
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Container-based virtualization: Docker

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Case study: Docker
• Lightweight, open and secure container-based

virtualization
– Containers include the application and all of its

dependencies, but share the OS kernel with other containers
– Containers run as an isolated process in userspace on the

host OS
– Containers are also not tied to any specific infrastructure

Valeria Cardellini - SDCC 2022/23
1

Docker internals
• Written in Go language
• With respect to other OS-level virtualization solutions,

Docker is a higher-level platform that exploits Linux
kernel mechanisms such as cgroups and namespaces
– First versions were based on Linux Containers (LXC)
– Then based on its own libcontainer runtime that uses Linux

kernel namespaces and cgroups directly

• Features
– Portable deployment across machines
– Versioning, i.e., git-like capabilities
– Component reuse
– Shared libraries, see Docker Hub

Valeria Cardellini - SDCC 2022/23
2

Docker internals

Valeria Cardellini - SDCC 2022/23
3

• libcontainer (now
included in
opencontainers/runc):
cross-system
abstraction layer aimed
to support a wide range
of isolation technologies

Component diagram of Docker

Valeria Cardellini - SDCC 2022/23
4

Docker engine

• Docker Engine: client-
server application
composed by:
– Server, called Docker

daemon
– REST API which specifies

interfaces that programs
can use to control and
interact with the daemon

– Command line interface
(CLI) client

Valeria Cardellini - SDCC 2022/23
5

See https://docs.docker.com/engine/docker-overview/

Docker architecture
• Docker uses a client-server architecture

– The Docker client talks to the Docker daemon, which builds,
runs, and distributes Docker containers

– Client and daemon communicate via sockets or REST API

Valeria Cardellini - SDCC 2022/23
6

Docker image
• Read-only template used to create a Docker container
• Build component of Docker

– Enables apps distribution with their runtime environment
• Incorporates all the dependencies and configuration necessary to

apps to run, eliminating the need to install packages and
troubleshoot

– Target machine must be Docker-enabled

• Docker can build images automatically by reading
instructions from a Dockerfile
– A text file with simple, well-defined syntax

• Images can be pulled and pushed towards a
public/private registry

• Image name: [registry/][user/]name[:tag]
– Default for tag is latest

Valeria Cardellini - SDCC 2022/23
7

Docker image: Dockerfile
• Image created from Dockerfile and context

– Dockerfile: instructions to assemble the image
– Context: set of files (e.g., application, libraries)
– Often, an image is based on a parent image (e.g., alpine)

• Dockerfile syntax
Comment

INSTRUCTION arguments

• Instructions in Dockerfile run in order
• Some instructions

FROM: to specify parent image (mandatory)
RUN: to execute any command in a new layer on top of current
image and commit results
ENV: to set environment variables
EXPOSE: container listens on specified network ports at runtime
CMD: to provide defaults for executing container

8Valeria Cardellini - SDCC 2022/23

Docker image: Dockerfile
• Example: Dockerfile to build the image of a container

that will run a simple todo list manager written in
Node.js

9
Valeria Cardellini - SDCC 2022/23

See https://docs.docker.com/get-started/02_our_app/

Docker image: build

• Build image from Dockerfile

⎼ E.g., to build the image for Node.js app (see previous
slide)

$ docker build -t getting-started .

Valeria Cardellini - SDCC 2022/23
10

$ docker build [OPTIONS] PATH | URL | -

Docker image: layers
• Each image consists of a series of layers
• Docker uses union file systems to combine these

layers into a single unified view
– Layers are stacked on top of each other to form a base for

a container’s root file system
– Based on copy-on-write (CoW) strategy

Valeria Cardellini - SDCC 2022/23
11

Docker image: layers
• Layering pros

- Enable layer sharing and reuse, installing common layers
only once and saving bandwidth and storage space

- Manage dependencies and separate concerns
- Facilitate software specializations
See https://docs.docker.com/storage/storagedriver/

12
Valeria Cardellini - SDCC 2022/23

Docker image: layers and Dockerfile
• Each layer represents an instruction in Dockerfile

– Except CMD instruction, which specifies what command to run
within the container: it only modifies image’s metadata, without
producing an image layer

