
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Microservices and
Serveless Computing

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Microservices

• A “new” emerging architectural style for distributed
applications that structures an application as a
collection of loosely coupled services

• Not so new: deriving from SOA and Web services
– But with some significant differences

• Address how to build, manage, and evolve
architectures out of small, self-contained units
– Modularization: decompose app into a set of independently

deployable services, that are loosely coupled and cooperating
and can be rapidly deployed and scaled

– Services equipped with memory persistence tools (e.g.,
relational databases and NoSQL data stores)

Valeria Cardellini – SDCC 2022/23 1

The ancestors: Service Oriented Architecture
• Service Oriented Architecture (SOA): architectural

paradigm for designing loosely coupled distributed sw
systems

• Definition (by OASIS docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf)

SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of
different ownership domains. It provides a uniform
means to offer, discover, interact with and use
capabilities to produce desired effects consistent with
measurable preconditions and expectations

• Properties of SOA (by W3C www.w3.org/TR/ws-arch)
– Logical view
– Message orientation and description orientation
– Service granularity, network orientation
– Platform neutral

2Valeria Cardellini – SDCC 2022/23

Service Oriented Architecture
l 3 interacting entities

1. Service requestor or consumer: requests service execution
2. Service provider: provides service and makes it available
3. Service registry: offers publication and search tools to

discover the services offered by providers

Valeria Cardellini – SDCC 2022/23 3

Web services
• Web services: implementation of SOA
• Definition (by W3C www.w3.org/TR/ws-arch)

– Web service: software system designed to support
interoperable machine-to-machine (M2M)
interaction over a network

– Web service interface described in a machine-
processable format

– Other systems interact with web service in a
manner prescribed by its description using SOA
messages, typically conveyed using HTTP

Valeria Cardellini – SDCC 2022/23 4

Web services
• More than 60 standards and specifications, most used:

– To describe: WSDL (Web Service Description Language)
– To communicate: SOAP (Simple Object Access Protocol)
– To register: UDDI (Universal Description, Discovery and

Integration)
– To define business processes: BPEL (Business Process

Execution Language), BPMN (Business Process Model and
Notation)

Valeria Cardellini – SDCC 2022/23 5

– To define SLA: WSLA
• A variety of technologies

– Including ESB (Enterprise Service Bus),
integration platform that provides
fundamental interaction and
communication services for complex
applications

SOA vs. microservices

• Heavyweight vs. lightweight technologies
- SOA tends to rely strongly on heavyweight middleware (e.g.,

ESB), while microservices rely on lightweight technologies

• Protocol families
– SOA is often associated with web services protocols

• SOAP, WSDL, and WS-* family of standards
– Microservices typically rely on REST and HTTP

• Views
– SOA mostly viewed as integration solution
– Microservices are typically applied to build individual

software applications

Valeria Cardellini – SDCC 2022/23 6

Microservices and containers
• Microservices as ideal complementation of container-

based virtualization
– “Microservice instance per container”: package each

microservice as container image and deploy each
microservice instance as container

– Manage each container at runtime scaling and/or migrating it

• Pros and cons:
✓ Scaling out/in microservice instance by changing number of

container replicas
✓ Scaling up/down microservice instance assigning more/less

resources
✓ Isolate microservice instance
✓ Apply resource limits on microservice instance
✓ Build and start rapidly
✗ Require container orchestration to manage multi-container app

Valeria Cardellini – SDCC 2022/23 7

Microservices: benefits
• Increased software agility

– Microservice: independent unit of development,
deployment, operations, versioning, and scaling

– All interactions with a microservice happen via its API,
which encapsulates its implementation details

– Exploit container-based virtualization

• Improved scalability and fault isolation
• Increased reusability across different areas of

business
• Improved data security
• Faster development and delivery
• Greater autonomy

– Teams can be be more autonomous

Valeria Cardellini – SDCC 2022/23 8

Microservices: concerns

• Increased network traffic
– Inter-service calls over a network cost more in terms of

network latency

• Higher complexity
– Increased operational complexity (e.g., deployment)
– Global testing and debugging is more complicated

