
Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Virtualization

Macroarea di Ingegneria
Dipartimento di Ingegneria Civile e Ingegneria Informatica

Valeria Cardellini - SDCC 2022/23

Virtualization
• High-level abstraction to hide details of underlying

implementation
• Abstraction of computing resources

– Logical view different from physical one

• How? Decouple user-perceived architecture and
behavior of hw and sw resources from their physical
realization

• Goals:
– Agility, flexibility, performance, reliability, security, …

1

Virtualization of resources

• System (hw and sw) resources virtualization
– Virtual machine, container, …

• Storage virtualization
– Storage Area Network (SAN), …

• Network virtualization
– Virtual LAN (VLAN), Virtual Private Network (VPN), …

• Data center virtualization

Valeria Cardellini - SDCC 2022/23
2

Components of virtualized environment

• 3 major components:
– Guest

– Host

– Virtualization layer

• Guest: interacts with
virtualization layer rather
than with host

• Host: original
environment where
guest is supposed to be
managed

Valeria Cardellini - SDCC 2022/23 3

• Virtualization layer: responsible for recreating same or
different environment where guest will operate

Taxonomy of virtualization techniques

• Execution environment virtualization is the oldest,
most popular and developed area ⇒ our focus

Valeria Cardellini - SDCC 2022/23 4

Valeria Cardellini - SDCC 2022/23

Virtual Machine

• Virtual Machine (VM) allows to represent hw/sw
resources of a machine differently from their reality
– E.g., VM hw resources (CPU, network card, ...) different from

physical resources of the real machine

– E.g., sw resources (OS, …) different from sw resources of

the real machine

• A single physical machine can be used to host
several computing environments
– Multiple VMs on the same physical machine

5

Virtualization layer

VM1 VM2 VM3

Hardware

Valeria Cardellini - SDCC 2022/23

Virtualizzazione: cenni storici

• Il concetto di VM è un’idea “vecchia”, essendo
stato definito negli anni ’60 in un contesto
centralizzato
– Ideato per consentire al software legacy (esistente) di

essere eseguito su mainframe molto costosi e condividere

in modo trasparente le (scarse) risorse fisiche

– Ad es. il mainframe IBM System/360-67

• Negli anni ’80, con il passaggio ai PC il problema
della condivisione trasparente delle risorse di
calcolo viene risolto dai SO multitasking
– L’interesse per la virtualizzazione svanisce

6

Valeria Cardellini - SDCC 2022/23

Virtualizzazione: cenni storici
• Alla fine degli anni '90, l’interesse rinasce per rendere

meno onerosa la programmazione hw special-
purpose
– VMware fondata nel 1998

• Si acuisce il problema dei costi di gestione e di
sottoutilizzo di piattaforme hw e sw eterogenee
– L’hw cambia più velocemente del sw (middleware e

applicazioni)

– Aumenta il costo di gestione e diminuisce la portabilità

• Diventa nuovamente importante la condivisione
dell’hw e delle capacità di calcolo non usate per
ridurre i costi dell’infrastruttura

• E’ una delle tecnologie abilitanti del Cloud computing

7

Virtualizzazione: vantaggi

• Facilita la compatibilità, portabilità, interoperabilità e
migrazione di applicazioni ed ambienti
– Indipendenza dall’hw

– Create Once, Run Anywhere

– VM legacy: eseguire vecchi SO o vecchie applicazioni su

nuove piattaforme

Valeria Cardellini - SDCC 2022/23 8

Virtualizzazione: vantaggi
• Permette il consolidamento dei server in un data center,

con vantaggi economici, gestionali ed energetici
– Multiplexing di molteplici VM sullo stesso server

– Obiettivo: ridurre il numero totale di server usati, utilizzandoli in

modo più efficiente

– Vantaggi:

• Riduzione di costi, consumi energetici e spazio occupato
• Semplificazione nella gestione, manutenzione ed upgrade dei

server
• Riduzione dei tempi di downtime, tramite live migration di VM

Valeria Cardellini - SDCC 2022/23 9

Virtualizzazione: vantaggi
• Permette di isolare componenti malfunzionanti o

soggetti ad attacchi di sicurezza, incrementando
affidabilità e sicurezza delle applicazioni
– Macchine virtuali di differenti applicazioni non possono avere

accesso alle rispettive risorse

– Bug del software, crash, virus in una VM non possono

danneggiare altre VM in esecuzione sulla stessa macchina

fisica

• Permette di isolare le prestazioni di diverse VM
– Tramite lo scheduling delle risorse fisiche che sono

condivise tra molteplici VM in esecuzione sulla stessa

macchina fisica

• Permette di bilanciare il carico sui server
– Tramite la migrazione della VM da un server ad un altro

Valeria Cardellini - SDCC 2022/23 10

Valeria Cardellini - SDCC 2022/23

Uso di ambienti di esecuzione virtualizzati

• In ambito personale e didattico
– Per eseguire simultaneamente diversi SO sulla stessa

macchina

– Per semplificare l’installazione di sw

• In ambito professionale
– Per debugging, testing e sviluppo di applicazioni

• In ambito aziendale
– Per consolidare l’infrastruttura del data center

– Per garantire business continuity: incapsulando interi

sistemi in singoli file (system image) che possono essere

replicati, migrati o reinstallati su qualsiasi server

11

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Interfaces in computer system

Valeria Cardellini - SDCC 2022/23 12

Applications:
• use library functions (A1)
• make system calls (A2)
• execute machine instructions (A3)

Valeria Cardellini - SDCC 2022/23

Interfaces in computer system and virtualization
At which level can virtualization be implemented?
• Strictly related to computer system interfaces

– Hw/sw interface (user-level ISA: primarily for computation,

non-privileged machine instructions called by every program)

[interface 4]

– Hw/sw interface (system ISA: primarily for system resource

management, privileged machine instructions) [interface 3]

– System calls [interface 2]

• ABI (Application Binary Interface):
interface 2 + interface 4

– Library calls (API) [interface 1]

• Virtualization goal: mimic behavior
of these interfaces

Smith and Nair, The architecture of virtual machines, IEEE Computers, 2005
13

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation

• Virtualization can be implemented at various
operational levels:
– ISA level

– Hardware level (aka system VMs)