• Each layer except the very last one is read-only
• Writable layer on top (aka container layer) is added

when container is created
– Changes made to running container (e.g., writing a file) are

written to writable layer
– Does not persist after container is deleted
– Suitable for storing ephemeral data generated at runtime

• To inspect an image, including image layers
$ docker inspect imageid

Valeria Cardellini - SDCC 2022/23
13

Docker image: storage
• Containers are usually stateless (easier to scale,

restart from failure, migrate)
– Very little data written to container’s writable layer
– Data usually written on Docker volumes
– Nevertheless: some workloads require to write data to

container’s writable layer

• Storage driver controls how images and containers
are stored and managed on Docker host

• Multiple choices for storage driver
- Including AuFS and Overlay2 (at file level), Device Mapper,

btrfs and zfs (at block level)
- Storage driver’s choice can affect performance of

containerized apps: optimized for space efficiency, but write
speeds can be lower than native file system performance

- See https://dockr.ly/2FstUe6
Valeria Cardellini - SDCC 2022/23 14

Docker container and registry
• Docker container: runnable instance of Docker image

– Run component of Docker
– Run, start, stop, move, or delete a container using Docker API

or CLI commands

• Docker registry: stateless server-side application that
stores and lets you distribute Docker images
- Distribute component of Docker
- Open library of images
- Docker-hosted registries: Docker Hub, Docker Store (open

source and enterprise verified images)

Valeria Cardellini - SDCC 2022/23 15

- Docker containers are stateless:
when a container is deleted, any
data written not stored in a data
volume is deleted

Docker: run command

• When you run a container whose image is not yet
installed but is available on Docker Hub

Valeria Cardellini - SDCC 2022/23
16

Courtesy of “Docker in Action” by J. Nickoloff

State transitions of Docker containers

Valeria Cardellini - SDCC 2022/23
17

Courtesy of “Docker in Action” by J. Nickoloff

Commands: Docker info

• Obtain system-wide info on Docker installation
$ docker info

including:
– How many images, containers and their status
– Storage driver
– Operating system, architecture, total memory
– Docker registry

18
Valeria Cardellini - SDCC 2022/23

Commands: image handling
• List images on host (i.e., local repository)

$ docker images alternatively, $ docker image ls

• List every image, including intermediate image
layers:
$ docker image ls –a

• Options to list images by name and tag, to list image
digests (sha256), to filter images, to format the
output
- E.g., to list untagged images (<none>) that have no

relationship to any tagged images (no longer used but
consume disk space)

$ docker images --filter "dangling=true"

• Remove an image
$ docker rmi imageid

19
Valeria Cardellini - SDCC 2022/23

Can also use imagename
instead of imageid

Command: run

• Most common options
--name assign a name to the container
-d detached mode (in background)
-i interactive (keep STDIN open even if not attached)
-t allocate a pseudo-tty
--expose expose a range of ports inside the container
-p publish a container's port or a range of ports to the host
-v bind and mount a volume
-e set environment variables
--link add link to other containers

20

$ docker run [OPTIONS] IMAGE [COMMAND] [ARGS]

Valeria Cardellini - SDCC 2022/23

Commands: containers management
• List containers

– Only running containers: $ docker ps

• Alternatively, $ docker container ls
– All containers (including stopped or killed containers):

$ docker ps -a

• Manage container lifecycle
– Stop running container

$ docker stop containerid

– Start stopped container
$ docker start containerid

– Kill running container
$ docker kill containerid

– Remove container (need to stop it before attempting removal)
$ docker rm containerid

21

Can also use containername
instead of containeridValeria Cardellini - SDCC 2022/23

Commands: containers management

22
Valeria Cardellini - SDCC 2022/23

• Stop and remove a running container
$ docker ps

$ docker stop containerid

$ docker ps -a

$ docker rm containerid

• Stop all containers
$ for i in $(docker ps -q); do docker stop $i; done

Commands: containers management
• Inspect a container

– Most detailed view of the environment in which a container
was launched

$ docker inspect containerid

• Copy files from and to container
$ docker cp containerid:path localpath

$ docker cp localpath containerid:path

23
Valeria Cardellini - SDCC 2022/23

Docker volumes

• Preferred mechanism for persisting data generated
by and used by Docker containers
– New directory is created within Docker’s storage directory on

host machine, and Docker manages that directory’s contents
– Directory does not need to exist on host, it is created on

demand if it does not yet exist

• To mount a volume, use -v or --mount flag
• More commands:

– Create volume: $ docker volume create my-vol
– List volumes: $ docker volume ls
– Inspect volume: $ docker volume inspect my-vol
– Remove volume: $ docker volume rm my-vol

Valeria Cardellini - SDCC 2022/23
24

Docker volumes

• Example: start nginx container with volume
$ docker run -d \

--name devtest \

-v myvol2:/app \

nginx:latest

Valeria Cardellini - SDCC 2022/23
25

Docker volumes

• Pros
– Completely managed by Docker
– Easy to back up or migrate
– Managed using Docker CLI commands or Docker API
– Work on both Linux and Windows containers
– Can be shared among multiple containers
– Content can be encrypted
– Content can be pre-populated
– Better choice than persisting data in a container’s writable

layer: a volume does not increase the size of the containers
using it, and its contents exist outside the container lifecycle

Valeria Cardellini - SDCC 2022/23
26

Hands-on Docker

• Download and install Docker
– Available on multiple platforms
https://docs.docker.com/get-docker/
https://docs.docker.com/get-started/

• Test Docker version
$ docker --version

• Test Docker installation by running hello-world
Docker image
$ docker run hello-world

Valeria Cardellini - SDCC 2022/23
27

Hands-on Docker

• Run “Hello World” container with a command
$ docker run alpine /bin/echo 'Hello world'

- alpine: lightweight Linux distro with reduced image size

• Use commands to:
⎼ List containers and container images

⎼ Remove containers and container images

Valeria Cardellini - SDCC 2022/23
28

Hands-on Docker
• Run nginx Web server inside a container

- Bind container to specific port
$ docker run -dp 80:80 --name web nginx

Option -p: publish container port (80) to host port (80)
Option -d: detached mode

1. Send HTTP request through Web browser
- First retrieve hostname of host machine (e.g., localhost)

2. Send HTTP request through interactive container
using a bridge network

$ docker network create my_net
$ docker run -dp 80:80 --name web --net=my_net nginx
$ docker run -i -t --net=my_net --name web_test busybox
/ # wget -O - http://web:80/
/ # exit

29
Valeria Cardellini - SDCC 2022/23

Hands-on Docker
• Running Apache web server with minimal index page

1. Define container image with Dockerfile
• Define image starting from Ubuntu, install and configure Apache
• Incoming port set to 80 using EXPOSE instruction

Va
le

ria
 C

ar
de

llin
i -

SD
C

C
 2

02
2/

23

30

FROM ubuntu:18.04

Install dependencies

RUN apt-get update -y

RUN apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh

RUN echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh

RUN echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh

RUN echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh

RUN chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Hands-on Docker

2. Build container image from Dockerfile
$ docker build -t hello-apache .

3. Run container and bind
$ docker run -dp 80:80 hello-apache

• To reduce Docker image size let’s improve the
Dockerfile: avoid adding unnecessary layers

• E.g., update and install multiple packages in a single
RUN instruction
– Use \ to type out the command in multiple lines

Valeria Cardellini - SDCC 2022/23
31

Hands-on Docker

32

FROM ubuntu:18.04

Install dependencies

RUN apt-get update –y && \

apt-get -y install apache2

Install apache and write hello world message

RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo '. /etc/apache2/envvars' > /root/run_apache.sh && \

echo 'mkdir -p /var/run/apache2' >> /root/run_apache.sh && \

echo 'mkdir -p /var/lock/apache2' >> /root/run_apache.sh && \

echo '/usr/sbin/apache2 -D FOREGROUND' >> /root/run_apache.sh && \

chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

Valeria Cardellini - SDCC 2022/23

Configuring container memory and CPU
• By default, a container has no resource constraints

– Can use as much resource as host’s kernel scheduler allows

• Docker provides ways to control how much memory
or CPU a container can use by setting runtime
configuration flags of docker run command
https://docs.docker.com/config/containers/resource_constraints/
– Docker engine implements configuration changes by

modifying settings of container’s cgroup

Valeria Cardellini - SDCC 2022/23
33

Configuring container memory

• Avoid running out of memory (OOM)
– Individual containers can be killed (Docker daemon has

lower OOM priority, containers default one)