Valeria Cardellini – SDCC 2022/23 9

How to decompose the application
• How to decompose a complex app (implemented as

monolithic application) into microservices?
• Mostly an art, no winner strategy but rather a number

of strategies microservices.io/patterns

Valeria Cardellini – SDCC 2022/23 10

How to decompose the application
• Main decomposition patterns

– Let’s consider an e-commerce application that takes orders
from customers, verifies inventory and available credit, and
ships them

1. Decompose by business capability and define services
corresponding to business capabilities
• Business capability: something that a business does in order to

generate value
• E.g., Order Management is responsible for orders

2. Decompose by domain-driven design (DDD) subdomain
• A domain consists of multiple subdomains; each subdomain

corresponds to a different part of the business
• E.g., Order Management, Inventory, Product Catalogue,

Delivery

Valeria Cardellini – SDCC 2022/23 11

How to decompose the application
• Other decomposition patterns

3. Decompose by use case and define services that are
responsible for particular actions
• E.g., Shipping Service is responsible for shipping complete

orders
4. Decompose by nouns or resources and define a service

that is responsible for all operations on entities/resources
of a given type
• E.g., Account Service is responsible for managing user

accounts

Valeria Cardellini – SDCC 2022/23 12

Microservices and scalability

• How to achieve microservice scalability?
– Use multiple instances of same microservice and load

balance requests across multiple instances

• How to improve microservice scalability?
– State is complex to manage and scale
– Prefer stateless services: scale better and faster than

stateful services

Valeria Cardellini – SDCC 2022/23 13

Stateless service

Cloud Computing Patterns,
www.cloudcomputingpatterns.org/stateless_component/

Valeria Cardellini – SDCC 2022/23

• Stateless service: state is handled external of service
to ease its scaling out and to make application more
tolerant to service failures

14

Stateful service

Cloud Computing Patterns,
www.cloudcomputingpatterns.org/stateful_component/

Valeria Cardellini – SDCC 2022/23

• Stateful service: multiple instances of scaled-out
service need to synchronize their internal state to
provide a unified behavior

• Issue: how can a scaled-out stateful service maintain
a synchronized internal state?

15

Service discovery

• We also need service
discovery
– Microservice instances have

dynamically assigned network
locations (IP address and port)
and their set changes
dynamically because of auto-
scaling, failures, and upgrades

• Service discovery provides
– a mechanism for a microservice

instance to register
– and a way to find the service

once it has registered

Valeria Cardellini – SDCC 2022/23 16

Patterns for service discovery

1. Client-side service discovery
– Client of service is responsible for determining network

locations of available service instances and load balancing
requests between them

– Client queries the Service Register, then it uses a load-
balancing algorithm to choose one of the available service
instances and performs a request
microservices.io/patterns/server-side-discovery.html

Valeria Cardellini – SDCC 2022/23 17

Patterns for service discovery

2. Server-side service discovery
– Client uses an intermediary that acts as Load Balancer and

runs at a well known location
– Client makes a request to a service via a load balancer. The

load balancer queries the Service Registry and routes each
request to an available service instance
microservices.io/patterns/server-side-discovery.html

Valeria Cardellini – SDCC 2022/23 18

Integration of microservices

• Let’s consider two issues related to
integration of microservices
– Synchronous vs. asynchronous communication
– Orchestration vs. choreography

Valeria Cardellini – SDCC 2022/23 19

Synchronous vs. asynchronous

• Should communication be synchronous or
asynchronous?
– Synchronous: request/response style of communication
– Asynchronous: event-driven style of communication

• Synchronous communication
– Synchronous request/response-based communication

mechanisms, such as HTTP-based REST or gRPC

• Asynchronous communication
– Asynchronous, message-based communication mechanisms

such as pub-sub systems, message queues and related
protocols

– Interaction style can be one-to-one or one-to-many

• Synchronous communication may reduce availability

Valeria Cardellini – SDCC 2022/23 20

Synchronous vs. asynchronous

• Example of synchronous communication vs.
asynchronous communication

Valeria Cardellini – SDCC 2022/23 21

Orchestration and choreography
• Microservices can interact among them following two

patterns:
– Orchestration
– Choreography

• Orchestration: centralized approach
– A single centralized process (orchestrator, conductor or

message broker) coordinates interaction
– Orchestrator is responsible for invoking and combining

services, which can be unaware of composition

Valeria Cardellini – SDCC 2022/23 22

Orchestrator

Orchestration and choreography

• Choreography: decentralized approach
– A global description of participating services, which is

defined by exchange of messages, rules of interaction and
agreements between two or more endpoints