– Operating system level (aka containers)

– Library level

– User application level (aka process VMs)

14

Our

focus

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation

• ISA level
– Goal: emulate a given ISA by ISA of host machine

• E.g., MIPS binary code can run on x86-based host with

help of ISA emulation

– ISA emulation can be done through code
interpretation or dynamic binary translation

• Code interpretation is slow: every source instruction is

interpreted by emulator in order to execute native ISA

instructions

• Dynamic binary translation is faster: converts in blocks

rather than instruction by instruction

15

Valeria Cardellini - SDCC 2022/23

• Hardware level (aka system VMs)
– Goal: virtualize host resources, such as its

processors, memory, and I/O devices
– Based on Virtual Machine Monitor (VMM), aka

hypervisor
• VMM handles interaction with underlying hw platform for

CPU, memory, and I/O resource access

16

Levels of virtualization implementation

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation
• Hardware level (aka system VMs)

– Provides a complete environment in which
multiple VMs can coexist

• VMM manages hardware resources and shares them

among multiple VMs and provide isolation and

protection of VMs

• When a VM performs a privileged instruction or

operation that directly interacts with shared hw, VMM

intercepts the instruction, checks it for correctness, and

performs it

– Examples: VMware, KVM,
Xen, Parallels, VirtualBox

Multiple instances of combinations
<applications, OS>

17

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation

• Operating system level (aka containers)
– Goal: create multiple isolated containers
– Examples: Docker, Linux Containers

• Library level
– Goal: create execution environment to run apps in a

host environment that does not suite native apps
• Rather than creating a VM to run full OS and apps

– Examples:
• Wine: runs Windows apps on top of POSIX-compliant OS

by translating Windows API calls into POSIX calls on-the-fly

• Cygwin

18

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation
• User application level (aka process VMs)

– Virtual platform that executes an individual process
– Provides virtual ABI or API environment for user

applications
– Application compiled into intermediary, portable

code (e.g., Java bytecode) and executed in runtime
environment provided by process VM

– Examples: JVM, .NET CLR Multiple instances of combinations
<application, runtime system>

19

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation: summing up

20

• Relative merits of virtualization at different levels

System-level virtualization: terminology

• Let’s focus on system-level virtualization
(achieved through VMM or hypervisor)

• Host: base platform on top of which VMs are
executed; made of:
– Physical machine

– Possible host OS

– VMM

• Guest: everything inside a single VM
– Guest OS and applications executed inside the VM

Valeria Cardellini - SDCC 2022/23 21

System-level virtualization: taxonomy

• Let’s classify solutions according to:
1. Where to deploy VMM

• System VMM (aka type-1, native or bare-
metal hypervisor)

• Hosted VMM (aka type-2 hypervisor)

2. How to virtualize instruction execution?
• Full virtualization

– Software-assisted
– Hardware-assisted

• Para-virtualization

Valeria Cardellini - SDCC 2022/23 22

System-level virtualization: taxonomy

Valeria Cardellini - SDCC 2022/23
23

Virtualization

OS level Hardware level

Type-2 Full virtualizationPara-virtualizationType-1

Micro-kernelMonolithic Sw-assistedHw-assisted

Where? How?

Valeria Cardellini - SDCC 2022/23

VMM di sistema o VMM ospitato

VMM di sistema VMM ospitato

ho
st

guest host

In quale livello dell’architettura di sistema si colloca il VMM?
– Direttamente sull’hardware: VMM di sistema
– Sopra il SO host: VMM ospitato

gu
es

t

24

VMM di sistema o VMM ospitato
• VMM di sistema (type-1): eseguito direttamente sull’hw,

offre funzionalità di virtualizzazione integrate in un SO
semplificato
– L’hypervisor può avere un’architettura a microkernel (solo

funzioni di base, no device driver) o monolitica
– Esempi: Xen, KVM, VMware ESX, Hyper-V

• VMM ospitato (type-2): eseguito sul SO host, accede
alle risorse hw tramite le chiamate di sistema del SO host
– Interagisce con il SO host tramite l’ABI ed emula l’ISA di hw

virtuale per i SO guest

– Vantaggio: può usare il SO host per gestire le periferiche ed

utilizzare servizi di basso livello (es. scheduling delle risorse)

– Vantaggio: non occorre modificare il SO guest

– Svantaggio: degrado delle prestazioni rispetto a VMM di sistema

– Esempi: Bochs, Parallels Desktop, VirtualBox

Valeria Cardellini - SDCC 2022/23
25

Valeria Cardellini - SDCC 2022/23

Virtualizzazione completa o paravirtualizzazione
Quale modalità di dialogo tra la VM ed il VMM per
l’accesso alle risorse fisiche, ovvero come gestire
l’esecuzione di istruzioni privilegiate?

– Virtualizzazione completa
– Paravirtualizzazione

26

Confronto qualitativo di diverse soluzioni di virtualizzazione
https://en.wikipedia.org/wiki/Comparison_of_platform_virtualization_software

Valeria Cardellini - SDCC 2022/23

Virtualizzazione completa o paravirtualizzazione
• Virtualizzazione completa (full)

– Il VMM espone ad ogni VM interfacce hw simulate

funzionalmente identiche a quelle della sottostante macchina

fisica

– Il VMM intercetta le richieste di accesso privilegiato all’hw

(ad es. istruzioni di I/O) e ne emula il comportamento atteso

– Esempi: KVM, VMware ESXi, Microsoft Hyper-V

• Paravirtualizzazione
– Il VMM espone ad ogni VM interfacce hw simulate

funzionalmente simili (ma non identiche) a quelle della

sottostante macchina fisica

– Non viene emulato l’hw, ma viene creato uno strato

minimale di sw (Virtual Hardware API) per assicurare la

gestione delle VM ed il loro isolamento

– Esempi: Xen, Oracle VM (basato su Xen), PikeOS

27

Virtualizzazione completa: pro e contro

• Vantaggi
– Non occorre modificare il SO guest

– Isolamento completo tra le istanze di VM: sicurezza, facilità

di emulare diverse architetture

• Svantaggi
– VMM più complesso

– Necessaria la collaborazione del processore per

implementazione efficace: perché?

