TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

Container-based virtualization: Docker

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Case study: Docker .&

* Lightweight, open and secure container-based docker
virtualization

— Containers include the application and all of its
dependencies, but share the OS kernel with other containers

— Containers run as an isolated process in userspace on the
host OS

— Containers are also not tied to any specific infrastructure

App 1 App 3
Bins/Libs Bins/Libs

Docker Engine
Operating System

Infrastructure

[1B O

Valeria Cardellini - SDCC 2022/23

Docker internals

» Written in Go language

» With respect to other OS-level virtualization solutions,
Docker is a higher-level platform that exploits Linux
kernel mechanisms such as cgroups and namespaces

— First versions were based on Linux Containers (LXC)

— Then based on its own libcontainer runtime that uses Linux
kernel namespaces and cgroups directly

 Features

— Portable deployment across machines
— Versioning, i.e., git-like capabilities

— Component reuse
— Shared libraries, see

Valeria Cardellini - SDCC 2022/23

Docker internals

» libcontainer (now
included in
opencontainers/runc):
cross-system
abstraction layer aimed
to support a wide range
of isolation technologies

Valeria Cardellini - SDCC 2022/23

Docker
libcontainerl

SELinux

capabilities

Linux kernel

cgroups namespaces Netlink

Netfilter
AppArmor

Component diagram of Docker

«external» @

Registry

Collection
&

«query»

Engine @ «job» Daemon E

Dockerfil
«ockerren Builder E

«log events» Command Interface

©

«infrastructure» @
Event Bus

«web request»

Client E

Valeria Cardellini - SDCC 2022/23

4
Docker engine

» Docker Engine: client-

server application _— one

composed by: : —

manages manages
— Server, called Docker
daemon docker CLI
data volumes

— REST API which specifies | ™"
interfaces that programs
can use to control and
interact with the daemon

— Command line interface
(CLI) client

manages

REST API

server
docker daemon

See https://docs.docker.com/engine/docker-overview/

Valeria Cardellini - SDCC 2022/23

5

Docker architecture

* Docker uses a client-server architecture

— The Docker client talks to the Docker daemon, which builds,
runs, and distributes Docker containers

— Client and daemon communicate via sockets or REST API

o) (oo)

docker build -{- -4 D\ockerdaemon S \| R
/ : R Y
docker pull ~-| | ; ; 1.
\
-

Containers .
N @ NGiMX
Slel-. N /
q /
N 7 ,
s
é‘ 1

~
I/
e
7

docker run —f

g

Qe

Valeria Cardellini - SDCC 2022/23

Docker image

« Read-only template used to create a Docker container

* Build component of Docker

— Enables apps distribution with their runtime environment

 Incorporates all the dependencies and configuration necessary to
apps to run, eliminating the need to install packages and
troubleshoot

— Target machine must be Docker-enabled

» Docker can build images automatically by reading
instructions from a Dockerfile
— A text file with simple, well-defined syntax

* Images can be pulled and pushed towards a
public/private registry

* Image name: [registry/][user/lname[:tag]
— Default for tag is latest

Valeria Cardellini - SDCC 2022/23

Docker image: Dockerfile

Image created from Dockerfile and context

— Dockerfile: instructions to assemble the image

— Context: set of files (e.g., application, libraries)

— Often, an image is based on a parent image (e.g., alpine)

Dockerfile syntax
Comment
INSTRUCTION arguments

Instructions in Dockerfile run in order

Some instructions
FROM: to specify parent image (mandatory)

RUN: to execute any command in a new layer on top of current
image and commit results

ENV: to set environment variables
EXPOSE: container listens on specified network ports at runtime

CMD: to provide defaults for executing container
Valeria Cardellini - SDCC 2022/23

Docker image: Dockerfile

« Example: Dockerfile to build the image of a container
that will run a simple todo list manager written in
Node.js

FROM node:18-alpine
WORKDIR /app

COPY
RUN yarn install --production
CMD ["node", "src/index.js"]

EXPOSE 36000

See

Valeria Cardellini - SDCC 2022/23

Docker image: build

 Build image from Dockerfile

$ docker build [OPTIONS] PATH | URL | -

- E.g., to build the image for Node.js app (see previous
slide)

$ docker build -t getting-started .

