sale)

– Headers Exchange: delivers messages based on
multiple attributes expressed as headers

• To route on multiple attributes that are more easily

expressed as message headers than a routing key

Valeria Cardellini – SDCC 2022/23 62

AMQP: messages

• AMQP defines two types of messages:
– Bare messages, supplied by sender

– Annotated messages, seen at receiver and added by

intermediaries during transit

• Message header conveys delivery parameters
– Including durability requirements, priority, time to live

Valeria Cardellini – SDCC 2022/23

Annotated message

63

Multicast communication
• Multicast communication: group communication

pattern in which data is sent to multiple receivers at
once
– Broadcast communication: special case of multicast, in which

data is sent to all receivers

– Examples of one-to-many multicast apps: video/audio resource

distribution, file distribution

– Examples of many-to-many multicast apps : conferencing tools,

multiplayer games, interactive distributed simulations

• Traditional unicast communication does not scale

Unicast of video to 1000 users Multicast of video to 1000 users

Valeria Cardellini – SDCC 2022/23 64

Types of multicast

• How to realize multicast?

– Network-level multicast (IP-level)

– Application-level multicast

Valeria Cardellini – SDCC 2022/23 65

Network-level multicast
• Packet replication and routing managed by routers
• IP Multicast (IPMC) based on groups

– IPMC generalizes UDP with one-to-many behavior

– Receivers use a special IP address which is shared among

multiple hosts

– Group: set of hosts interested in same multicast app; they

are identified by the same multicast IP address

• Multicast IP address from 224.0.0.0 to 239.255.255.255
– IGMP (Internet Group Management Protocol) to join group

• Limited use:
– Lack of large-scale support (only ~5% of ASs)

– Difficult to keep track of group membership

– Banned in some contexts, e.g., in Cloud data centers

because of broadcast storm problem (exponential increase

of network traffic with possible saturation)

Valeria Cardellini – SDCC 2022/23 66

Application-level multicast

• Packet replication and routing managed by end
hosts

• Basic idea:
– Organize nodes into overlay network

– Use overlay network to disseminate data

• Application-level multicast:
– Structured

• Explicit communication paths
• How to build structured overlay network?

– Tree: only one path between each node pair
– Mesh: multiple paths between each node pair

– Unstructured
• Based on flooding
• Based on gossiping

Valeria Cardellini – SDCC 2022/23 67

Structured application-level multicast: tree
• Let’s consider how to build application-level multicast

tree in Scribe
– Scribe: pub/sub system with decentralized architecture and

based on Pastry DHT (let’s use Chord for request routing)

1. Multicast initiator node generates multicast identifier mid
2. Initiator lookups succ(mid) using DHT

3. Request is routed to succ(mid), which becomes root of

multicast tree

4. If node P wants to join multicast, it sends join request to root

5. When request arrives at Q:

• Q has not seen a join request for mid before ⇒ Q becomes
forwarder, P becomes Q’s child; join request is forwarded by Q

• Q knows about tree ⇒ P becomes Q’s child; no need to forward
join request

Castro et al., Scribe: A large-scale and decentralised application-level
multicast infrastructure, IEEE JSAC, 2002

Valeria Cardellini – SDCC 2022/23 68

Structured application-level multicast: tree

root

join()

forwarder
forwarder

root

join()

forwarder

forwarder

root

join()

forwarder

forwarder

forwarder

Valeria Cardellini – SDCC 2022/23 69

Non-structured application-level multicast

• How to realize non-structured application-
level multicast?
– Flooding: already studied

• Node P sends multicast message m to all its

neighbors

• In its turn, each neighbor will forward that message,

except to P, and only if it had not seen m before

– Random walk: already studied
• With respect to flooding, m is sent only to one

randomly chosen node

– Gossiping

Valeria Cardellini – SDCC 2022/23 70

Gossip-based protocols
• Gossip-based protocols (or algorithms) are

probabilistic; aka epidemic algorithms
– Gossiping effect: information can spread within a group just

as it would be in real life

– Strongly related to epidemics, by which a disease is spread

by infecting members of a group, which in turn can infect

others

• Allow information dissemination in large-scale
networks through random choice of successive
receivers among those known to sender
– Each node sends the message to a randomly chosen

subset of nodes in the network

– Each node that receives it will send a copy to another

subset, also chosen at random, and so on

Valeria Cardellini – SDCC 2022/23 71

Origin of gossip-based protocols

• Gossiping protocols proposed in 1987 by Demers et
al. in a work on data consistency in replicated
databases composed of hundreds of servers
– Basic idea: assume there are no write conflicts (i.e.,

independent updates)