– Services can exchange messages directly

Valeria Cardellini – SDCC 2022/23 23

Example: orchestration and choreography

• Example: workflow for customer creation, i.e.,
process for creating a new customer

Valeria Cardellini – SDCC 2022/23 24

From: S. Newman, “Building Microservices”, O’Really, 2015.

Example: orchestration and choreography
Orchestration

25

Choreography

Valeria Cardellini – SDCC 2022/23

Orchestration vs choreography

• Orchestration:
✓ Simpler and more popular
✗ SPoF and performance bottleneck
✗ Tight coupling
✗ Higher network traffic and latency

• Choreography
✓ Lower coupling, less operational complexity, and increased

flexibility and ease of changing
✗ Services need to know about each other’s locations
✗ Extra work to monitor and track services
✗ Implementing mechanisms such as guaranteed delivery is

more challenging

Valeria Cardellini – SDCC 2022/23 26

Design patterns for microservice-based applications

• Let’s examine some design patterns
1. Circuit breaker
2. Database per service
3. Saga (and event sourcing)
4. CQRS
5. Log aggregation
6. Distributed request tracing

Valeria Cardellini – SDCC 2022/23 27

Patterns: Circuit breaker

• Problem: How to prevent a network or service
failure from cascading to other services?

• Solution: A service client invokes a remote
service via a proxy that functions in a similar
fashion to an electrical circuit breaker
– When the number of consecutive failures

crosses a threshold, the circuit breaker trips,
and for the duration of a timeout period all
attempts to invoke the remote service will fail
immediately

– After the timeout expires the circuit breaker
allows a limited number of test requests to
pass through. If those requests succeed the
circuit breaker resumes normal operation.
Otherwise, if there is a failure the timeout
period begins again

Valeria Cardellini – SDCC 2022/23 28

microservices.io/patterns/reliability/circuit-breaker.html

Patterns: Database per service

Valeria Cardellini – SDCC 2022/23 29

• Pros and cons
✓ Helps ensure that services are loosely coupled
✓ Each service can use the most convenient database type (e.g., NoSQL)
✗ More complex to implement transactions that span multiple services
✗ Complexity of managing multiple databases

• But do not need to provision a database server for each service
• Options: private-tables-per-service, schema-per-service, database-

server-per-service
microservices.io/patterns/data/database-per-service.html

• Problem: which database
architecture?

• Solution: keep each
microservice’s persistent data
private to that service and
accessible only via its API.
Service transactions only
involve its database

Patterns: Saga
• Problem: each service has its own database, however some

transactions span multiple services: how to maintain data
consistency across services without using distributed
transactions (2PC protocol)?

• Solution: implement each transaction that spans multiple
services as a saga

• Saga: sequence of local transactions
– Each local transaction updates its database and publishes a

message or event to trigger the next local transaction in the saga
– If local transaction fails, then saga executes a series of

compensating transactions that undo changes made by preceding
local transactions (rollback)

Valeria Cardellini – SDCC 2022/23 30microservices.io/patterns/data/saga.html

Payment
Service

Stock
Service

Patterns: Saga

Valeria Cardellini – SDCC 2022/23 31

Choreography

• 2 ways to coordinate saga:
– Choreography: each local transaction publishes events that

trigger local transactions in other services
– Orchestration: an orchestrator tells participants what local

transactions to execute

Patterns: Saga

Valeria Cardellini – SDCC 2022/23 32

Orchestration

• 2 ways to coordinate saga:
– Choreography: each local transaction publishes events that

trigger local transactions in other services
– Orchestration: orchestrator tells participants what local

transactions to execute

Patterns: Saga
• Example: orchestration-based saga

– Source: MSc thesis by Andrea Cifola, see
Microservice_SAGAexample.pdf

Valeria Cardellini – SDCC 2022/23 33

Patterns: Saga
• Example: orchestration-based saga

• We also use another pattern: event sourcing
microservices.io/patterns/data/event-sourcing.html
– Problem: a service that participates in a saga needs to

atomically update the database and sends
messages/events in order to avoid data inconsistencies