Valeria Cardellini - SDCC 2022/23
10

Docker image: layers

» Each image consists of a series of layers
» Docker uses union file systems to combine these
layers into a single unified view

— Layers are stacked on top of each other to form a base for
a container’s root file system

— Based on copy-on-write (CoW) strategy

Thin R/W layer i«— Container layer

I | I ! I

-

91e54dfb1179 0B

d74508fb6632 1.895 KB

0
[1 > Image layers (R/O)
c22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

. L. Container
Valeria Cardellini - SDCC 2022/23 {basedion uburitu:15.04 isge) »

Docker image: layers

« Layering pros
- Enable layer sharing and reuse, installing common layers
only once and saving bandwidth and storage space

- Manage dependencies and separate concerns
- Facilitate software specializations
See https://docs.docker.com/storage/storagedriver/

/

d74508fb6632 1.895 KB

91e54dfb1179

€22013c84729 194.5 KB

d3a1f33e8a5a 188.1 MB

ubuntu:15.04 Image

Valeria Cardellini - SDCC 2022/23

Docker image: layers and Dockerfile

« Each layer represents an instruction in Dockerfile

— Except CMD instruction, which specifies what command to run
within the container: it only modifies image’s metadata, without
producing an image layer

« Each layer except the very last one is read-only
» \Writable layer on top (aka container layer) is added

when container is created

— Changes made to running container (e.g., writing a file) are
written to writable layer

— Does not persist after container is deleted
— Suitable for storing ephemeral data generated at runtime

* To inspect an image, including image layers
$ docker inspect imageid

Valeria Cardellini - SDCC 2022/23

Docker image: storage

» Containers are usually stateless (easier to scale,
restart from failure, migrate)
— Very little data written to container’s writable layer
— Data usually written on Docker volumes
— Nevertheless: some workloads require to write data to

container’s writable layer

« Storage driver controls how images and containers

are stored and managed on Docker host

» Multiple choices for storage driver

- Including AuFS and Overlay2 (at file level), Device Mapper,
btrfs and zfs (at block level)

- Storage driver’s choice can affect performance of
containerized apps: optimized for space efficiency, but write
speeds can be lower than native file system performance

- See

Valeria Cardellini - SDCC 2022/23 14

Docker container and registry

« Docker container: runnable instance of Docker image
— Run component of Docker

— Run, start, stop, move, or delete a container using Docker API

or CLI commands
(\ er
- Docker containers are stateless:

when a container is deleted, any
data written not stored in a data
volume is deleted

« Docker registry: stateless server-side application that
stores and lets you distribute Docker images
- Distribute component of Docker
- Open library of images

- Docker-hosted registries: Docker Hub, Docker Store (open
source and enterprise verified images)

Valeria Cardellini - SDCC 2022/23 15

Docker: run command

« When you run a container whose image is not yet
installed but is available on Docker Hub

The container
is running!

Docker looks Docker
for the image Is it searches
on this installed? Docker Hub
computer for the image

Docker creates The image
Docker
a new container layers are
downloads
and starts installed on it
the program this computer 4

Valeria Cardellini - SDCC 2022/23

Is it
on Docker
Hub?

Courtesy of “Docker in Action” by J. Nickoloff

State transitions of Docker containers

16

pause
run -
- nnng unpause paused
restart
restart start
create
remove (exited restarting

[}

Valeria Cardellini - SDCC 2022/23

Courtesy of “Docker in Action” by J. Nickoloff

17

Commands: Docker info

» Obtain system-wide info on Docker installation
$ docker info
including:
— How many images, containers and their status
— Storage driver
— Operating system, architecture, total memory
— Docker registry

Valeria Cardellini - SDCC 2022/23

Commands: image handling

18

List images on host (i.e., local repository)
$ docker images alternatively, $ docker image 1s
 List every image, including intermediate image
layers:
$ docker image 1ls -a
» Options to list images by name and tag, to list image
digests (sha256), to filter images, to format the

output

- E.g., tolist untagged images (<none>) that have no
relationship to any tagged images (no longer used but
consume disk space)

$ docker images --filter "dangling=true"

Remove an image Can also use imagename
$ docker rmi imageid instead of imageid

Valeria Cardellini - SDCC 2022/23

19

Command: run

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

* Most common options
--name assign a name to the container

-d detached mode (in background)

-i interactive (keep STDIN open even if not attached)

-t allocate a pseudo-tty

- -expose expose a range of ports inside the container

-p publish a container's port or a range of ports to the host
Y bind and mount a volume