– Update operations are initially performed on one or a few

replicas

– A replica passes its updated state to only a few neighbors

– Update propagation is lazy, i.e., not immediate

– Eventually, each update should reach every replica

Demers et al., Epidemic Algorithms for Replicated Database Maintenance,
Proc. of 6th Symp. on Principles of Distributed Computing, 1987.

Valeria Cardellini – SDCC 2022/23 72

Why gossiping in large-scale DSs?

• Several attractive properties of gossip-based
information dissemination for large-scale
distributed systems
– Simplicity of gossiping algorithms
– No centralized control or management (and

related bottleneck)
– Scalability: each node sends only a limited

number of messages, independently from the
overall system size

– Reliability and robustness: thanks to message
redundancy

Valeria Cardellini – SDCC 2022/23 73

Who uses gossiping? Some example

• AWS S3 “uses a gossip protocol to quickly spread
information throughout the S3 system. This allows
Amazon S3 to quickly route around failed or
unreachable servers, among other things”

• Amazon’s Dynamo uses a gossip-based failure
detection service

• BitTorrent uses a gossip-based basic information
exchange

• Cassandra uses Gossip protocol for group
membership and failure detection of cluster nodes

• See gossip dissemination pattern
https://martinfowler.com/articles/patterns-of-distributed-

systems/gossip-dissemination.html

Valeria Cardellini – SDCC 2022/23 74

Propagation models

• Let’s consider the two principle operations
– Pure gossiping and anti-entropy

• Pure gossiping (or rumor spreading): a node which
has just been updated (i.e., contaminated) selects F
(F >= 1) other peers to forward the update message
to (contaminating them)

• Anti-entropy: each node regularly chooses another
node at random and exchanges state differences,
leading to identical states at both afterwards

Valeria Cardellini – SDCC 2022/23 75

Pure gossiping

• Node P selects randomly node Q and forwards the
update message to it

• If Q was already updated, P may lose interest in
spreading the update any further and with probability 1/k
stops contacting other nodes

• The fraction s of ignorant nodes (that have not yet been
updated) is s = e−(k+1)(1−s)

• To improve message spreading (especially when 1/k is
high), let’s combine pure gossiping with anti-entropy

If k increases,

the probability of

spreading the

update increases

as well

76Valeria Cardellini – SDCC 2022/23

Anti-entropy

• Goal: increase node state similarity, thus decreasing
“disorder” (reason for name!)

• Node P selects node Q randomly: how does P
update Q?

• 3 different update strategies:
choice

data

Valeria Cardellini – SDCC 2022/23 77

choice

data

choice

data

P Q

– push: P only pushes its own updates to Q

– pull: P only pulls in new updates from Q

– push-pull: P and Q send updates to each

other, i.e., P and Q exchange updates

Anti-entropy: performance
• Push-pull

– Fastest strategy

– Takes O(log(N)) rounds to disseminate updates to all N
nodes

– Round (or gossip cycle): time interval in which every node

takes the initiative to start an exchange

Valeria Cardellini – SDCC 2022/23 78

General schema of gossiping protocols
• Two nodes P and Q, where P selects Q to exchange

information with
– P runs at each new gossip round (every Δ time units)

Active thread (node P): Passive thread (node Q):

(1) selectPeer(&Q); (1)

(2) selectToSend(&bufs); (2)

(3) sendTo(Q, bufs); -----> (3) receiveFromAny(&P, &bufr);

(4) (4) selectToSend(&bufs);

(5) receiveFrom(Q, &bufr); <----- (5) sendTo(P, bufs);

(6) selectToKeep(cache, bufr); (6) selectToKeep(cache, bufr);

(7) processData(cache); (7) processData(cache)

selectPeer: randomly select a neighbor

selectToSend: select some entries from local cache

selectToKeep: select which received entries to store into local cache;

remove repeated entries

Kermarrec and van Steen, Gossiping in Distributed Systems, ACM
Operating System Review, 2007