• Docker can enforce hard or soft memory limits
– Hard limits: container cannot use more than a given amount

of user or system memory; --memory flag
– Soft limits: container can use as much memory as it needs

unless certain conditions are met, such as when kernel
detects contention or low memory on host machine

– Example: limit container to use at most 500 MB of memory
(hard limit) and specify also a soft limit
$ docker run –it --memory-reservation="300m" \

--memory="500m" ubuntu /bin/bash

Valeria Cardellini - SDCC 2022/23
34

Configuring container CPU
• Various constraints to limit container usage of host

machine’s CPU cycles
• Some options

--cpus=<value>: limit how many CPU resources a container
can use (hard limit)
--cpu-quota=<value>: set CPU Completely Fair Scheduler
(CFS) quota on container
--cpuset-cpus: limit specific CPUs or cores a container can
use
--cpu-shares: set to value >/< 1024 to increase/reduce
container’s weight, and give it access to greater/less proportion
of CPU cycles (soft limit)
– Example: limit container to use at most 50% of CPU every

second
$ docker run -it --cpus=".5" ubuntu /bin/bash
Alternatively, $ docker run -it --cpu-period=100000 \

--cpu-quota=50000 ubuntu /bin/bash
35Valeria Cardellini - SDCC 2022/23

Multi-container Docker applications

• How to run multi-container Docker apps?
• Docker Compose

– Deployment only on single host

• Docker Swarm
– Native orchestration tool for Docker
– Deployment on multiple hosts

• Kubernetes
– Deployment on multiple hosts
– See next lesson

Valeria Cardellini - SDCC 2022/23
36

Docker Compose
• To coordinate execution of multiple containers

running on a single host https://docs.docker.com/compose/

– Bundled within Docker Desktop
https://docs.docker.com/compose/install/

• Allows to easily express the containers to be
instantiated at once, and their relationships

• Runs the composition on a single Docker engine
– To deploy containers on multiple nodes use either Docker

Swarm or Kubernetes

37
Valeria Cardellini - SDCC 2022/23

Docker Compose
• Specify how to compose containers in an easy-to-read

YAML file named docker-compose.yml

• To start Docker composition (background -d):
$ docker compose up -d

• By default, Docker Compose looks for docker-
compose.yml in current working directory
– Can specify different file using -f flag
$ docker compose –f composefile up –d

• To stop Docker composition:
$ docker compose down

Valeria Cardellini - SDCC 2022/23 38

Docker Compose file
• Different versions of Docker Compose file format
https://docs.docker.com/compose/compose-file/

Latest: Docker Compose 1.27 implements format defined by
Compose Specification

39
Valeria Cardellini - SDCC 2022/23

Docker Compose: example
• Simple Python web app running on Docker Compose

– 2 containers: Python web app and Redis
– Use Flask framework and maintain hit counter in Redis
– Redis: open-source, networked, in-memory, key-value data

store
– See https://docs.docker.com/compose/gettingstarted/

• Steps:
1. Write Python app
2. Define Python container image with Dockerfile

40Valeria Cardellini - SDCC 2022/23

version: "3.9"
services:
web:

build: .
ports: - 8000:5000"

redis:
image: "redis:alpine"

3. Define services in Compose
file
• Two services: web (image

defined by Dockerfile) and
redis (image pulled from
Docker Hub)

Docker Compose: example
• Steps (cont’d):

4. Build and run app with Compose
$ docker compose up –d

5. Send HTTP requests using curl or browser (counter is
increased)

6. Stop Compose, bringing everything down
$ docker compose down

• Examples of Compose files
https://github.com/docker/awesome-compose

41Valeria Cardellini - SDCC 2022/23

Docker Compose: some features
• Add volume for web app to keep its code, so that code

can be modified on the fly without rebuilding the image

• Specify restart policy for containers in Compose file
– Options: on-failure[:max-retries], always, unless-stopped

• Start multiple replicas of same container using either
option --scale or scale subsection in Compose file
– e.g., docker compose --scale web=2 up -d