– Solution: persist a sequence of domain events that represent
state changes; each event in the sequence is stored in an
append-only event store (a database of events)

Valeria Cardellini – SDCC 2022/23 34

Event store

Patterns: CQRS

• Problem: How to implement a query that retrieves
data from multiple services in a microservice
architecture? How to separate read and write load
allowing you to scale each independently?

• Solution: define a view database, which is a read-
only replica that is designed to support that query
– Application keeps replica updated by subscribing to Domain

events published by the service that own data

• Called Command Query Responsibility Segregation
(CQRS), separates read and update operations for a
data store
microservices.io/patterns/data/cqrs.html

Valeria Cardellini – SDCC 2022/23 35

Monitoring microservices

• Service distribution, even at large scale: more
difficult to monitor microservices apps, e.g., need to
capture causal and temporal relationships among
services
– Performance and latency optimization
– Root cause analysis
– Service dependency analysis
– Distributed context propagation
– Distributed transaction monitoring

• Let’s examine 2 patterns for monitoring
microservices
– Log aggregation
– Distributed request tracing

Valeria Cardellini – SDCC 2022/23 36

Patterns: Log aggregation

• Problem: How to understand application behavior
and troubleshoot problems?

• Solution: Use a centralized logging service that
aggregates logs from each service instance. Users
can search and analyze logs and configure alerts that
are triggered when certain messages appear in logs
– E.g., AWS Cloud Watch

✗ Centralized (if physical, not only logical)
✗ Handling large volume of logs requires substantial

infrastructure
microservices.io/patterns/observability/application-logging.html

Valeria Cardellini – SDCC 2022/23 37

Patterns: Distributed tracing

• Problem: How to understand complex app behavior
and troubleshoot problems?

• Solution: Instrument services with code that
– Assigns each external request a unique external request id
– Passes id to all services that are involved in request

handling
– Includes id in all log messages
– Records information (e.g., start time, end time) about the

requests and operations performed in a centralized service

✗ Aggregating and storing traces can require significant
infrastructure
microservices.io/patterns/observability/distributed-tracing.html

Valeria Cardellini – SDCC 2022/23 38

Monitoring microservices: tools

• Tools for distributed tracing
– Most existing microservices frameworks have

built-in application-layer tracing capabilities
– Dapper:

• Google’s production distributed systems tracing
infrastructure (paper)

Valeria Cardellini – SDCC 2022/23 39

Monitoring microservices: tools

• Tools for distributed tracing
– Most existing microservices frameworks have

built-in application-layer tracing capabilities
– Dapper:

• Google’s production distributed systems tracing
infrastructure (paper)

– Jaeger
• Uses Spark/Flink for aggregate trace analysis

– Zipkin
– OpenTelemetry

• Broad language support
• Integrated with popular frameworks and libraries

Valeria Cardellini – SDCC 2022/23 40

Monitoring microservices: spans and traces
• Distributed tracing systems works with spans and

traces
– Span: unit of work in an application (e.g., HTTP request, call

to DB); must have an operation name, start time, and
duration

– Trace: collection/list of spans connected in a parent/child
relationship (can also be thought of as directed acyclic graph
of spans); traces specify how requests are propagated
through services and other components