-e set environment variables

--1link add link to other containers

Valeria Cardellini - SDCC 2022/23
20

Commands: containers management

* List containers

— Only running containers: $ docker ps
» Alternatively, $ docker container 1s

— All containers (including stopped or killed containers):

$ docker ps -a

« Manage container lifecycle
— Stop running container
$ docker stop containerid
— Start stopped container
$ docker start containerid
— Kill running container
$ docker kill containerid

— Remove container (need to stop it before attempting removal)
$ docker rm containerid

Can also use containername
Valeria Cardellini - SDCC 2022/23 instead Of conta 1 ner ld

21

Commands: containers management

Stop and remove a running container
docker ps

docker stop containerid

docker ps -a

docker rm containerid

B A B B

Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

Valeria Cardellini - SDCC 2022/23

Commands: containers management

22

» Inspect a container

— Most detailed view of the environment in which a container
was launched

$ docker inspect containerid

» Copy files from and to container
$ docker cp containerid:path localpath
$ docker cp localpath containerid:path

Valeria Cardellini - SDCC 2022/23

23

Docker volumes

» Preferred mechanism for persisting data generated
by and used by Docker containers

— New directory is created within Docker’s storage directory on
host machine, and Docker manages that directory’s contents

— Directory does not need to exist on host, it is created on
demand if it does not yet exist

« To mount a volume, use -v or --mount flag

« More commands:
— Create volume: $ docker volume create my-vol
— List volumes: $ docker volume 1ls
— Inspect volume: $ docker volume inspect my-vol
— Remove volume: $ docker volume rm my-vol

Valeria Cardellini - SDCC 2022/23

Docker volumes

24

« Example: start nginx container with volume
$ docker run -d \
--name devtest \
-v myvol2:/app \
nginx:latest

Valeria Cardellini - SDCC 2022/23

25

Docker volumes

* Pros
— Completely managed by Docker
— Easy to back up or migrate
— Managed using Docker CLI commands or Docker API
— Work on both Linux and Windows containers
— Can be shared among multiple containers
— Content can be encrypted
— Content can be pre-populated

— Better choice than persisting data in a container’s writable
layer: a volume does not increase the size of the containers
using it, and its contents exist outside the container lifecycle

Valeria Cardellini - SDCC 2022/23

Hands-on Docker

26

* Download and install Docker
— Available on multiple platforms

» Test Docker version
$ docker --version

« Test Docker installation by running hello-world
Docker image
$ docker run hello-world

Valeria Cardellini - SDCC 2022/23

27

Hands-on Docker

* Run “Hello World” container with a command

$ docker run alpine /bin/echo 'Hello world'

- alpine: lightweight Linux distro with reduced image size

« Use commands to:

— List containers and container images

— Remove containers and container images

Valeria Cardellini - SDCC 2022/23

Hands-on Docker

28

* Run nginx Web server inside a container
- Bind container to specific port
$ docker run -dp 80:80 --name web nginx
Option -p: publish container port (80) to host port (80)
Option -d: detached mode

1. Send HTTP request through Web browser

- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP request through interactive container
using a bridge network

$ docker
$ docker
$ docker
/ # wget
/ # exit

network create my_net

run -dp 80:80 --name web --net=my_net nginx
run -i -t --net=my_net --name web_test busybox
-0 - http://web:80/

Valeria Cardellini - SDCC 2022/23

29

Valeria Cardellini - SDCC 2022/23

Hands-on Docker

* Running Apache web server with minimal index page

1. Define container image with Dockerfile
» Define image starting from Ubuntu, install and configure Apache

* Incoming port set to 80 using EXPOSE instruction
FROM ubuntu:18.04

Install dependencies

RUN apt-get update -y

RUN apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh

RUN echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh
RUN echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh
RUN echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh
RUN chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh 30

Hands-on Docker

2. Build container image from Dockerfile
$ docker build -t hello-apache .

3. Run container and bind
$ docker run -dp 80:80 hello-apache

» To reduce Docker image size let’'s improve the
Dockerfile: avoid adding unnecessary layers

* E.g., update and install multiple packages in a single
RUN instruction
— Use \ to type out the command in multiple lines

Valeria Cardellini - SDCC 2022/23
31

Hands-on Docker

FROM ubuntu:18.04

Install dependencies
RUN apt-get update -y && \
apt-get -y install apache2

Install apache and write hello world message
RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache
RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh && \
echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh && \
echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh && \
echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh && \
chmod 755 /root/run_apache.sh
EXPOSE 80

