
Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Distributed Systems

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Technology advances

V. Cardellini - SDCC 2022/23 1

Networking

Computing power

Storage

Memory

Protocols

Internet evolution: 1977

2V.
 C

ar
de

llin
i -

SD
C

C
 2

02
2/

23

Internet evolution: after 43 years (2020)

3V. Cardellini - SDCC 2022/23

• IPv4 AS-level
Internet graph

• Interconnections of
~47000 ASs,
~150K links

Source: https://www.caida.org/projects/as-core/

Web growth: number of Web servers

V. Cardellini - SDCC 2022/23 4

Source: Netcraft Web server survey
news.netcraft.com/archives/category/web-server-survey/

In 2014 it was the first time the survey measured a billion websites: a
milestone achievement that was unimaginable two decades ago

Metcalfe’s law

“The value of a telecommunications network
is proportional to the square of the number of
connected users of the system”.

Networking is socially and economically
interesting

V. Cardellini - SDCC 2022/23 5

Internet traffic in 2021 and new trends

6

Source: Cisco

Source: sandvineV. Cardellini - SDCC 2022/23

Traffic generated by IoT
devices, voice assistants,
mobile advertising,
mobile crashes,
cryptocurrencies, …

Video is everywhere!
53.72% of overall traffic

Top 3: YouTube, Netflix, Facebook

Tik Tok: from 65th in 2018 to 5th in 2021

Future Internet traffic

V. Cardellini - SDCC 2022/23 7

Source: Sandvine's Fall 2010 report on global
Internet trends

Source: Cisco

Source: Cisco Internet report 2018-2023
Growth in Internet users

Implication of such growth: Internet is replacing voice
telephony, television... will be the dominant transport
technology for everything

Device and connection
growth

5.3 billion total Internet
users (66% of global
population) by 2023

Future Internet traffic

M2M apps across many industries
accelerate IoT growth

V. Cardellini - SDCC 2022/23
8

Machine-2-Machine (M2M)
connection growth

Computing power
• 1974: Intel 8080

– 2 MHz, 6K transistors

• 2004: Intel P4 Prescott
– 3.6 GHz, 125 million transistors

• 2011: Intel 10-core Xeon
Westmere-EX
– 3.33 GHz, 2.6 billion transistors

• GPUs scaled as well: in 2019
NVIDIA Turing GPU
– 14.2 TFLOPS of peak single

precision (FP32) performance

V. Cardellini - SDCC 2022/23 9

• Computers got…
– Smaller
– Cheaper
– Power efficient
– Faster

Multicore
architectures

Distributed systems: not only Internet and Web
• Internet and Web: two notable examples of

distributed systems
• Others include:

– Cloud systems, HPC systems, … sometimes only
accessible through private networks

– Peer-to-peer (P2P) systems
– Home networks (home entertainment, multimedia

sharing)
– Wireless sensor networks
– Internet of Things (IoT)

V. Cardellini - SDCC 2022/23
10

Gartner's annual IT hype cycle for
emerging technologies

V. Cardellini - SDCC 2022/23
11

Hype cycle and cloud computing

2007

2008

2009

2010

2011

V. Cardellini - SDCC 2022/23 12

See Cloud computing in
2014 and previous years

In production since 20152012

2013
2014

Hype cycle for emerging technologies in 2021

13

Many technologies strictly
related to (and impossible
without) distributed systems
and Cloud computing!

V. Cardellini - SDCC 2022/23

Distributed systems and AI

• Artificial Intelligence (AI) has become
practical as the result of:
– distributed computing
– affordable cloud computing and storage costs
– Examples: federated learning, distributed training

of BERT models

• Distribute = to divide and dispense in portions
• A foremost strategy used in distributed

computing you already know
– Divide et impera: break larger (computational)

problems down into numbers of smaller,
interrelated, “manageable” pieces

V. Cardellini - SDCC 2022/23 14

15

Distributed system
• Multiple definitions of distributed system (DS), not

always coherent with each other
• [van Steen & Tanenbaum] A distributed system is a

collection of autonomous computing elements that
appears to its users as a single coherent system
– Consists of autonomous computing elements (i.e., nodes),

can be hardware devices (computer, phone, car, robot, …) or
software processes

– Users or applications perceive it as a single system: nodes
need to collaborate

V. Cardellini - SDCC 2022/23

Middleware

16

Distributed system

• [Coulouris & Dollimore] A distributed system is one in
which components located at networked computers
communicate and coordinate their actions only by
passing messages
– If components = CPUs we have the definition of MIMD

(Multiple Instruction stream Multiple Data stream) parallel
architecture

• [Lamport] A distributed system is one in which the
failure of a computer you didn’t even know existed
can render your own computer unusable
– Emphasis on fault tolerance

V. Cardellini - SDCC 2022/23

Who is Leslie Lamport?

