
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Introduction to Go and RPC in Go

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

What is Go?

• ‘‘Go is an open source programming language that
makes it easy to build fast, reliable, and efficient
software.’’ (from go.dev)

• Conceived in September 2007 at Google by R.
Griesemer, R. Pike and K. Thompson, and
announced in November 2009

• Goals of language and its tools:
– To be expressive, efficient in both compilation and

execution, and effective in writing reliable and robust
programs

– Fast, statically typed, compiled language that feels like a
dynamically typed, interpreted language

• Go’s ancestors: mainly C and CSP (communicating
sequential processes) formal language by T. Hoare

Valeria Cardellini - SDCC 2022/23 1

Go and C

• Go: “C-like language” or “C for the 21st
century”

• From C, Go inherited
– Expression syntax
– Control-flow statements
– Basic data types
– Call-by-value parameter passing
– Pointers
– Run-time efficiency
– Static typing

Valeria Cardellini - SDCC 2022/23 2

Go and other languages

• New and efficient facilities for concurrency
• Flexible approach to data abstraction and

object-oriented programming
• Automatic memory management (garbage

collection)
• Readability and usability

Valeria Cardellini - SDCC 2022/23 3

Go and distributed systems

• Go allows programmers to focus on
distributed systems problems
– good support for concurrency
– good support for RPC
– garbage-collected (no use after freeing problems)
– type safe

• Simple language to learn

Valeria Cardellini - SDCC 2022/23 4

Go and cloud

• A language for cloud native applications
• E.g., Go Cloud: library and tools for open cloud

development in Go
– Goal: allow application developers to seamlessly deploy

cloud applications on any combination of cloud providers
– E.g., read from blob storage

Valeria Cardellini - SDCC 2022/23 5

References

• go.dev
• Online Go tutorial go.dev/tour
• Go Playground https://go.dev/play
• Go by Examples gobyexample.com

• A. Donovan, B. Kernighan, “The Go Programming
Language”, Addison-Wesley, 2016.

• Learn Go Programming: 7 hours video on Youtube

• More resources: go.dev/learn/

Valeria Cardellini - SDCC 2022/23 6

Editor plugins and IDEs

• vim-go plugin for vim

• GoLand by JetBrains

• Go extension for VS Code

• Can be integrated with gopls
– Official Go language server

Valeria Cardellini - SDCC 2022/23 7

Hello world example

package main

import "fmt"

func main() {

fmt.Println("Hello, 世界")

}

Valeria Cardellini - SDCC 2022/23 8

Some notes on the first example
• No semicolon at the end of statements or

declarations
• Go natively handles Unicode
• Every Go program is made up of packages (similar to

C libraries or Python packages)
– Package: one or more .go source files in a single directory

• Source file begins with package declaration (which
package the file belongs to), followed by list of other
imported packages
– Programs start running in main
– fmt package contains functions for printing formatted output

and scanning input

Valeria Cardellini - SDCC 2022/23 9

Go tool

• Go is a compiled language
• Go tool: how to fetch, build, and install Go packages

and commands
– A zero configuration tool

• To run the program: go run
$ go run helloworld.go

hello, 世界

• To build the program into binary: go build
$ go build helloworld.go

$ ls helloworld*

helloworld helloworld.go

$./helloworld

hello, 世界

Valeria Cardellini - SDCC 2022/23 10

Packages

• Go program is made up of packages
• Programs start running in package main
• Packages contain type, function, variable, and

constant declarations
• Packages can even be very small or very large
• Case determines visibility: a name is exported if it

begins with a capital letter
– Foo is exported, foo is not
– E.g., fmt.Println(math.pi)

./prog.go:9:19: undefined: math.pi

Valeria Cardellini - SDCC 2022/23 11

Imports

• Import statement: groups imports into a parenthesized,
“factored” statement

package main
import (

"fmt"
"math")

func main() {
fmt.Printf("Now you have %g problems.\n", math.Sqrt(7))