Valeria Cardellini - SDCC 2022/23 28

Problemi per realizzare la virtualizzazione di sistema

• L’architettura non virtualizzata del
processore opera secondo almeno
2 livelli (ring) di protezione:
supervisor e user
– Ring 0: privilegi massimi

– Ring 3: privilegi minimi

Valeria Cardellini - SDCC 2022/23 29

Architettura x86 senza virtualizzazione• Con la virtualizzazione:
– VMM opera in supervisor mode (ring 0)

– SO guest e applicazioni (quindi la VM) operano in user mode

(ring 3 o ring 1 per SO guest)

– Problema del ring deprivileging: il SO guest opera in un ring

che non gli è proprio ⇒ non può eseguire istruzioni privilegiate

(e.g., lidt in x86, load interrupt descriptor table)

– Problema del ring compression: poiché applicazioni e SO guest

eseguono allo stesso livello, occorre proteggere lo spazio del

SO

Virtualizzazione completa: soluzioni
• Come risolvere il ring deprivileging?

– Trap-and-emulate: quando il SO guest tenta di eseguire

un’istruzione privilegiata, occorre notificare un’eccezione

(trap) al VMM e trasferirgli il controllo; il VMM controlla la

correttezza dell’operazione richiesta e ne esegue ("emula") il

comportamento

– Le istruzioni non privilegiate eseguite dal SO guest sono

invece eseguite direttamente

Valeria Cardellini - SDCC 2022/23 30

Popek and Goldberg virtualization requirements
• Popek and Goldberg (1974) defined a set of conditions

sufficient for a computer architecture to support system
virtualization efficiently

• Privileged instructions: cause a trap if executed in user
mode
– Privileged state: determines resource allocation (privilege

mode, addressing context, exception vectors, ...)

• Sensitive instructions: change underlying resources
(e.g., doing I/O or changing page tables) or observe
information that indicates current privilege level (thus
exposing that guest OS does not run on bare metal)
– Can be control- or behavior-sensitive

• control sensitive: changes privileged state
• behavior sensitive: exposes privileged state

• Innocuous instructions: not sensitive
Valeria Cardellini - SDCC 2022/23 31

Popek and Goldberg virtualization requirements

• Theorem: “For any conventional third-generation
computer, an effective VMM may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

• In other words... trap-and-emulate: it is sufficient that
all the instructions that could affect the correct
functioning of VMM (sensitive instructions) always trap
and pass control to VMM

• Seems easy but…

Valeria Cardellini - SDCC 2022/23 32

• Implementation of trap-and-emulate is challenging:
common architectures are non-virtualizable according
to Popek and Goldberg’s theorem
– x86: many instructions are non-virtualizable, because are

sensitive but un-privileged
• E.g., pushf (push flags) is not privileged

– MIPS: mostly virtualizable, but...

• Kernel registers $k0, $k1 (needed to save/restore state) are
user-accessible

– ARM: mostly virtualizable, but

• Some instructions are undefined in user-mode

Valeria Cardellini - SDCC 2022/23 33

Popek and Goldberg virtualization requirements

Virtualizzazione completa: soluzioni

• Come realizzare il meccanismo di trap?
– A livello hardware se il processore fornisce supporto alla

virtualizzazione ⇒ hardware-assisted CPU virtualization
– A livello software se il processore non fornisce supporto alla

virtualizzazione ⇒ fast binary translation

Valeria Cardellini - SDCC 2022/23 34

Hardware-assisted CPU virtualization
• Hardware-assisted CPU virtualization (Intel VT-x and

AMD-V) provides two new CPU operating modes
(root mode and non-root mode), each supporting all 4
x86 protection rings

Valeria Cardellini - SDCC 2022/23

- VMM runs in root mode

(Root-Ring 0), while guest

OSs run in guest mode in

their original privilege levels

(Non-Root Ring 0): no

longer ring deprivileging

and ring compression

problems

- VMM can control guest

execution through VM

control data structures in

memory

35

x86 architecture with full virtualization
and hardware-assisted CPU
virtualization

Hardware-assisted CPU virtualization: VT-x

Valeria Cardellini - SDCC 2022/23 36

• VMX root: intended for hypervisor operations (like x86
without VT-x)

• VMX non-root: intended to support VMs
• When executing VMEntry operation, processor state is

loaded from guest-state of VM scheduled to run, then
control is transferred from hypervisor to VM

• VMExit saves processor state in guest-state area of
running VM; it loads processor state from host-state,
then transfers control to hypervisor

Fast binary translation
• Il meccanismo di trap al VMM per le istruzioni privilegiate è

offerto solo dai processori con supporto hardware per la
virtualizzazione (Intel VT-x e AMD-V)
– IA-32 non lo è: come realizzare la virtualizzazione completa in

mancanza del supporto hw?

• Fast binary translation: il VMM scansiona il codice prima
della sua esecuzione per sostituire blocchi contenenti
istruzioni privilegiate con blocchi funzionalmente equivalenti
e contenenti istruzioni per la notifica di eccezioni al VMM

Valeria Cardellini - SDCC 2022/23

Architettura x86 con virtualizzazione
completa e fast binary translation

- I blocchi tradotti sono

eseguiti direttamente sull’hw

e conservati in una cache

per eventuali riusi futuri

- Maggiore complessità del

VMM e minori prestazioni

37

Paravirtualization

Valeria Cardellini - SDCC 2022/23

• Non-transparent virtualization solution
- Guest OS kernel must be modified to let it invoke the virtual

API exposed by hypervisor

• Non-virtualizable instructions are replaced by
hypercalls that communicate directly with hypervisor
- Hypercall: software trap from guest OS to hypervisor, just as

syscall is software trap from app to kernel

hypercall : hypervisor = syscall : kernel

x86 architecture with paravirtualization
38

Paravirtualization: hypercall execution

Valeria Cardellini - SDCC 2022/23

• When application running in VM issues a guest OS system call,

through the hypercall the control flow jumps to hypervisor, which then

passes control back to guest OS

Source: “The Definitive Guide to XEN hypervisor”