• Recipient of 2013 Turing award bit.ly/2ZWaG8R

• His research contributions have laid the foundations of
the theory and practice of distributed systems
– Fundamental concepts such as causality, logical clocks and

Byzantine failures; some notable papers:

• “Time, Clocks, and the Ordering of Events in a Distributed
System”

• “The Byzantine Generals Problem”
• “The Part-Time Parliament”

– Algorithms to solve many fundamental problems in distributed
systems, including:

• Paxos algorithm for consensus
• Bakery algorithm for mutual exclusion of multiple threads
• Snapshot algorithm for consistent global states

• Initial developer of LaTeX

V. Cardellini - SDCC 2022/23 17

Why make a system distributed?

• Share resources
– Resource = computing node, data, storage, service, …

• Lower costs
• Improve performance

– e.g., get data from a nearby node rather than one halfway round
the world

• Improve availability and reliability
– even if one node fails, the system as a whole keeps functioning

• Improve security
• Solve bigger problems

– e.g., huge amounts of data, can’t fit on one machine

• Support Quality of Service (QoS)

V. Cardellini - SDCC 2022/23
18

Why to study distributed systems?

• Distributed systems are more complex than
centralized ones
– e.g., no global clock, group membership, …

• Building them is harder… and building them
correct is even much harder
– “Distributed systems need radically different

software than centralized systems do” (Tanenbaum)

• Managing, and, above all, testing them is
difficult

V. Cardellini - SDCC 2022/23
19

Some distinguishing features of DS
• Concurrency

– Many things are occurring “at the same time”

– Centralized system: design choice

– Distributed system: fact of life to be dealt with

• Absence of global clock
– Centralized system: use computer’s physical clock for

synchronization

– Distributed system: many physical clocks and not
necessarily synchronized among them

• Independent and partial failures
– Centralized system: fails completely

– Distributed system: fails partially (i.e., only a part), often due
to communication; hard (and in general impossible) to hide
partial failures and their recovery

V. Cardellini - SDCC 2022/23 20

21

Challenges in distributed systems

• Many challenges associated with designing
distributed systems
– Heterogeneity
– Distribution transparency
– Openness
– Scalability

while improving performance and availability,
guaranteeing security, energy efficiency, …

V. Cardellini - SDCC 2022/23

22

Heterogeneity

V. Cardellini - SDCC 2022/23

• Levels:
– Networks

– Computer hardware

– Operating systems

– Programming languages

– Multiple implementations by different developers

• Solution? Middleware: the OS of DSs
Middleware: software layer placed on top of OSs providing a
programming abstraction as well as masking the heterogeneity
of the underlying networks, hardware, operating systems and
programming languages

Contains commonly used
components and functions
that need not be
implemented by applications
separately

Some middleware services

• Communication

• Transactions

• Service composition

• Reliability

V. Cardellini - SDCC 2022/23
23

24

Communication middleware
• Communication middleware: to facilitate communication

among (heterogeneous) DS components/apps
• We will study

– Remote Procedure Call (RPC)

– Remote Method Invocation (RMI)

– Message Oriented Middleware (MOM)

V. Cardellini - SDCC 2022/23

Remote Procedure Call (RPC) example
• Online payment

V. Cardellini - SDCC 2022/23
25

RPC: Behind the curtains

V. Cardellini - SDCC 2022/23
26

27

Distribution transparency
• Distribution transparency: single coherent system

where the distribution of processes and resources is
transparent (i.e., invisible) to users and apps

• Types of distribution transparency (ISO 10746, Reference
Model of Open Distributed Processing)

Access transparency
– Hide differences in data representation and how resources are

accessed
• e.g., use same mechanism for local or remote call

Location transparency
– Hide where resources are located

• e.g., URL hides IP address
– Access + location transparency = network transparency

Migration transparency
– Hide that resources may move to another location (even at

runtime) without affecting operativeness

V. Cardellini - SDCC 2022/23

28

Distribution transparency

Replication transparency
– Hide that there are multiple replicas of same resource

• Each replica should have the same name, e.g., type in terminal
$ dig www.youtube.com