}

Valeria Cardellini - SDCC 2022/23 12

Functions
• Function can take zero or more arguments

func add(x int, y int) int {

return x + y

}

– add takes as input two arguments of type int

• Type comes after variable name
• Shorter version for input arguments:

func add(x, y int) int {

• Function can return any number of results
func swap(x, y string) (string, string) {

return y, x

}

– Also useful to return both result and error values

Valeria Cardellini - SDCC 2022/23 13

Functions

package main

import "fmt"

func swap(x, y string) (string, string) {

return y, x

}

func main() {

a, b := swap("hello", "world")

fmt.Println(a, b)

}

Valeria Cardellini - SDCC 2022/23 14

Functions

• Return values may be named
package main

import "fmt"

func split(sum int) (x, y int) {
x = sum * 4 / 9
y = sum - x
return // same as return x, y

}

func main() {
fmt.Println(split(17))

}

Valeria Cardellini - SDCC 2022/23 15

Variables
• var statement: declares a list of variables

– Type is last

• Can be at package or function level
package main
import "fmt"

var c, python, java bool

func main() {
var i int
fmt.Println(i, c, python, java)

}

• Can include initializers, one per variable
– If initializer is present, type can be omitted

• Variables declared without an explicit initial value are
given their zero value

• Short variable declaration using := (use only inside
functions)

16Valeria Cardellini - SDCC 2022/23

Types

• Usual basic types
– bool, string, int, uint, float32, float64, …

• Type conversion
var i int = 42

var f float64 = float64(i)

– Unlike in C, in Go assignment between items of different
type requires an explicit conversion

• Type inference
– Variable's type inferred from value on right hand side
var i int

j := i // j is an int

Valeria Cardellini - SDCC 2022/23 17

Flow control statements

• for, if (and else), switch
• defer

Valeria Cardellini - SDCC 2022/23 18

Looping construct
• Go has only one looping construct: for loop
• 3 components

– Init statement
– Condition expression
– Post statement

sum := 0

for i := 0; i < 10; i++ {

sum += i

}

• No parentheses surrounding the 3 components of for
statement

• Braces { } are always required

Valeria Cardellini - SDCC 2022/23 19

Looping construct

• Init and post statements are optional: for is Go's
“while”
sum := 1

for sum < 1000 {

sum += sum

}

• If we omit condition, infinite loop
for {

}

Valeria Cardellini - SDCC 2022/23 20

Example: echo

// Echo prints its command-line arguments.
package main
import (

"fmt"
"os"

)
func main() {

var s, sep string
for i := 1; i < len(os.Args); i++ {

s += sep + os.Args[i]
sep = " "

}
fmt.Println(s)

}

Valeria Cardellini - SDCC 2022/23 21

os.Args is a slice of
strings (see next slides)

s and sep initialized to
empty strings

Conditional statements: if
• Go's if (and else) statement is like for loop:

– Expression is not surrounded by parentheses ()
– Braces { } are always required

if v := math.Pow(x, n); v < limit {

return v

} else {

fmt.Printf("%g >= %g\n", v, limit)

}

– Remember that } else must be on the same line
– Variable v is in scope only within the if statement

• if...else if...else statement to combine
multiple if...else statements

Valeria Cardellini - SDCC 2022/23 22

Conditional statements: switch

• switch statement selects one of many cases to be
executed
– Cases evaluated from top to bottom, stopping when a case

succeeds
• Differences from C

– Go only runs the selected case, not all the cases that follow
(i.e., C’s break is provided automatically in Go)

– Switch cases need not be constants, and values involved
need not be integers

Valeria Cardellini - SDCC 2022/23 23

Defer statement
• New mechanism to defer the execution of a function

until the surrounding function returns
– Deferred call's arguments are evaluated immediately, but

function call is not executed until surrounding function that
contains defer has terminated

package main
import "fmt"

func main() {
defer fmt.Println("world")
fmt.Println("hello")

}

• Deferred function calls pushed onto a stack
– Deferred calls executed in LIFO order

• Great for cleanup things, like closing files or
connections!