39

Paravirtualization: pros & cons

Valeria Cardellini - SDCC 2022/23

• Pros (vs full virtualization):
– Relatively easier and more practical implementation

– Reduced overhead with respect to fast binary translation

– Does not require virtualization extensions from host CPU as

hw-assisted virtualization does

• Cons:
– Requires source code of OSs to be available

• OSs that cannot be ported (e.g., Windows) can use ad-hoc
device drivers that remap the execution of critical instructions
to the virtual API exposed by the VMM

– Cost of maintaining paravirtualized OSs

• Paravirtualized OS cannot longer run on hardware directly

40

Summing up different approaches

Valeria Cardellini - SDCC 2022/23 41

Fast Binary Translation

VMM reference architecture
• 3 main modules

– Dispatcher: VMM entry point that reroutes privileged

instructions issued by VMs to one of the other two modules

– Allocator (or scheduler): decides about the system

resources to be provided to VM

– Interpreter: executes a proper routine when VM executes a

privileged instruction

42Valeria Cardellini - SDCC 2022/23

VMM reference architecture: scheduler

Valeria Cardellini - SDCC 2022/23 43

• VMM scheduler: additional scheduling layer with
respect to traditional CPU scheduling

• How to schedule virtual CPUs on physical CPUs?

Memory virtualization
• In a non-virtualized environment

– One-level memory mapping: from virtual memory to physical

memory provided by page tables

– MMU and TLB hardware components to optimize virtual memory

performance

• In a virtualized environment
– All VMs share the same machine memory and VMM needs to

partition it among VMs

– Two-level memory mapping: from guest virtual memory to

guest physical memory to host physical memory

• Some terms
– Guest virtual memory: memory visible to apps; continuous virtual

address space presented by guest OS to apps

– Guest physical memory: memory visible to guest OS

– Host/machine physical memory: actual hw memory visible to

VMM
Valeria Cardellini - SDCC 2022/23 44

Two-level memory mapping

Valeria Cardellini - SDCC 2022/23

• Going from guest virtual memory to host physical memory
requires two-level memory mapping
GVA (guest virtual address) è GPA (guest physical
address) è HMA (host machine address)

• Guest physical address ≠ host machine address: why?
- Hints: many VMs; what does guest OS expect about its memory?

45

Shadow page tables
• To avoid unbearable performance drop due to extra

memory mapping, VMM maintains shadow page tables
(SPTs) and uses them to accelerate address mapping
– So to achieve direct mapping from GVA to HPA

Valeria Cardellini - SDCC 2022/23 46

• SPT directly maps GVA to HPA
– Guest OS creates and manages page tables (PTs)

for its virtual address space without modification

• But these PTs are not used by MMU hardware
– VMM creates and manages PTs that map virtual

pages directly to machine pages

• These VMM PTs are the shadow page tables and
are loaded into MMU

– VMM needs to keep SPTs consistent with changes

made by each guest OS to its PTs

Memory mapping with SPTs

Valeria Cardellini - SDCC 2022/23

• VMM uses TLB hardware to map virtual memory directly
to machine memory to avoid the two levels of translation
on every access (red arrow)

47

Shadow page tables consistency

• When guest OS changes its PTs, VMM needs to
update SPTs to enable a direct lookup

• How?
– VMM maps guest OS PTs as read only

– When guest OS writes to PTs, trap to VMM

– VMM applies write to SPT and guest OS PT, then returns

– Aka memory tracing

– Adds overhead

Valeria Cardellini - SDCC 2022/23 48

Challenges in memory virtualization with SPT

Valeria Cardellini - SDCC 2022/23

• Address translation
– Guest OS expects contiguous,

zero-based physical memory, but

underlying machine memory may

be non contiguous: VMM must

preserve this illusion

• Page table shadowing
– SPT implementation is complex

– VMM intercepts paging operations

and constructs copy of PTs

• Overheads
– SPTs consume significant host

memory

– SPTs need to be kept consistent

with guest PTs

– VM exits add to execution time

49

Hw support for memory virtualization

Valeria Cardellini - SDCC 2022/23

• Second Level Address
Translation (SLAT) is the
hardware-assisted solution
for memory virtualization
(Intel EPT and AMD RVI) to
translate GVA into HPA

• Using SLAT significant
performance gain with
respect to SPT: around 50%
for MMU intensive
benchmarks

50

• SPT is a software-managed solution: let’s consider
a more efficient hardware solution

Case study: Xen
• The most notable example of paravirtualization

www.xenproject.org (developed at University of Cambridge)

– Open-source type-1 (system VMM) hypervisor with microkernel

design

– Offers to guest OS a virtual interface (hypercall API) to whom

guest OS must refer to access machine physical resources

– Supports both paravirtualization (PV) and hardware-assisted

virtualization (HVM)

• With paravirtualization Xen requires PV-enabled guest OSs and
PV drivers (part of Linux kernel and other OSs)

– OSs ported to Xen: Linux, NetBSD, FreeBSD and
OpenSolaris

• With HVM also unmodified guest OSs (e.g., Windows)
– Foundation for commercial virtualization products (e.g., Oracle

VM and Qubes OS)

– Powers IaaS providers (Alibaba, Amazon, IBM, Rackspace, …)

• In 2017 Amazon began a shift to KVM for new EC2 instance types
51Valeria Cardellini - SDCC 2022/23

Valeria Cardellini - SDCC 2022/23

Xen: pros and cons
• Pros

– Thin hypervisor model

• 300K lines of code on x86, 65K on Arm
• Small footprint and interface (around 1MB in size)
• Scalable: up to 4,095 host CPUs with 16Tb of RAM
• More robust and secure than other hypervisors, see

https://youtu.be/sjQnAIJji4k
• But still vulnerable to attacks https://xenbits.xen.org/xsa/