• Require also location transparency

Concurrency transparency
– Hide that resources may be shared by several independent

users
• E.g.: concurrent access of multiple users to the same DB table
• Concurrent access to shared resource should leave it in a

consistent state; e.g., by using locking mechanisms

Failure transparency
– Hide failure and recovery of resources

– See DS definition by Lamport

V. Cardellini - SDCC 2022/23

29

Degree of distribution transparency

• Aiming to full distribution transparency is often too
much
– Communication latencies cannot be always hidden: access

from Rome to a resource located on a server in New York
requires ~23 ms

– Impossible to completely hide failures in a large-scale DS

• You cannot distinguish a slow computer from a failing one
• You can never be sure that a server actually performed an

operation before a crash

– Full transparency costs in terms of performance

• E.g.: keeping data replicas exactly up-to-date takes time
• Tradeoff between degree of consistency and system performance

V. Cardellini - SDCC 2022/23

Openness

• Open DS: able to interact with services from other
open systems, irrespective of underlying environment

• Systems should conform to well-defined interfaces
– Service interface defined through IDL (Interface Definition

Language)

• Nearly always capture only syntax, not semantics
• Complete and neutral
• IDL examples: XDR, Thrift, WSDL, OMG IDL

• Systems should easily interoperate
• Systems should support portability of applications
• Systems should be easily extensible
• Examples: Java EE, .Net, Web Services

V. Cardellini - SDCC 2022/23
30

“Practice shows that many distributed systems are
not as open as we’d like” (van Steen & Tanenbaum)

31

Separating policies from mechanisms
• To implement open and flexible DS: separate policies

from mechanisms
• DS provides only mechanisms

– E.g., mechanisms for Web browser
• Support for data caching

– E.g., policies for Web browser
• Which resources in cache?
• How long in cache?
• When to refresh?
• Private or shared cache?

• As a result, many parameters to be configured: need
to find a balance

• Possible solution: self-configurable systems

V. Cardellini - SDCC 2022/23

“Finding the right balance in separating policies
from mechanisms is one of the reasons why
designing a distributed system is sometimes more
an art than a science” (van Steen & Tanenbaum)

32

Scalability

• Scalability is the property of a (distributed)
system to keep an adequate level of performance
notwithstanding a growing amount of:
– Number of users and/or processes (size scalability)
– Maximum distance between nodes (geographical

scalability)
– Number of administrative domains (administrative

scalability)
• Most systems account only, to a certain extent,

for size scalability

V. Cardellini - SDCC 2022/23

“Many developers of modern distributed systems
easily use the adjective scalable without making
clear why their system actually scales.” (van Steen)

Scalability

• Root causes for scalability problems with
centralized solutions
– Computational capacity, limited by CPUs
– Storage capacity, including transfer rate between

CPUs and disks
– Network between user and centralized service

V. Cardellini - SDCC 2022/23
33

Size scalability

• Two directions for size scalability
– Vertical (scale-up): more powerful resources
– Horizontal (scale-out): more resources with

same capacity

V. Cardellini - SDCC 2022/23
34

Scale-up vs. scale-out

V. Cardellini - SDCC 2022/23
35

Size scalability: example

• Google File System
– Distributed file system realized by Google’s researchers

V. Cardellini - SDCC 2022/23 36

• Scale parameter: number of clients
• Scalability metric: aggregated read/write/append

throughput, assuming random file access
• Scalability criterion: the closer to network limit, the better

37

Techniques for scaling

1. Hide communication latency
– Make use of asynchronous communication
– Make separate handler for incoming response

– Problem: not every app fits this model (e.g., highly interactive
ones)

2. Facilitate solution by moving computations to client

3. Partition data and computation across multiple
resources
– Divide et impera: partition data and computation into smaller

parts and distribute them across multiple DS resources

– E.g..: decentralized naming service (DNS), data-intensive
distributed computation (Hadoop MapReduce and Spark)

V. Cardellini - SDCC 2022/23

38

Techniques for scaling
4. Replicate DS resources and data

– Distribute processing on multiple resource replicas

– Maintain a copy of the same data on multiple nodes

– Examples:

• Distributed file systems and databases
• Replicated Web servers
• Web caches (in browsers and proxies)

• Practical example: in a cloud storage service (e.g.,
Dropbox, OneDrive, GDrive) data are locally cached on
your device and replicated across multiple cloud servers

V. Cardellini - SDCC 2022/23

39

Consistency problems

• Applying data replication seems easy to apply, but…
• One replica should be "consistent" with another

replicas
• We will study a variety of consistency models to

choose from
– Strict consistency requires global synchronization

• Depending on the application type, as users we can
tolerate a certain degree of inconsistency
– E.g.,: blog, shared file, electronic shopping cart, on-line

auction, air traffic control

V. Cardellini - SDCC 2022/23

40

Fallacies in realizing distributed systems
• Many distributed systems are needlessly complex

because of errors in design and implementation that
were patched later

• Many wrong assumptions by architects and designers
of distributed systems (“The Eight Fallacies of Distributed

Computing”, Peter Deutsch, 1991-92):
1. The network is reliable

• "You have to design distributed systems with the expectation of
failure” (Ken Arnold)

2. Latency is zero

• Latency is more problematic than bandwidth
• “At roughly 300,000 kilometers per second, it will always take at

least 30 milliseconds to send a ping from Europe to the US and
back, even if the processing would be done in real time.” (Ingo
Rammer)

3. Bandwidth is infinite
V. Cardellini - SDCC 2022/23

41

Fallacies in realizing distributed systems
4. The network is secure

5. Topology does not change

• That's right, it doesn’t--as long as it stays in the test lab!