Valeria Cardellini – SDCC 2022/23 41

Some large-scale examples

• Netflix, Twitter, Uber: 500+ microservices

Valeria Cardellini – SDCC 2022/23 42

Examples of microservices app
• Let’s examine two microservices apps

1. Sock Shop
2. Online Boutique

• Both apps present microservices built in different
programming languages
– Programming languages are silos, but in the last 15 years

renaissance in programming language diversity: need for
polyglot programmers

• How to realize a polyglot application whose
microservices are written in different programming
languages?
1. REST and JSON (as message interchange format): see

example 1
2. gRPC and protocol buffers (as IDL and message

interchange format): see example 2
Valeria Cardellini – SDCC 2022/23 43

Example 1: Sock shop
• Online shop microservices-demo.github.io/

github.com/microservices-demo/microservices-demo

Valeria Cardellini – SDCC 2022/23 44

Example 1: Sock shop

• Built using SpringBoot, Go and Node.js and
packaged in Docker containers

• Cross-platform: deployment to different orchestrators
– Docker Compose, Docker Swarm, Kubernetes, …

• Services communicate using REST over HTTP
• Also polyglot data stores (MongoDB, MySQL)
• Includes load test using Locust to simulate user traffic

to Sock Shop
• Optional: uses Weave Scope to automatically detect

containers and hosts

Valeria Cardellini – SDCC 2022/23 45

Example 2: Online boutique
• Online store developed by Google

github.com/GoogleCloudPlatform/microservices-demo

Valeria Cardellini – SDCC 2022/23 46

Example 2: Online boutique

• Composed of 11 microservices written in different
languages that communicate using gRPC

• Used by Google to demonstrate use of many
technologies:
– Kubernetes and Google Kubernetes Engine (GKE)
– gRPC: already examined
– Istio: service mesh
– Cloud Operations: integrated monitoring, logging, and trace

managed services for apps and systems running on Google
Cloud

– OpenCensus: to collect application metrics and distributed
traces, then transfer data to a backend

– Skaffold: command line tool that facilitates continuous
development for Kubernetes applications

Valeria Cardellini – SDCC 2022/23 47

Microservice technologies timeline

Valeria Cardellini – SDCC 2022/23 48
From "Microservices: The Journey So Far and Challenges Ahead”.

Generations: at the beginning

Valeria Cardellini – SDCC 2022/23 49

• 4 generations of microservice architectures

• 1st generation based on:
- Container-based virtualization

- Service discovery (e.g., Eureka, etcd, ZooKeeper)
• etcd: distributed reliable key-value store (e.g., used by

Kubernetes as primary data store)

• Eureka: REST based service developed by Netflix; used in AWS
cloud for locating services for load balancing and failover of
middle-tier servers

- Monitoring (e.g., Graphite, InfluxDB and Prometheus)
• Enable runtime monitoring and analysis of microservice

resources behavior at different levels of detail

Generations: container orchestration

Valeria Cardellini – SDCC 2022/23 50

• Then, container orchestration
- E.g., Kubernetes, Docker Swarm

- Automate container allocation and management tasks,
abstracting away underlying physical or virtual infrastructure
from service developers

- But application-level failure-handling mechanisms are still
implemented in services code

Generations: service discovery and fault tolerance

Valeria Cardellini – SDCC 2022/23 51

• 2nd generation based on discovery services and
fault-tolerant communication libraries
- Let services communicate more efficiently and reliably

Generations: service discovery and fault tolerance

Valeria Cardellini – SDCC 2022/23 52

• Examples of discovery services and fault-tolerant
communication libraries
- Consul: service discovery (now a more powerful service

mesh)
- Finagle: fault tolerant, protocol-agnostic RPC system

designed and used in production by Twitter

- Hystrix: latency and fault tolerance library designed by Netflix
to isolate points of access to remote systems, services and
3rd party libraries, stop cascading failure and enable
resilience in complex DS
• Only in maintenance mode

Generations: sidecar and service mesh
• 3rd generation based on sidecar (or service proxy)

and service mesh technologies (e.g., Envoy and Istio)
– Encapsulate communication-related features such as service

discovery and use of protocol-specific and fault-tolerant
communication libraries

– Goal: abstract them from service developers, improve sw
reusability and provide homogeneous interface

Valeria Cardellini – SDCC 2022/23 53

Service mesh
• Dedicated infrastructure layer added to microservice

app for facilitating service-to-service communications
between microservices using a proxy

• Allows you to transparently add capabilities like
observability, traffic management (including load
balancing) and security, without adding them to code