– Continuously improved

– Flexibility in management

• Tuning for performance
– Low overhead (within 2%) with respect to bare metal

machine without virtualization

– Supports VM live migration

• Cons
- I/O performance still remains challenging

52

Valeria Cardellini - SDCC 2022/23

Xen architecture
• Goal of Cambridge group who designed Xen (late

1990s, first release in 2003)
- Design VMM capable of scaling to ~100 VMs running

applications without any modifications to ABI

• Microkernel design

• What can be paravirtualized?
- Privileged instructions

• Privileged instructions issued by guest OS are replaced with
hypercalls

- Page tables (memory access)

- Disk access and I/O devices

- Interrupts and timers

53

Xen architecture

https://wiki.xen.org/wiki/Xen_Project_Software_Overview

Valeria Cardellini - SDCC 2022/23
54

Xen architecture: hypervisor
• In charge of scheduling, memory management,

interrupt and device control
• Per-domain and per-vCPU info management

Valeria Cardellini - SDCC 2022/23
55

Valeria Cardellini - SDCC 2022/23

Xen architecture: domains
• 2 kinds of domains: control domain that starts and

manages all the others unprivileged domains
• Guest domains: DomU (unprivileged)

- Represent VM instances, each running its OS and apps

- Run on virtual CPUs (vCPUs)

- Totally isolated from hw (i.e., no privilege to access hw or I/O

functionality)

• Dom0 (control domain): specialized VM having special
privileges that is, capability to access hw directly,
handles all access to system’s I/O functions and
interacts with the other VMs
- Mandatory, initial domain started by Xen on boot

- Contains drivers for all devices and systems services: Device

Emulation (DS), XenStore/XenBus (XS), and Toolstack (TS)

56

Dom0 components: XenStore and Toolstack
• XenStore: information storage space shared between

domains managed by xenstored daemon
– Stores configuration and status information

– Implemented as hierarchical key-value storage

• When values are changed in the store, a watch function notifies listeners
(e.g., drivers) of changes of the key they have subscribed to

– Communicates with guest VMs via shared memory using Dom0

privileges

• Toolstack: allows a user to manage VM lifecycle (create,
shutdown, pause, migrate) and configuration
– To create a new VM, a user provides a configuration file describing

memory and CPU allocations and device configurations

– Toolstack parses this file and writes this information in XenStore

– Takes advantage of Dom0 privileges to map guest memory, to load

kernel and virtual BIOS and to set up initial communication channels

with XenStore and with virtual console when a new VM is created

Valeria Cardellini - SDCC 2022/23 57

CPU schedulers in Xen
• Hypervisor scheduler decides, among all the virtual

CPUs (vCPUs) of the various VMs, which ones should
execute on the physical CPUs (pCPUs)
- Further scheduling level with respect to those provided by OS

(scheduling of processes and scheduling of user-level threads

within processes)

• Xen allows to choose among different CPU schedulers
– Credit scheduler is the default one in Xen

• Scheduling algorithm goals:
– Make sure that domains get fair share of CPU

• Proportional share algorithm: allocates pCPU in proportion to the
number of shares (weights) assigned to vCPUs

– Keep the CPU busy

• Work-conserving algorithm: does not allow pCPU to be idle when
there is work to be done

– Schedule with low latency
58Valeria Cardellini - SDCC 2022/23

Credit scheduler
• Proportional fair share and work-conserving scheduler
• Each domain is assigned a weight and optionally a cap

(tunable parameters)
– Weight: relative CPU allocation per domain (default 256)
– Cap: maximum amount of CPU a domain can use

• cap = 0 (default): vCPU can receive any extra CPU (i.e., work-conserving)
• cap ≠ 0: limits amount of CPU that vCPU receives (e.g., 100 = 1 pCPU, 50 =

0.5 pCPU)

– The scheduler transforms the weight into a credit allocation for each
vCPU; as a vCPU runs, it consumes credits

• For each pCPU, the scheduler maintains a queue of vCPUs,
with all the under-credit vCPUs first, followed by over-credit
vCPUs; the scheduler picks the first vCPU in the queue

• Automatically load balances vCPUs across pCPUs on SMP
host
– Before a pCPU goes idle, it will consider other pCPUs in order to find

any runnable vCPU; this approach guarantees that no pCPU idles when
there is runnable work in the systemVa

le
ria

 C
ar

de
llin

i -
SD

C
C

 2
02

2/
23

wiki.xen.org/wiki/Credit_Scheduler 59

Performance comparison of hypervisors

• Developments in virtualization techniques and CPU
architectures have reduced the performance cost of
virtualization but still some overhead
– Especially when multiple VMs compete for hw resources

• We consider two performance comparison studies
– Papers on the course site

– “Old” studies but overall message still valid

• Take-home message
– No one-size-fits-all solution exists

– Different hypervisors show different performance

characteristics for varying workloads

Valeria Cardellini - SDCC 2022/23
60

Performance comparison of hypervisors
A component-based performance comparison of four
hypervisors (IM 2013)

– Microsoft Hyper-V, KVM, VMware vSphere and Xen, all with

hardware-assisted virtualization settings

– Analyzed components: CPU, memory, disk I/O and network I/O

• Results
– Performance depends on type of virtualized hw resource, but no

single hypervisor always outperforms the others

• vSphere performs the best, but the others perform respectably
• CPU and memory: lowest levels of overhead
• I/O and network: Xen overhead for small disk operations

• Takeaway: consider application type because different
hypervisors may be best suited for different workloads

Valeria Cardellini - SDCC 2022/23
61

Performance comparison of hypervisors
Performance overhead among three hypervisors: an
experimental study using Hadoop benchmarks (BigData
2013)
• Use Hadoop MapReduce apps to evaluate and

compare the performance impact of three hypervisors
– Commercial one (undisclosed), Xen, and KVM

• Results
– For CPU-intensive benchmarks, negligible performance

difference among hypervisors

– For I/O-intensive benchmarks significant performance

variations

• Commercial hypervisor best at disk writing, KVM best for disk
reading

• Xen best when combination of disk reading and writing with
CPU-intensive computation

Valeria Cardellini - SDCC 2022/23
62

VM portability
• VM image: a single file for each VM which contains a

bootable OS, data files, and applications
• Virtual machine images come in different formats
• How to import and export VM images and avoid

vendor lock-in?
• Open Virtualization Format (OVF)