24

hello

world

Valeria Cardellini - SDCC 2022/23

Pointers
• Pointer: value that contains the address of a variable

– Usual operators * and &: & operator yields the address of a
variable, and * operator retrieves the variable that the pointer
refers to

var p *int

i := 1

p = &i // p, of type *int, points to i

fmt.Println(*p) // "1"

*p = 2 // equivalent to i = 2

fmt.Println(i) // "2"

• Unlike C, Go has no pointer arithmetic
• Zero value for a pointer is nil
• Perfectly safe for a function to return the address of a

local variable, because local variable will survive
function scope

Valeria Cardellini - SDCC 2022/23 25

Composite data types: structs and array
• Aggregate data types: structs and arrays
• Struct: typed collection of fields

– Syntax similar to C, fixed size
type Vertex struct {

X int

Y int

}

– Struct fields are accessed using a dot, e.g., fmt.Println(v.X)
– Can also be accessed through a struct pointer

• Array: [n]T is an array of n values of type T
– Fixed size (cannot be resized)
var a [2]string

a[0] = "Hello"

Valeria Cardellini - SDCC 2022/23 26

Composite data types: slices

• []T is a slice with elements of type T: dynamically-
sized, flexible view into the elements of an array
– Can create a slice by slicing an existing array or slice
– Specify two indices, a low and high bound, separated by a

colon: s[i : j]

– Slice includes the first element, but excludes the last
primes := [6]int{2, 3, 5, 7, 11, 13}

var s []int = primes[1:4]

• Slice: section of underlying array
– Change slice element: modify corresponding element of

underlying array
Valeria Cardellini - SDCC 2022/23 27

[3 5 7]

• Slice: key data type in Go, more
powerful than array

Slices: operations

• Length of slice s: number of elements it contains, use
len(s)

• Capacity of slice s: number of elements in the
underlying array, counting from the first element in the
slice, use cap(s)

• Compile or run-time error if array length is exceeded:
Go performs bounds check (memory-safe language)

• Slices can also be created using make
– Length and capacity can be specified

Valeria Cardellini - SDCC 2022/23 28

Slices: operations

• Let’s create an empty slice

package main
import "fmt"
func main() {
a := make([]int, 0, 5) // len(s)=0, cap(s)=5
printSlice("a", a)

}

func printSlice(s string, x []int) {
fmt.Printf("%s len=%d cap=%d %v\n", s, len(x), cap(x), x)

}

Valeria Cardellini - SDCC 2022/23 29

a len=0 cap=5 []

Slices: operations
• New items can be appended to a slice using append

func append(slice []T, elems ...T) []T

– When append a slice, slice may be enlarged if necessary
func main() {

var s []int
printSlice(s)

s = append(s, 0) // works on nil slices
printSlice(s)

s = append(s, 1) // slice grows as needed
printSlice(s)

s = append(s, 2, 3, 4) // more than one element
printSlice(s)

}
Valeria Cardellini - SDCC 2022/23 30

Composite data types: maps
• map: maps keys to values

– Map type map[K]V is a reference to a hash table where K
and V are types of its keys and values

– Use make to create a map
m = make(map[string]Vertex)

m["Bell Labs"] = Vertex{

40.68433, -74.39967,

}

• Insert or update element in map, retrieve element,
delete element, test if key is present

Valeria Cardellini - SDCC 2022/23 31

m[key] = element // insert or update

elem = m[key] // retrieve
delete(m, key) // delete

elem, ok = m[key] // test

Range

• range iterates over elements in a variety of data
structures
– range on arrays and slices provides both index and value

for each entry
– range on map iterates over key/value pairs

package main
import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
for i, v := range pow {

fmt.Printf("2**%d = %d\n", i, v)
}

}

Valeria Cardellini - SDCC 2022/23 32

Range: example
func main() {

nums := []int{2, 3, 4}

sum := 0

for _, num := range nums {

sum += num

}

fmt.Println("sum:", sum)

for i, num := range nums {

if num == 3 {

fmt.Println("index:", i)

}

}

kvs := map[string]string{"a": "apple", "b": "banana"}

for k, v := range kvs {

fmt.Printf("%s -> %s\n", k, v)