Valeria Cardellini – SDCC 2022/23 54

Generations: serverless

Valeria Cardellini – SDCC 2022/23 55

• 4th generation based on Function as a Service
(FaaS) and serverless computing to further
simplify microservice development and delivery

Serverless computing
• Cloud computing model which aims to abstract server

management and low-level infrastructure decisions
away from users

• Users can develop, run and manage application code
(i.e., functions), without no worry about provisioning,
managing and scaling computing resources

• Runtime environment is fully managed by Cloud
provider

• Serverless: functions still run on “servers” somewhere
but we don’t care

• Function as a Service (FaaS) often as synonym
– Still some discussion

Valeria Cardellini – SDCC 2022/23 56

Serverless computing: characteristics
• Ephemeral compute resources

– May only last for one function invocation
✗ Cold start: when a request arrives and no container is ready

to serve it, function execution must be delayed until a new
container is launched

• Automated (i.e., zero configuration) elasticity
– Compute resources auto-scale transparently from zero to

peak load and back in response to workload shifts

• True pay-per-use
– Pay only for consumed time, rather than on pre- purchased

units of capacity, e.g., AWS Lambda pricing

57Va
le

ria
 C

ar
de

llin
i –

SD
C

C
 2

02
2/

23

Serverless computing: characteristics
• Event-driven

– When an event is triggered (e.g., file uploaded to storage,
message to be consumed in queue), a piece of
infrastructure is allocated dynamically to execute the
function code

• Can simplify the process of deploying code into
production
– Scaling, capacity planning and maintenance operations

are hidden from developers or operators

58Valeria Cardellini – SDCC 2022/23

Example of serverless application
• Mobile backend for a social media app

1. Users compose status update and send it using mobile
clients

2. Platform orchestrates ops needed to propagate update
inside the social media platform and to user’s friends using
serverless technology (AWS Lambda)

3. Each friend receives updates on their social media app

Valeria Cardellini – SDCC 2022/23 59

Serverless Cloud services
• Several Cloud providers offer serverless computing on

their public clouds as fully managed service
– AWS Lambda

• See hands-on course
• Includes functions at the edge (Lambda@Edge)

– Azure Functions
– Google Cloud Functions
– IBM Cloud Functions

• Limited knobs to control performance of functions
– Developers can configure only amount of memory allocated to

function: amount of virtual CPU is proportional to amount of memory

• Cloud platforms also offer other supporting services
(e.g., event notification, storage, message queue, DB)
that are necessary for operating a serverless
ecosystem

Valeria Cardellini – SDCC 2022/23 60

Example: Google Cloud Functions
• “Hello World” FaaS example from Google using Go

– HTTP response that displays “Hello, World!”

// helloGet is an HTTP Cloud Function.
func helloGet(w http.ResponseWriter, r *http.Request) {

fmt.Fprint(w, "Hello, World!")
}

– Plus some initialization code, see full example
cloud.google.com/functions/docs/tutorials

Valeria Cardellini – SDCC 2022/23 61

Example: Google Cloud Functions

• A more complex example
– Function execution is triggered from storage when an image

is uploaded to a Cloud Storage bucket
– Function uses Cloud Vision API to detect violent or adult

content
– When violent or adult content is detected in an uploaded

image, a second function is called to download the offensive
image: it uses ImageMagick to blur the image, and then
uploads the blurred image to the output bucket

Code: cloud.google.com/functions/docs/tutorials/imagemagick

Valeria Cardellini – SDCC 2022/23 62

Serverless computing: state

• Stateless functions are easy to manage (horizontal
scalability, fast recovery, …)
– But stateless functions are not enough for a broad range of

applications and algorithms

• How to handle stateful processing?
– State can be external (e.g., handed over to external DB)
– Issues to address:

• Efficient access to shared state, so to keep auto-scaling benefits
• Programming support, e.g., Azure Durable Functions

• How to handle transactions?