– Open industry standard (ISO 17203) for packaging and

distributing VMs

• Virtual-platform agnostic

– Image stored in .ova file (Open Virtual Appliance)

– VM configuration specified in XML format within a .ovx file

– Supported by many virtualization products (Citrix, Hyper-V,

VMware, VirtualBox, …)

Valeria Cardellini - SDCC 2022/23 63

VM resizing and migration

• Useful techniques to deploy and manage
large-scale virtualized environments
– Dynamic resizing for vertical scaling (scale up,

scale down)
– Live migration

• Move VM between different physical machines (or data

centers) without stopping it

Valeria Cardellini - SDCC 2022/23 64

VM dynamic resizing
• Fine-grain mechanism with respect to VM migrating or

rebooting
– Example: app running on a VM starts consuming a lot of

resources and VM starts running out of RAM and CPU

– Solution: dynamically resize the VM (aka warm resize)

• Pros: more cost-effective and faster than VM reboot
• Cons: not supported by all virtualization products and

guest OSs
• What can be resized without stopping and rebooting

the VM?
– Number of virtual CPUs

– Memory

Valeria Cardellini - SDCC 2022/23 65

VM dynamic resizing: CPU
• To add or remove virtual CPUs (without VM turning off)
• Linux-based systems support CPU hot-plug/hot-unplug

https://www.kernel.org/doc/html/latest/core-api/cpu_hotplug.html
– Uses information in virtual file system sysfs (processor info is

in /sys/devices/system/cpu)
– /sys/devices/system/cpu/cpuX for cpuX (X = 0, 1, 2, …)

– To turn on cpu #5:

echo 1 > /sys/devices/system/cpu/cpu5/online
– To turn off cpu #5:

echo 0 > /sys/devices/system/cpu/cpu5/online

• Can be controlled using virsh
– Command line tool to configure and manage virtual machines,

available with some hypervisors (KVM, Xen)

– To set the number of vCPUs while VM is running (cannot

exceed the maximum number of vCPUs)

virsh setvcpus <vm_name> <vcpu_count> --current
Valeria Cardellini - SDCC 2022/23 66

VM dynamic resizing: memory
• Based on memory ballooning

– Mechanism used by many hypervisors (e.g., KVM, Xen and

VMware) to pass memory back and forth between hypervisor

and guest OSs

– In KVM: virtio_balloon driver

Valeria Cardellini - SDCC 2022/23

• When balloon deflates:
more memory for the VM
– Anyway, VM memory size

cannot exceed

maxMemory

• When balloon inflates
– Swap memory pages to

disk

67

Migrazione di VM

• Vantaggi della migrazione
– Utile in cluster e data center virtuali per:

• Consolidare l’infrastruttura

• Avere flessibilità nel failover

• Bilanciare il carico

• Svantaggi e problemi
– Supporto da parte del VMM
– Overhead di migrazione non trascurabile
– Migrazione in ambito WAN non banale

Valeria Cardellini - SDCC 2022/23 68

Migrazione di VM
• Approcci per migrare istanze di macchine virtuali tra

macchine fisiche:
– Stop and copy: si spegne la VM sorgente e si trasferisce

l’immagine della VM sull’host di destinazione, ma il downtime

può essere troppo lungo

• L’immagine della VM può essere grande e la banda di rete limitata
– Live migration: la VM sorgente è in funzione durante la

migrazione

Valeria Cardellini - SDCC 2022/23 69

Live migration largamente

usata da Google: più di 1M

di migrazioni al mese

Migrazione live di VM
• Prima di avviare la migrazione live

– Fase di setup: si seleziona l’host di destinazione (ad es. con

obiettivo di load balancing, energy efficiency, oppure server

consolidation)

• Cosa migrare? Memoria, storage e connessioni di
rete

• Come? In modo trasparente alle applicazioni in
esecuzione sulla VM
– Costo della migrazione live: vi è comunque un downtime

dell’applicazione

Valeria Cardellini - SDCC 2022/23 70

Migrazione live di VM: storage e rete
• Per migrare lo storage:

– Usare storage condiviso da host sorgente e destinazione

• SAN (Storage Area Network) o più economico NAS (Network
Attached Server) o file system distribuito (e.g., NFS, GlusterFS o
CEPH

– In assenza di storage condiviso: il VMM sorgente salva tutti i

dati della VM sorgente in un file di immagine, che viene

trasferito sull’host di destinazione

• Per migrare le connessioni di rete:
– La VM sorgente ha un indirizzo IP virtuale (eventualmente

anche MAC virtuale)

• Il VMM conosce il mapping tra IP virtuale e VM
– Se host sorgente e destinazione sono su stessa sottorete IP,

non occorre fare forwarding su host sorgente

• Invio di risposta ARP non richiesta da parte dell’host destinazione
per avvisare che l’indirizzo IP è stato spostato in una nuova
locazione ed aggiornare quindi le tabelle ARP

71Valeria Cardellini - SDCC 2022/23

Migrazione live di VM: memoria
• Per migrare la memoria (inclusi registri della CPU e

stato dei device driver):
1. Fase di pre-copy: il VMM copia in modo iterativo le pagine da

VM sorgente a VM di destinazione mentre la VM sorgente è in

esecuzione

• All’iterazione n copiate le pagine modificate durante iterazione n-1
2. Fase di stop-and-copy: la VM sorgente viene fermata e

vengono copiate pagine dirty, stato della CPU e dei device

• Tempo di downtime: da qualche msec a qualche sec, in funzione di
dimensione della memoria, tipo di app e banda di rete

3. Fasi di commitment e reactivation: la VM di destinazione

carica lo stato e riprende l’esecuzione; la VM sorgente viene

rimossa (ed eventualmente spento l’host sorgente)

• Noto come approccio pre-copy
– La memoria è copiata prima che l’esecuzione della VM

riprenda a destinazione

– Soluzione comune (es. KVM, VMWare, Xen, Google CE)
Valeria Cardellini - SDCC 2022/23 72

VM live migration: overall process

Valeria Cardellini - SDCC 2022/23 73
C. Clark et al., Live Migration of Virtual Machines”, NSDI 2005