CMD /root/run_apache.sh

Valeria Cardellini - SDCC 2022/23 32

Configuring container memory and CPU

« By default, a container has no resource constraints
— Can use as much resource as host’s kernel scheduler allows

» Docker provides ways to control how much memory
or CPU a container can use by setting runtime
configuration flags of docker run command

— Docker engine implements configuration changes by
modifying settings of container’s cgroup

Valeria Cardellini - SDCC 2022/23
33

Configuring container memory

» Avoid running out of memory (OOM)
— Individual containers can be killed (Docker daemon has
lower OOM priority, containers default one)
» Docker can enforce hard or soft memory limits

— Hard limits: container cannot use more than a given amount
of user or system memory; --memory flag

— Soft limits: container can use as much memory as it needs
unless certain conditions are met, such as when kernel
detects contention or low memory on host machine

— Example: limit container to use at most 500 MB of memory
(hard limit) and specify also a soft limit
$ docker run -it --memory-reservation="300m" \
--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2022/23

Configuring container CPU

34

» Various constraints to limit container usage of host
machine’s CPU cycles

« Some options
- -cpus=<value>: limit how many CPU resources a container
can use (hard limit)
--cpu-quota=<value>: set CPU Completely Fair Scheduler
(CFS) quota on container
- -cpuset-cpus: limit specific CPUs or cores a container can
use
--cpu-shares: set to value >/< 1024 to increase/reduce
container’s weight, and give it access to greater/less proportion
of CPU cycles (soft limit)
— Example: limit container to use at most 50% of CPU every

second
$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \

Valeria Cardellini - SDCC 2022/23 --Cpu-quota=50000 ubuntu /bin/bash

35

Multi-container Docker applications

How to run multi-container Docker apps?
Docker Compose

— Deployment only on single host

Docker Swarm

— Native orchestration tool for Docker

— Deployment on multiple hosts
Kubernetes

— Deployment on multiple hosts
— See next lesson

Valeria Cardellini - SDCC 2022/23

Docker Compose

OO

» To coordinate execution of multiple containers L6<(
running on a single host
— Bundled within Docker Desktop

« Allows to easily express the containers to be
instantiated at once, and their relationships
* Runs the composition on a single Docker engine

— To deploy containers on multiple nodes use either Docker
Swarm or Kubernetes

Valeria Cardellini - SDCC 2022/23
37

Docker Compose

» Specify how to compose containers in an easy-to-read

YAML file named docker-compose.yml

» To start Docker composition
$ docker compose up -d

(background -d):

» By default, Docker Compose looks for docker-
compose.yml in current working directory

— Can specify different file using

-f flag

$ docker compose -f composefile up -d

» To stop Docker composition:
$ docker compose down

Valeria Cardellini - SDCC 2022/23

Docker Compose file

38

» Different versions of Docker

Latest: Docker Compose 1.27 imple

version: '3’

services:
storm-nimbus:

image: storm
container name: nimbus
command: storm nimbus
depends_on:

— zookeeper
links:

— zookeeper
ports:

- "6627:6627"

Valeria Cardellini - SDCC 2022/23

Compose file format

ments format defined by

zookeeper:
image: zookeeper
container name: zookeeper
ports:
- "2181:2181"

workerl:
image: storm
command: storm supervisor
depends_on:
- storm-nimbus
- zookeeper
links:
- storm-nimbus

— zookeeper

39

Docker Compose: example

» Simple Python web app running on Docker Compose
— 2 containers: Python web app and Redis
— Use Flask framework and maintain hit counter in Redis

— Redis: open-source, networked, in-memory, key-value data
store

- See
» Steps:
1. Write Python app
2. Define Python container image with Dockerfile

3. Define services in Compose version: "3.9"

file —> services:

« Two services: web (image web:
defined by Dockerfile) and build: .
redis (pulled from ports: - 8000:5000"
Docker Hub) redis:

image: "redis:alpine"

Valeria Cardellini - SDCC 2022/23

Docker Compose: example

40

» Steps (cont'd):
4. Build and run app with Compose
$ docker compose up -d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Stop Compose, bringing everything down
$ docker compose down

» Examples of Compose files

Valeria Cardellini - SDCC 2022/23

41

Docker Compose: some features

» Add volume for web app to keep its code, so that code
can be modified on the fly without rebuilding the image