}

for k := range kvs {

fmt.Println("key:", k)

}

}Valeria Cardellini - SDCC 2022/23 33

$ go run range2.go

sum: 9

index: 1

a -> apple

b -> banana

key: a

key: b

Skip index or value by
assigning to _

Anonymous functions and closures
• Go functions may be anonymous

– Useful when you want to define a function inline without
having to name it

• Go functions may be closures
– A Go closure is an anonymous nested function which retains

bindings to variables defined outside the body of the closure
– Closures can hold a unique state of their own; the state then

becomes isolated as we create new instances of the function
– A first example: gobyexample.com/closures

• See 5 Useful Ways to Use Closures in Go
– In particular, middleware pattern to independently acts on a

request before or after the normal request handler (e.g., to
wrap the handler of a HTTP request and measure its
processing time)

Valeria Cardellini - SDCC 2022/23 34

Closure: example
package main

import "fmt"

// fibonacci is a function that returns

// a function that returns an int.

func fibonacci() func() int {

x, y := 1, 0

return func() int {

x, y = y, x+y

return x

}

}

func main() {

f := fibonacci()

for i := 0; i < 10; i++ {

fmt.Println(f())

}

} Valeria Cardellini - SDCC 2022/23 35

Methods

• Go does not have classes, but supports methods
defined on struct types

• A method is a function with a special receiver
argument (extra parameter before function name)
– The receiver appears in its own argument list between the
func keyword and the method name

type Vertex struct {
X, Y float64

}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

Valeria Cardellini - SDCC 2022/23 36

Interfaces
• An interface type is defined as a named

collection of method signatures
• Any type (struct) that implements the required

methods, implements that interface
– Instead of designing the abstraction in terms of

what kind of data our type can hold, we design the
abstraction in terms of what actions our type can
execute

• A type is not explicitly declared to be of a
certain interface, it is implicit
– Just implement the required methods

• Let’s code a basic interface for geometric
shapes

Valeria Cardellini - SDCC 2022/23 37

Interface: example
package main

import "fmt"
import "math"

// Here's a basic interface for geometric shapes.
type geometry interface {

area() float64
perim() float64

}

// For our example we'll implement this interface on
// rect and circle types.
type rect struct {

width, height float64
}
type circle struct {

radius float64
}

Valeria Cardellini - SDCC 2022/23 38

Interface: example
// To implement an interface in Go, we just need to
// implement all the methods in the interface.
// Here we implement `geometry` on `rect`s.
func (r rect) area() float64 {

return r.width * r.height
}
func (r rect) perim() float64 {

return 2*r.width + 2*r.height
}

// The implementation for `circle`s.
func (c circle) area() float64 {

return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {

return 2 * math.Pi * c.radius
}

Valeria Cardellini - SDCC 2022/23 39

Interface: example
// If a variable has an interface type, then we can call
// methods that are in the named interface. Here's a
// generic `measure` function taking advantage of this
// to work on any `geometry`.
func measure(g geometry) {

fmt.Println(g)
fmt.Println(g.area())
fmt.Println(g.perim())

}
func main() {

r := rect{width: 3, height: 4}
c := circle{radius: 5}

// The `circle` and `rect` struct types both
// implement the `geometry` interface so we can use
// instances of these structs as arguments to `measure`.
measure(r)
measure(c)

}
Valeria Cardellini - SDCC 2022/23 40

$ go run interfaces.go

{3 4}

12

14

{5}

78.53981633974483

31.41592653589793

Concurrency in Go

• Go provides concurrency features as part of the core
language

• Goroutines and channels
– Support CSP concurrency model

• Can be used to implement different concurrency
patterns

Valeria Cardellini - SDCC 2022/23 41

Goroutines

• A goroutine is a lightweight thread managed by Go
runtime
go f(x, y, z) // start a new goroutine running

// f(x, y, z)

• Goroutines run in the same address space, so access
to shared memory must be synchronized

Valeria Cardellini - SDCC 2022/23 42

Channels
• Communication mechanism that lets one goroutine

sends values to another goroutine
⎼ Channel: thread-safe queue managed by Go and its runtime
⎼ Blocks threads that read on it, etc.