Valeria Cardellini – SDCC 2022/23 79

Framework of gossip-based protocols

• Simple? Not quite getting into the details…
• Some crucial aspects

– Peer selection
• E.g., Q can be uniformly chosen from set of currently

available (i.e., alive) nodes

– Data exchanged
• Exchange is highly application-dependent

• Choice of update strategy

– Data processing
• Again, highly application-dependent

Valeria Cardellini – SDCC 2022/23 80

Implementing a gossiping protocol

Which issues to address when implementing a
gossiping protocol?
• Membership: how nodes can get to know each

other and how many acquaintances to have
• Network awareness: how to make node links reflect

network topology for satisfactory performance
• Cache management: what information to discard

when node’s cache is full
• Message filtering: how to consider nodes' interest in

update message and reduce the likelihood that they
will receive information they are not interested in

Valeria Cardellini – SDCC 2022/23 81

Gossiping vs flooding: example
• Information dissemination is the classic and most

popular application of gossiping protocols in DSs
– Gossiping is more efficient than flooding

• Flooding-based information dissemination
– Each node that receives message forwards it to its

neighbors (let’s consider all neighbors, including the sender)

– Message is eventually discarded when TTL=0

Round 1 Round 2 Round 3

Sent messages: 18
Reached nodes: 8 out of 9Valeria Cardellini – SDCC 2022/23 82

Gossiping vs flooding: example
• Let’s use only pure gossiping

– Message is sent to neighbors with probability p
for each msg m

if random(0,1) < p then send m

p

p

p

p

p

p p

p

p p

p
Round 1 Round 2 Round 3

Sent messages: 11
Reached nodes: 7 out 9

Valeria Cardellini – SDCC 2022/23 83

Gossiping vs flooding
• Gossiping features

– Probabilistic

– Takes a localized decision but results in a global state

– Lightweight

– Fault-tolerant

• Flooding has some advantages
– Universal coverage and minimal state information

– … but it floods the networks with redundant messages

• Gossiping goals
– Reduce the number of redundant transmissions that occur with

flooding while trying to retain its advantages

– … but due to its probabilistic nature, gossiping cannot

guarantee that all the peers are reached and it requires more

time to complete than flooding

Valeria Cardellini – SDCC 2022/23 84

Other application domains of gossiping
• Besides information dissemination…
• Peer sampling

– How to provide every node with a list of peers to exchange

information with

• Resource management, including monitoring, in
large-scale distributed systems
– E.g., failure detection

• Distributed computations to aggregate data in very
large distributed systems (e.g., sensor networks)
– Computation of aggregates e.g., sum, average, maximum

and minimum values

– E.g., to compute average value

• Let v0,i and v0,j be the values at time t=0 stored by nodes i and j
• Upon gossip, i and j exchange their local value vi and vj and

adjust it to
v1,i, v1,j ←(v0,i + v0,j)/2

Valeria Cardellini – SDCC 2022/23 85

Two gossiping protocols

• Let’s consider two examples of gossiping
protocols
– Blind counter rumor mongering
– Bimodal multicast

Valeria Cardellini – SDCC 2022/23 86

Blind counter rumor mongering

• Why such name for this protocol?
– Rumor mongering (def: “the act of spreading rumors”, also

known as gossip): a node with “hot rumor” will periodically

infect other nodes

– Blind: loses interest regardless of message recipient (why)

– Counter: loses interest after some contacts (when)

• Two parameters to control gossiping
– B: maximum number of neighbors a message is forwarded

to

– F: number of times a node forwards the same message to its

neighbors

Valeria Cardellini – SDCC 2022/23 87

Portman and Seneviratne, The cost of application-level broadcast in a
fully decentralized peer-to-peer network, ISCC 2002

Blind counter rumor mongering

• Gossip protocol

A node n initiates a broadcast by sending message m to B of its

neighbors, chosen at random

When node p receives a message m from node q
If p has received m no more than F times

p sends m to B uniformly randomly chosen neighbors that p
knows have not yet seen m
– Note that p knows if its neighbor r has already seen the

message m only if p has sent it to r previously, or if p
received the message from r