- Specify restart policy for containers in Compose file

Options: on-failure[:max-retries], always, unless-stopped

« Start multiple replicas of same container using either
option --scale or scale subsection in Compose file

e.g., docker compose --scale web=2 up -d
Use also port ranges in Compose file
Alternatively, use deploy subsection in Compose file

» Examples of Compose files

Valeria Cardellini -

SDCC 2022/23 42

Docker Swarm

» Docker includes swarm mode for natively managing a
cluster of Docker Engines, called swarm

« Tasks: containers running in a service
« Main features of swarm mode:

Valeria Cardellini -

Scaling: number of tasks for each service
» But auto-scaling is not supported

State reconciliation: Swarm monitors cluster state and
reconciles any differences w.r.t. desired state (e.g., replace
containers after host failure)

Multi-host networking: to specify an overlay network among
services

Load balancing: allows to expose the ports for services to an
external load balancer; internally, the swarm lets you specify

how to distribute containers among nodes

SDCC 2022/23
43

Docker Swarm: architecture

» A swarm consists of multiple Docker engines which
run in swarm mode

* Node: instance of Docker engine

— Manager node(s): handles cluster management, including
scheduling tasks to worker nodes
* Multiple managers to improve fault tolerance
» Raft as consensus algorithm to manage global cluster state

— Worker nodes execute tasks

Raft consensus group

| Internal distributed state store - |

I I l

Manager Manager Manager
- AV g
P ; A S

B Y e 7

/ / - % N
LI i S 5
> 2 ™ : \

7

/, ’ ‘ / 7 /\}-‘\',\‘ e NG
X » 'S - A A P}
| Workerél Worker$| Worker$| Worker$| Worker$| Workerél Workeré

Gossip network

Valeria Cardellini - SDCC 2022/23

Docker Swarm: Swarm cluster

44

« Create a swarm: manager node

$ docker swarm init --advertise-addr <MANAGER-IP>
Swarm initialized: current node (<nodeid>) is now a manager.
To add a worker to this swarm, run the following command:

docker swarm join --token <token> <manager-ip>:port

* Create a swarm: add worker node(s)
$ docker swarm join --token <token> <manager-ip>:port

* Inspect swarm status

$ docker info

$ docker node 1ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
<nodeid> * manageril Ready Active Leader
<nodeid> workerl Ready Active

Valeria Cardellini - SDCC 2022/23

45

Docker Swarm: Swarm cluster

 |Leave the swarm

— If the node is a manager node, warning about maintaining
the quorum (to override warning, --force flag)

$ docker swarm leave

» After a node leaves the swarm, you can run
docker node rm

on a manager node to remove the node from the
node list

$ docker node rm <node-id>

Valeria Cardellini - SDCC 2022/23

Docker Swarm: manage services

46

» Deploy a service to the swarm (from manager node)

$ docker service create -d --replicas 1 \
--name helloworld alpine ping docker.com

— Deploy service helloworld, with 1 running instance;

arguments alpine ping docker.com define service as an
Alpine Linux container that executes ping docker.c

 List running services

$ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
<serviceid> helloworld replicated 1/1 alpine:latest

Valeria Cardellini - SDCC 2022/23

47

Docker Swarm: manage services

* Inspect service

$ docker service inspect --pretty <SERVICE-ID>
$ docker service ps <SERVICE-ID>

ID NAME IMAGE NODE DESIRED ST CURRENT ST ERROR PORTS
<cont.id1> helloworld.1l alpine:latest managerl Running Running ..
<cont.id2> helloworld.2 alpine:latest workerl Running Running ..

* Inspect container

$ docker ps <cont.id1l>

Manager node

CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id1> alpine:latest "ping docker.com™ 2 min ago Up 2 min helloworld.l.iuklsj..

Worker node
CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id2> alpine:latest "ping docker.com"™ 2 min ago Up 2 min helloworld.2.skfos4..

Valeria Cardellini - SDCC 2022/23 48

Docker Swarm: manage services

e Scale number of containers in the service
$ docker service scale <SERVICE-ID>=<NUMBER-OF-TASKS>
— Swarm manager will enact the updates

» Apply rolling updates (i.e., update without downtime)
to a service

$ docker service update --limit-cpu 2 redis
$ docker service update --replicas 2 helloworld

» Roll back an update to the previous version of a
service

$ docker service rollback [OPTIONS] <SERVICE-ID>

* Remove a service
$ docker service rm <SERVICE-ID>

Valeria Cardellini - SDCC 2022/23 49