VM live migration: alternatives for memory
• Pre-copy cannot migrate in a transparent manner

memory-intensive apps
– E.g., for write-intensive memory app, pre-copy is unable to

transfer memory faster than memory is dirtied by running app

• Two alternative approaches
– Post-copy

– Hybrid

• Post-copy
– CPU and device state are transferred immediately to

destination host followed by transfer of execution control to

destination host

– Memory is fetched on-demand if needed by the running VM

on the destination host (pull approach)

✓ Reduces downtime and total migration time

✗ Incurs app degradation due to page faults which must be

resolved over the network
Valeria Cardellini - SDCC 2022/23 74

VM live migration: alternatives for memory
• Hybrid

– Special case of post-copy migration: post-copy preceded by

a bounded pre-copy stage

– Idea: transfer a subset of the most frequently accessed

memory pages before VM execution is switched to the

destination, so to reduce app performance degradation after

the VM is resumed

✓ Pre-copy stage reduces the number of future network-bound

page faults as a large portion of VM memory is already pre-

copied

• No standard implementation of post-copy and hybrid
approaches in current hypervisors

Valeria Cardellini - SDCC 2022/23 75

Approaches for migrating memory

Valeria Cardellini - SDCC 2022/23 76

Courtesy of C.Vojtech, http://bit.ly/2h7wSWB

Live VM migration and hypervisors

• Live VM migration is supported by open-source and
commercial hypervisors
– E.g., KVM, Hyper-V, Xen, VirtualBox

• Can be controlled using virsh with different options
$> virsh migrate --live [--undefinesource] [--copy-
storage-all] [--copy-storage-inc] domain desturi
$> virsh migrate-setmaxdowntime domain downtime
$> virsh migrate-setspeed domain bandwidth
$> virsh migrate-getspeed domain

Valeria Cardellini - SDCC 2022/23 77

VM migration in WAN environments

• How to achieve live migration of VMs across multiple
geo-distributed data centers?
– Key challenge: maintain network connectivity and preserve

open connections during and after migration

– Limited support in open-source and commercial hypervisors

Valeria Cardellini - SDCC 2022/23 78

VM migration in WAN environments: storage

• Approaches to migrate storage in WAN
– Shared storage

• Cons: storage access time can be too slow

– On-demand fetching
• Transfer only some blocks to destination and then fetch

remaining blocks from source only when requested

• Cons: does not work if source crashes

– Pre-copy/write throttling
• Pre-copy VM disk image to destination whilst VM

continues to run, keep track of write operations on source

(delta) and then apply delta on destination

• If the write rate at the source is too fast, use write throttling

to slow down the VM so that migration can proceed

Valeria Cardellini - SDCC 2022/23 79

VM migration in WAN environments: network
• Approaches to migrate network connections in WAN

– IP tunneling
• Set up an IP tunnel between the old IP address at source VM

and the new IP address at destination VM
• Use tunnel to forward all packets that arrive at source VM for

the old IP address
• Once migration has completed and the VM can respond at its

new location, update the DNS entry with the new IP address
• Tear down the tunnel when no connections remain that use the

old IP address
• Cons: does not work if source VM crashes

– Virtual Private Network (VPN)
• Use MPLS-based VPN to create the abstraction of a private

network and address space shared by multiple data centers
– Software-Defined Networking

• Change the control plane, no need to change IP address!

Valeria Cardellini - SDCC 2022/23 80

OS-level virtualization

• So far system-level virtualization
• Let’s now consider operating system (OS) level

virtualization (or container-based virtualization)
• Allows to run multiple isolated (sandboxed) user-

space instances on top of a single OS
– Such instances are called:

• containers
• jails

• zones

• virtual environments

Valeria Cardellini - SDCC 2022/23
81

OS-level virtualization
• OS kernel allows the existence of multiple isolated

user-space instances, called containers
• Each container has:

- Its own set of processes, file systems, users, network

interfaces with IP addresses, routing tables, firewall rules, …

• Containers share the same OS kernel (e.g., Linux)

82
Valeria Cardellini - SDCC 2022/23

OS-level virtualization: mechanisms
• Which kernel mechanisms to manage containers?

– Need to isolate processes from each other in terms of sw

and hw (CPU, memory, …) resources

• Main mechanisms offered by Unix-like OS kernel
– chroot (change root directory)

• Allows to change the apparent root folder for the current
running process and its children

– cgroups (Linux-specific)

• Manage resources for groups of processes
– namespaces (Linux-specific)

• Per-process resource isolation

Valeria Cardellini - SDCC 2022/23 83

Mechanisms: namespaces
• Feature of Linux kernel that allows to isolate what a

set of processes can see in the operating
environment (processes, ports, files, ...)

• Kernel resources are partitioned so that one set of
processes sees one set of resources, while another
set of processes sees a different set of resources

• Different types of namespaces

Valeria Cardellini - SDCC 2022/23 84

Mechanisms: namespaces
• mnt: isolates mount points
• pid: isolates the PID space, so that each process only

sees itself and its children (PID 1, 2, 3, …)
• network: allows each container to have its dedicated

network stack: its own private routing table, set of IP
addresses, socket listing, firewall, and other
network-related resources

• user: isolates user and group IDs, e.g., allowing a
non-root user on the host to be mapped with the root
user within the container

• uts (Unix timesharing): provides dedicated host and
domain names

• ipc: provides dedicated shared memory for IPC, e.g.,
different Posix message queues

Valeria Cardellini - SDCC 2022/23
85

Mechanisms: cgroups

• cgroups: control groups
• Allows to limit, measure and isolate the use of hw

resources (CPU, memory, block I/O, network) of a set
of processes

• Low-level filesystem interface similar to sysfs and
procfs
– Default location in /sys/fs/cgroup

Valeria Cardellini - SDCC 2022/23
86

OS-level virtualization: pros
• VMM-based (type 1) vs container-based

virtualization

Valeria Cardellini - SDCC 2022/23
87

In a nutshell: lightweight
vs. heavyweight

OS-level virtualization: pros
With respect to VMM-based virtualization
• Minimal performance degradation