Valeria Cardellini – SDCC 2022/23 63

Serverless computing: challenges and limitations
• Performance

– Cold starts
• “The first time you deploy a function it may take several

minutes as we need to provision the underlying infrastructure
to support your functions. Subsequent deployments will be
much faster.” (Google Cloud Functions)

• Runtime and programming language support
– E.g., on Google: Node.js, Python, Go, Java, C#, Ruby, PHP
– Language runtime impacts on performance and cost of

serverless functions

• Resource limits
– E.g., on AWS memory between 128 and 10240 MB per

function

• Lack of standards
• Risk of vendor lock-in

Valeria Cardellini – SDCC 2022/23 64

Low
er flexibility

Composition of serverless functions

• Write small, simple, stateless functions
– Complex functions are hard to understand, debug, and

maintain
– Separate code from data structures

• Then compose them in a workflow

Valeria Cardellini – SDCC 2022/23

Example: AWS Step Functions

Valeria Cardellini – SDCC 2022/23 66

• AWS Step Functions: serverless orchestration
service that allows developers to coordinate multiple
Lambda functions into workflows

• Example: process photo after its upload in S3

Composition of serverless functions
• Not yet a standard solution to define workflows
• An attempt: CNCF Serverless Workflow

– Vendor-neutral, open-source, and community-driven
ecosystem for defining and running domain-specific
language (DSL) based workflows

– Developer can use YAML and JSON to describe workflows
– Supports invocation of both RESTful and event-triggered

functions
– Supports many control-flow logic constructs

Valeria Cardellini – SDCC 2022/23 67

Open-source FaaS platforms

• Can run on commodity hardware
• Most platforms rely on Kubernetes for orchestration

and management of serverless functions
– Configuration management of containers
– Container scheduling and service discovery
– Elasticity management

• Prominent platforms
– Apache OpenWhisk
– OpenFaaS
– Fission
– Knative
– Nuclio

Valeria Cardellini – SDCC 2022/23 68

OpenWhisk
• Open-source, distribute serverless platform that

executes functions in response to events at any scale
openwhisk.apache.org

• Based on Docker containers
• Multiple container orchestration frameworks

Valeria Cardellini – SDCC 2022/23 69

OpenWhisk
• Developers write functional logic (called actions)

– In any supported programming language
– Dynamically scheduled and run in response to associated

events (via triggers) from external sources (feeds) or from
HTTP requests

• Functions can be combined into compositions

Valeria Cardellini – SDCC 2022/23 70

OpenWhisk architecture

• Internal architecture powered by multiple distributed
frameworks: Apache Kafka, CouchDB, Docker and
NGINX

Valeria Cardellini – SDCC 2022/23 71

OpenFaaS
• Open-source FaaS framework for building functions

on top of Docker and Kubernetes www.openfaas.com

• OpenFaaS stack
– Gateway provides an external route into functions, collects

metrics and scale functions
– Prometheus provides metrics and enables auto-scaling
– NATS provides asynchronous execution and queuing

Valeria Cardellini – SDCC 2022/23 72

OpenFaaS
• Conceptual workflow

– OpenFaaS Gateway can be accessed through its REST API,
via CLI or through UI

– Prometheus collects metrics made available via Gateway's
API and used for auto-scaling

– NATS Streaming enables long-running tasks or function
invocations to run in background

Valeria Cardellini – SDCC 2022/23 73

Serverless for the Edge-Cloud Continuum

• Open-source FaaS frameworks have centralized
functionalities (e.g., scheduling): not suitable for
Edge-Cloud continuum

• We are working on a decentralized FaaS framework
called Serverledge: thesis opportunities!

Valeria Cardellini – SDCC 2022/23 74

Microservices: References and resources

• Lewis and Fowler, Microservices
• Lewis and Fowler, Microservice Guides
• Richardson, Microservice Architecture
• Jamshidi et al., Microservices: The Journey So Far

and Challenges Ahead, IEEE Software, 2018

Valeria Cardellini – SDCC 2022/23 75

Serverless: References and resources
• Roberts, Serverless Architectures
• Castro et al., The Rise of Serverless Computing, ACM

Comm., 2019
• Schleier-Smith et al., What serverless computing is

and should become: the next phase of cloud
computing, ACM Comm., 2021

Valeria Cardellini – SDCC 2022/23 76