– Use also port ranges in Compose file
– Alternatively, use deploy subsection in Compose file

https://docs.docker.com/compose/compose-file/deploy/

• Examples of Compose files
https://github.com/docker/awesome-compose

42Valeria Cardellini - SDCC 2022/23

Docker Swarm
• Docker includes swarm mode for natively managing a

cluster of Docker Engines, called swarm
https://docs.docker.com/engine/swarm/

• Tasks: containers running in a service
• Main features of swarm mode:

– Scaling: number of tasks for each service
• But auto-scaling is not supported

– State reconciliation: Swarm monitors cluster state and
reconciles any differences w.r.t. desired state (e.g., replace
containers after host failure)

– Multi-host networking: to specify an overlay network among
services

– Load balancing: allows to expose the ports for services to an
external load balancer; internally, the swarm lets you specify
how to distribute containers among nodes

43
Valeria Cardellini - SDCC 2022/23

Docker Swarm: architecture
• A swarm consists of multiple Docker engines which

run in swarm mode
• Node: instance of Docker engine

– Manager node(s): handles cluster management, including
scheduling tasks to worker nodes

• Multiple managers to improve fault tolerance
• Raft as consensus algorithm to manage global cluster state

– Worker nodes execute tasks

44Valeria Cardellini - SDCC 2022/23

Docker Swarm: Swarm cluster
• Create a swarm: manager node

• Create a swarm: add worker node(s)

• Inspect swarm status

45Valeria Cardellini - SDCC 2022/23

$ docker swarm init --advertise-addr <MANAGER-IP>
Swarm initialized: current node (<nodeid>) is now a manager.
To add a worker to this swarm, run the following command:

docker swarm join --token <token> <manager-ip>:port

$ docker swarm join --token <token> <manager-ip>:port

$ docker info

$ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
<nodeid> * manager1 Ready Active Leader
<nodeid> worker1 Ready Active

Docker Swarm: Swarm cluster
• Leave the swarm

– If the node is a manager node, warning about maintaining
the quorum (to override warning, --force flag)

• After a node leaves the swarm, you can run
docker node rm
on a manager node to remove the node from the
node list

46Valeria Cardellini - SDCC 2022/23

$ docker swarm leave

$ docker node rm <node-id>

Docker Swarm: manage services
• Deploy a service to the swarm (from manager node)

– Deploy service helloworld, with 1 running instance;
arguments alpine ping docker.com define service as an
Alpine Linux container that executes ping docker.c

• List running services

47Valeria Cardellini - SDCC 2022/23

$ docker service create -d --replicas 1 \

--name helloworld alpine ping docker.com

$ docker service ls

ID NAME MODE REPLICAS IMAGE PORTS
<serviceid> helloworld replicated 1/1 alpine:latest

Docker Swarm: manage services
• Inspect service

• Inspect container

48Valeria Cardellini - SDCC 2022/23

$ docker ps <cont.id1>

Manager node

CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id1> alpine:latest "ping docker.com" 2 min ago Up 2 min helloworld.1.iuk1sj…

Worker node
CONTAINER ID IMAGE COMMAND CREATED STATUS ... NAMES
<cont.id2> alpine:latest "ping docker.com" 2 min ago Up 2 min helloworld.2.skfos4…

$ docker service inspect --pretty <SERVICE-ID>

$ docker service ps <SERVICE-ID>

ID NAME IMAGE NODE DESIRED ST CURRENT ST ERROR PORTS
<cont.id1> helloworld.1 alpine:latest manager1 Running Running …
<cont.id2> helloworld.2 alpine:latest worker1 Running Running …

Docker Swarm: manage services
• Scale number of containers in the service

– Swarm manager will enact the updates

• Apply rolling updates (i.e., update without downtime)
to a service

• Roll back an update to the previous version of a
service

• Remove a service

49Valeria Cardellini - SDCC 2022/23

$ docker service update --limit-cpu 2 redis

$ docker service update --replicas 2 helloworld

$ docker service rm <SERVICE-ID>

$ docker service rollback [OPTIONS] <SERVICE-ID>

$ docker service scale <SERVICE-ID>=<NUMBER-OF-TASKS>