• Hides a lot of pain of inter-thread communication
– Internally, it uses mutexes and semaphores just as one

might expect

• Multiple senders can write to the same channel
– Useful for notifications, multiplexing, etc.

• And it’s totally thread-safe!
• But be careful: only one can close the channel, and

can’t send after close!

Valeria Cardellini - SDCC 2022/23 43

Channels

• A typed conduit through which you can send and
receive values using the channel operator <-
ch <- v // Send v to channel ch

v := <- ch // Receive from ch, and

// assign value to v

• Channels must be created before use
ch := make(chan int)

• Sends and receives block until the other side is ready
– Goroutines can synchronize without explicit locks or

condition variables

Valeria Cardellini - SDCC 2022/23 44

Data flows in the
direction of the arrow

Channels: example
import "fmt"
func sum(s []int, c chan int) {

sum := 0
for _, v := range s {

sum += v
}
c <- sum // send sum to c

}

func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // receive from c
fmt.Println(x, y, x+y)

}
Valeria Cardellini - SDCC 2022/23 45

• Distributed sum: sum is
distributed between two
Goroutines

• An example of applying the
common SPMD pattern for
parallelism

Channels: example
package main
import "fmt"
func fib(c chan int) {

x, y := 0, 1
for {

c <- x
x, y = y, x+y

}
}
func main() {

c := make(chan int)
go fib(c)
for i := 0; i < 10; i++ {

fmt.Println(<-c)
}

}

Valeria Cardellini - SDCC 2022/23 46

• Fibonacci sequence: iterative
version using channel

Elegant and efficient!

Buffered channels
• By default (i.e., unbuffered channel), channel

operations block
– In spec.: If the capacity is zero or absent, the channel is

unbuffered and communication succeeds only when both a
sender and receiver are ready

– If the channel is unbuffered, the sender blocks until the
receiver has received the value

• Buffered channels do not block if they are not full
– Buffer length as make second argument to initialize a

buffered channel
ch := make(chan int, 100)

– Send to a buffered channel blocks only when buffer is full
– Receive blocks when buffer is empty (no data to receive)

Valeria Cardellini - SDCC 2022/23 47

More on channels: close and range

• Close on buffers
– Sender can close a channel
– Receivers can test whether a channel has been closed by

assigning a second parameter to the receive expression
v, ok := <- ch
• ok is false if there are no more values to receive and the

channel is closed

• Range on buffers
for i := range ch

– Use it to receive values from the channel repeatedly until it is
closed

Valeria Cardellini - SDCC 2022/23 48

More on channels: select

• select lets a goroutine wait on multiple
communication operations
– Blocks until one of its cases can run, then executes that

case
– One at random if multiple cases are ready

Spec.: If one or more of the communications can proceed, a
single one that can proceed is chosen via a uniform pseudo-
random selection. Otherwise, if there is a default case, that case
is chosen. If there is no default case, the "select" statement
blocks until at least one of the communications can proceed.

select {
case mgs1 := <-ch1: // receive on ch1

// ...
case msg2 := <-ch2: // receive on ch2

// ...use x...
}

Valeria Cardellini - SDCC 2022/23 49

Using select: example

package main
import "fmt"

func fibonacci(c, quit chan int) {
x, y := 0, 1
for {

select {
case c <- x:

x, y = y, x+y
case <- quit:

fmt.Println("quit")
return

}
}

}

Valeria Cardellini - SDCC 2022/23 50

• Fibonacci sequence: iterative
version using two channels,
the latter being used to quit

Using select: example
func main() {

c := make(chan int) // c is an unbuffered channel
quit := make(chan int)
go func() { // anonymous function

for i := 0; i < 10; i++ {
fmt.Println(<-c)

}
quit <- 0

}()
fibonacci(c, quit)