6. There is one administrator

7. Transport cost is zero

• Going from the application level to the transport level is not free
• Costs for setting and running the network are not free

8. The network environment is homogeneous

Do not think that technology solves everything!

V. Cardellini - SDCC 2022/23

See Fallacies of Distributed Computing Explained

Listen to Episode 470: L. Peter Deutsch on the Fallacies of
Distributed Computing

42

Three types of distributed systems

• High-performance distributed computing
systems
– Cluster computing
– Cloud computing
– Edge/fog computing

• Distributed information systems

• Distributed pervasive systems

V. Cardellini - SDCC 2022/23

43

Cluster computing

• Computer cluster: group of high-end servers connected
through a LAN
– Homogeneous: same OS, near-identical hardware

• Main goals: HPC (High Performance Computing) and/
or HA (High Availability)

• Typical cluster architecture

V. Cardellini - SDCC 2022/23

Clusters dominate TOP500
architectures www.top500.org

44

Cluster computing

• Often organized with a master/worker architecture
– E.g., Beowulf cluster using MPI library

• Can be controlled by specific
software tools that manage them
as a single system
– E.g., Mosix: cluster management

system that provides a single-
system image

• Among features: automatic
resource discovery and workload
distribution by process migration

V. Cardellini - SDCC 2022/23

Cloud computing

• Cluster computing is a major milestone that
lead to Cloud computing

• But Cloud is:
– available to anyone
– on a much wider scale
– does not require users to physically own or use

hardware

V. Cardellini - SDCC 2022/23
45

Decentralization: Edge-Cloud continuum

V. Cardellini - SDCC 2022/23
46

A powerful continuum of compute, storage and analytics
from the edge to the cloud

47

Distributed information systems
• Among distributed information systems let us

consider transaction processing systems

BEGIN_TRANSACTION(server, transaction);
READ(transaction, file1, data);
WRITE(transaction, file2, data);
newData := MODIFIED(data);
IF WRONG(newData) THEN

ABORT_TRANSACTION(transaction);
ELSE

WRITE(transaction, file2, newData);
END_TRANSACTION(transaction);

END IF;

– The effect of all READ and WRITE operations become
permanent only with END_TRANSACTION

– A transaction is an atomic operation ("all-or-nothing")
V. Cardellini - SDCC 2022/23

48

Transaction

• Transaction: unit of work that you want to see
as a whole and is treated in a coherent and
reliable way independent of other transaction

• ACID properties
– Atomic: happens indivisibly (seemingly)
– Consistent: does not violate system invariants
– Isolated: no mutual intereferences
– Durable: commit means changes are durable

V. Cardellini - SDCC 2022/23

49

Distributed transactions
• Distributed (or nested) transaction: composed by

multiple sub-transactions which are distributed
across several servers
– Transaction Processing (TP) Monitor: responsible for

coordinating the execution of the distributed transaction

– Example: Oracle Tuxedo

V. Cardellini - SDCC 2022/23

• We’ll study distributed commit protocols

50

Distributed pervasive systems

• Distributed systems whose nodes are often
– small, mobile, battery-powered and often embedded in a

larger system

– characterized by the fact that the system naturally blends
into the user’s environment

• Three (overlapping) subtypes of pervasive systems
– Ubiquitous computing systems: pervasive and continuously

present, i.e. continuous interaction between system and
users

– Mobile computing systems: pervasive, with emphasis on the
fact that devices are inherently mobile

– Sensor networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment

V. Cardellini - SDCC 2022/23

51

Sensor networks
• Sensors

– Many (10-106)

– Simple: limited computing,
memory and communication
capacity

– Often battery-powered (or
even battery-less)

– Failures are frequent

• Sensor networks as
distributed systems: two
extremes
(a)Store and process data in a

centralized way only on the
sink node

(b)Store and process data in a
distributed way on the
sensors (active and
autonomous)

V. Cardellini - SDCC 2022/23

Wireless sensor networks (WSNs)

V. Cardellini - SDCC 2022/23
52

Underwater WSNs

Agricultural WSNs