Valeria Cardellini – SDCC 2022/23 88

Blind counter rumor mongering: performance
• Difficult to obtain analytical expressions to analyze

the behavior of gossiping protocols, even for
relatively simple topologies ⇒ simulation analysis

• Assume Barabási network topology (i.e., power-law)
– 1000 nodes with average node degree equal to 6

– Cost: measured as number of forwarded messages

– Rumor mongering vs flooding scalability (F=2, B=2)

Valeria Cardellini – SDCC 2022/23 89

Bimodal multicast

• Aka pbcast (probabilistic broadcast)
• Composed by two phases:

1. Message distribution: a process sends a
multicast message with no particular reliability
guarantees
• Using IP multicast if available, otherwise application-level

multicast (e.g., Scribe tree)

2. Gossip repair: after a process receives a
message, it begins to gossip about the message
to a set of peers
• Gossip occurs at regular intervals and offers the

processes a chance to compare their states and fill any

gaps in the message sequence

Birman et al., Bimodal multicast, ACM Trans. Comput. Syst., 1999
Valeria Cardellini – SDCC 2022/23 90

Bimodal multicast: message distribution

• Start by using unreliable multicast to rapidly distribute
messages

• Partial distribution of multicast messages may occur
– Some message may not get through

– Some process may be faulty

Send messages
: failed

messages

p1

p2

p3

p4

p5

p6
time

Valeria Cardellini – SDCC 2022/23 91

Bimodal multicast: gossip repair

• Periodically (e.g., every 100 ms) each
process sends a digest describing its state to
some randomly selected process

• Digest only identifies messages, without
including them

Send digests
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2022/23 92

Bimodal multicast: gossip repair

• Recipient checks gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the
gossip

Solicit message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2022/23 93

Bimodal multicast: gossip repair

• Processes reply to solicitations received
during a gossip round by retransmitting the
requested message

• Some optimizations (not examined)

Send message copies
p1

p2

p3

p4

p5

p6

Valeria Cardellini – SDCC 2022/23 94

Bimodal multicast: why “bimodal”?
• Are there two phases?
• Nope; description of dual “modes” of result

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

1. pbcast is almost always

delivered to most or to

few processes and

almost never to some

processes

Atomicity = almost all or

almost none

2. A second bimodal

characteristic is due to

delivery latencies, with

one distribution of very

low latencies (messages that arrive without loss in the first

phase) and a second distribution with higher latencies

(messages that had to be repaired in the second phase)

Either sender
fails…

… or data gets
through with

high probability

Valeria Cardellini – SDCC 2022/23 95

Distributed event matching
• Event matching (aka notification filtering): core

functionality of pub/sub systems

• Event matching requires:
– Checking subscriptions against events

– Notifying subscribers in case of match

Valeria Cardellini – SDCC 2022/23 96

Distributed event matching:
centralized architecture

• First solution: centralized architecture
• Centralized server handles all subscriptions and

notifications
• Centralized server:

– Handles subscriptions from subscribers

– Receives events from publishers

– Checks every and each event against subscriptions

– Notifies matching subscribers

✓ Simple to realize and feasible for small-scale
deployments

✗ Scalability
✗ SPOF

Valeria Cardellini – SDCC 2022/23 97

Distributed event matching:
distributed architecture

• How can we address scalability through distribution?
• Simple solution: partitioning
• Master/worker pattern (i.e., hierarchical architecture):

master divides work among multiple workers
– Each worker stores and handles a subset of subscriptions

– How to partition?

• Simple for topic-based pub/sub: use hashing on topics’ names
for mapping subscriptions and events to workers

✗ Single master

• Alternatively, avoid single master and use a set of
distributed servers (brokers) among which work is
spread
– Organized in a flat architecture, hashing can still be used

– Example: Kafka

Valeria Cardellini – SDCC 2022/23 98

Distributed event matching:
distributed architecture

• Other alternatives: decentralized solutions based on
P2P overlay networks

• P2P unstructured overlay: use flooding or gossiping
to disseminate information
– Trivial solution for flooding: propagate each event from

publisher to all P2P nodes

– To reduce message overhead of flooding, use selective

event routing

• Alternatively, can also exploit P2P structured overlay
– Example: Scribe

Valeria Cardellini – SDCC 2022/23 99