}

Valeria Cardellini - SDCC 2022/23 51

More on channels: select
• We can use select with a default clause to

implement non-blocking sends, receives, and even
non-blocking multi-way selects

select {
case mgs1 := <-ch1: // receive

// ...
case msg2 := <-ch2: // receive

// ...use x...
case ch3 <-msg3: // send

// ...
default:

// ...
}

See example with non-blocking channel operations
gobyexample.com/non-blocking-channel-operations

Valeria Cardellini - SDCC 2022/23 52

Timers

• You can implement timeouts by using a timer channel
– You tell the timer how long you want to wait, and it provides

a channel that will be notified at that time
//to wait 2 seconds
timer := time.NewTimer(time.Second * 2)

<- timer.C
– <-timer.C blocks on the timer’s channel C until it sends a

value indicating that the timer fired
– Timer can be canceled before it fires using Stop()
– See example gobyexample.com/timers

Valeria Cardellini - SDCC 2022/23 53

A few more things

• Error handling
• Variadic functions
• Modules
• Go tools
• Testing and benchmarking
• Plus many others, but this is just an introduction to

Go!
– E.g., excellent support for HTTP clients and servers

in net/http package

Valeria Cardellini - SDCC 2022/23 54

Error handling
• Go code uses error values to indicate abnormal state
• Errors are communicated via an explicit, separate return

value
– By convention, the last return value of a function
– nil value in the error position: no error
– “Error handling [in Go] does not obscure the flow of control.” (R. Pike)

result, err := SomeFunction()
if err != nil {

// handle error
}

• Built-in error interface
type error interface {

Error() string
}
– errors.New constructs a basic error value with the given error

message
Valeria Cardellini - SDCC 2022/23 55

See https://go.dev/blog/error-handling-and-go

$ go run variadic-functions.go

[1 2] 3
[1 2 3] 6

[1 2 3 4] 10

Variadic functions
• Go functions can accept a variable number of

arguments: variadic functions
– E.g., fmt.Println is a variadic function

package main

import "fmt"

func sum(nums ...int) {

fmt.Print(nums, " ")

total := 0

for _, num := range nums {

total += num

}

fmt.Println(total)

}

Valeria Cardellini - SDCC 2022/23 56

func main() {

sum(1, 2)
sum(1, 2, 3)

nums := []int{1, 2, 3, 4}
sum(nums...)

}

Go modules
• Module: collection of related Go packages stored in

a file tree with a go.mod file at its root
• go.mod file defines:

– module path, which is also the import path used for root
directory

– minimum version of Go required by module
– its dependency requirements, which are the other modules

needed for a successful build with their minimum version

Valeria Cardellini - SDCC 2022/23 57

• To generate go.mod file:
$ go mod init <module_name>

• To add missing and remove
unused module requirements:
$ go mod tidy

Common errors and Go tools

• Go can be somewhat picky

• Unused variables raise errors, not warnings
– Use “_” for variables you don’t care about

• Unused imports raise errors
– Use goimports command to automatically add/remove

imports

• In if-else statements { must be placed at the end
of the same line
– E.g., } else {

– E.g., } else if … {

– Use gofmt command to format Go code

Valeria Cardellini - SDCC 2022/23 58

Testing and benchmarking in Go

• Go testing package provides tools to write unit tests
• To run tests:

$ go test

• Code to be tested is in a given source file
(e.g., math.go)

• Test file for it ends _test.go (e.g., math_test.go)
– Call func TestXxx(*testing.T) where Xxx is the name of

the tested function
func TestAbs(t *testing.T) {
got := Abs(-1)
if got != 1 {
t.Errorf("Abs(-1) = %d; want 1", got)

}
}

Valeria Cardellini - SDCC 2022/23 59

Testing and benchmarking in Go
• Use benchmarking to measure code performance
• Benchmark tests are in _test.go files and are

named beginning with Benchmark
• The testing runner executes each benchmark

function several times, increasing b.N on each run
until it collects a precise measurement
– A benchmark runs a function in a loop b.N times

func BenchmarkXxx(b *testing.B) {
for i := 0; i < b.N; i++ {

Xxx(…)
}

}

• To run benchmarks
$ go test -bench=.

• Example: let’s benchmark make vs. append on slice
Valeria Cardellini - SDCC 2022/23 60

RPC in Go

Valeria Cardellini - SDCC 2022/23 61

• Go standard library supports RPC right out-of-the-box
– net/rpc package in standard Go library

• TCP or HTTP as “transport” protocols
• Some constraints for RPC methods

– Only two arguments are allowed
– Second argument is a pointer to a reply struct that stores the

corresponding data
– An error is always returned

func (t *T) MethodName(argType T1, replyType *T2) error

RPC in Go: marshaling and unmarshaling

• Use encoding/gob package for parameters
marshaling (encode) and unmarshaling (decode)
– Package gob manages streams of gobs (binary values)

exchanged between an Encoder (transmitter) and a Decoder
(receiver)

– A stream of gobs is self-describing: each data item in the
stream is preceded by a specification of its type, expressed
in terms of a small set of predefined types; pointers are not
transmitted, but the values they point to are transmitted

– Basic usage: create an encoder, transmit some values,
receive them with a decoder

– Requires that both RPC client and server are written in Go

Valeria Cardellini - SDCC 2022/23 62

RPC in Go: marshaling and unmarshaling

• Two alternatives to gob

• net/rpc/jsonrpc package
– Implements a JSON-RPC 1.0 ClientCodec and ServerCodec

for rpc package

• gRPC
– Next lesson, also to write polyglot RPC client and

server

Valeria Cardellini - SDCC 2022/23 63

RPC in Go: server

• On server side
– Use Register (or RegisterName)

func (server *Server) Register(rcvr interface{}) error
func RegisterName(name string, rcvr interface{}) error

• To publish the methods that are part of the given
interface on the default RPC server and allows them to
be called by clients connecting to the service

• Takes a single parameter, which is the interface

– Use Listen to announce on the local network
address

func Listen(network, address string) (Listener, error)

Valeria Cardellini - SDCC 2022/23 64

RPC in Go: server
– Use Accept to receive connections on the listener

and serve requests for each incoming connection
func (server *Server) Accept(lis net.Listener)

• Accept is blocking; if the server wishes to do other work
as well, it should call this in a goroutine

– Can also use HTTP handler for RPC messages
(see example on the course site)

Valeria Cardellini - SDCC 2022/23 65

RPC in Go: client

• On client side
– Use Dial to connect to RPC server at the

specified network address (and port)
func Dial(network, address string) (*Client, error)
• Use DialHTTP for HTTP connection

– Use Call to call synchronous RPC

– Use Go to call asynchronous RPC
• Associated channel will signal when call is complete

Valeria Cardellini - SDCC 2022/23 66

RPC in Go: example

• Let’s consider two simple RPC functions: multiply and
divide two integers

• Code available on course site

Valeria Cardellini - SDCC 2022/23 67

RPC in Go: synchronous call

• Need some setup in advance of this…
• Call makes blocking RPC call
• Call invokes the named function, waits for it to complete, and

returns its error status
// Synchronous call
args := &server.Args{7,8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

log.Fatal("arith error:", err)
}
fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

Valeria Cardellini - SDCC 2022/23 68

func (client *Client) Call(serviceMethod string,

args interface{}, reply interface{}) error

RPC in Go: asynchronous call
• How to make asynchronous RPC? net/rpc/Go uses a channel

as parameter to retrieve RPC reply when the call is complete
• Done channel will signal when the call is complete by returning

the same object of Call
– If Done is nil, Go will allocate a new channel

// Asynchronous call
quotient := new(Quotient)
divCall := client.Go("Arith.Divide", args, quotient, nil)
divCall = <-divCall.Done
// check errors, print, etc.

Valeria Cardellini - SDCC 2022/23 69

• For Go internal implementation, see
https://go.dev/src/net/rpc/client.go?s=8029:8135 - L284

func (client *Client) Go(serviceMethod string, args
interface{}, reply interface{}, done chan *Call) *Call