– Apps invoke system calls directly, without VMM indirection

• Minimum startup and shutdown times
– Seconds (even msec) per container, minutes per VM

• High density
– Hundreds of containers on a single physical machine (PM)

• Smaller image (footprint)
– Does not include OS kernel

• Ability to share memory pages among multiple
containers running on same PM

• Increased portability and interoperability
• Containerized apps independent of execution

environment
Valeria Cardellini - SDCC 2022/23 88

OS-level virtualization: cons
With respect to VMM-based virtualization
• Less flexibility

– Cannot run different OS kernels simultaneously on same PM

• Only native applications for supported OS kernel
– E.g., native app for Linux

• Less isolation and higher performance interference
on shared system resources
– Process-level isolation

• Greater risk of vulnerability and more threats
– Vulnerability in OS kernel can compromise entire system

– Since containers share OS kernel a single compromised

container could comprise host OS and other containers

Valeria Cardellini - SDCC 2022/23
89

OS-level virtualization: some products
• Docker

– The most popular application container
engine

• FreeBSD Jail
• LXC (LinuX Containers)

– Supported by mainline Linux kernel

Valeria Cardellini - SDCC 2022/23 90

– Provides system containers (full OS image), while Docker

provides application containers
– LXD: system container manager built on top of LXC

• Podman
– Supports Open Container Initiative (OCI) containers

– Docker compatible CLI

• OpenVZ and Virtuozzo Containers

OS-level virtualization: only Linux?

• Windows and OS X support container-based
virtualization
– See Docker Desktop

• Alternative: install a VM with Linux as guest OS and
then install a container-based virtualization product
inside VM
✗ Performance loss

Valeria Cardellini - SDCC 2022/23
91

DevOps and CI/CD

• Containers help in the shift to DevOps and CI/CD
(Continuous Integration and Continuous Deployment)

92

• DevOps = Development and
Operations
– Development methodology with a

set of practices aimed at bridging

the gap between Development and

Operations, emphasizing

communication and collaboration,

continuous integration, quality

assurance and delivery with

automated deployment

Valeria Cardellini - SDCC 2022/23

DevOps and CI/CD

93

• CI/CD = Continuous Integration and Continuous
Delivery/Deployment
– Continuous integration: sw development practice that

merges work of all developers working on the same project

– Continuous delivery ensures reliable and frequent releases

• In DevOps culture, the two practices are combined
to enable teams to ship software releases
effectively, reliably, and frequently

Valeria Cardellini - SDCC 2022/23

Containers and DevOps

• Containers are now a standard to build, package,
share, and deploy apps and all their dependencies
– Containers (more than VMs) allow developers to build code

collaboratively by sharing images while simplifying

deployment to different environments without further

configuration

94
Valeria Cardellini - SDCC 2022/23

Containers and DevOps

Valeria Cardellini - SDCC 2022/23
95

• Some tools for DevOps

Containers, microservices, and serverless

• Using containers
- App and all its dependencies into single package that can

run almost anywhere

- Using fewer resources than traditional VMs

• Containers are a key enabling technology for
microservices and serverless computing
– Wrap microservices and functions in containers

Valeria Cardellini - SDCC 2022/23
96

Docker

• Let’s go into Docker details
http://www.ce.uniroma2.it/courses/sdcc2223/slides/Docker.pdf

Valeria Cardellini - SDCC 2022/23
97

Container resizing

• As for VMs, we can resize and migrate containers

• Resizing (CPU, memory, I/O) changes container limits
• Dynamic (i.e., on running container without stopping

it)? Depends on container engine and underlying OS
• Resizing with Docker

$docker update [OPTIONS] CONTAINER [CONTAINER...]
– Some example

$ docker update --cpu-shares 512 containerID
$ docker update --cpu-shares 512 -m 300M containerID
– Low-level solution: cgroups limits can be changed on the fly

Valeria Cardellini - SDCC 2022/23 98

Live migration of containers

• As for VM migration, we need to:
– Save state

– Transfer state

– Restore from state

• State saving, transferring and restoring happen with
frozen apps: migration downtime
– Use memory pre-copy or memory post-copy

• No native support in container engines, requires
additional tool

• We also need to migrate container image (and
volumes) and network connections

Valeria Cardellini - SDCC 2022/23 99

Live migration of containers

Valeria Cardellini - SDCC 2022/23 100

• Use CRIU tool to support live migration (in Docker
and other container engines) through checkpointing
and restoration technique
– During checkpoint, CRIU freezes running container at source

host and collects information about its CPU state, memory

content, and process tree

– Collected information is passed on to destination host, and

container is resumed

– How to with Docker (experimental)

Container security
• Where attacks come from in a containerized

environment?

• Example of attack: container escape and privilege
escalation
– Attacker can leverage containerized app’s vulnerabilities to

breach its isolation boundary, gaining access to host

system’s resources

– Once attacker accesses host, it can escalate its privilege to

access other containers or run harmful code on host
Valeria Cardellini - SDCC 2022/23 101

Containers in the Cloud

• Containers and container development platforms as
first-class Cloud services

• Container-as-a-Service (CaaS)
– Amazon Elastic Container Service (ECS)

• Two launch modes: EC2 and Fargate (run containers without
having to provision or manage EC2 instances)

– Azure Container

– Google Cloud Run

Valeria Cardellini - SDCC 2022/23
102

Container orchestration
• Platforms for managing the deployment of multi-

container packaged applications in large-scale
clusters

• Allow to configure, provision, deploy, monitor, and
dynamically control containerized apps
– Used to integrate and manage containers at scale

• Examples
– Docker Swarm (see Docker slides)

– Kubernetes (next lesson)

– Amazon Elastic Container Service

– Google Kubernetes Engine

– Marathon

103
Valeria Cardellini - SDCC 2022/23

Fully managed Cloud services

Hypervisors and containers in Cloud

• Which virtualization technology for IaaS providers?
– Pros of hypervisor-based virtualization: greater security,

isolation, and flexibility (different OSs on same PM)

– Container-based virtualization pros: smaller-size deployment

and thus larger density, reduced startup and shutdown times

• Some question
– Containers inside VMs or on top of bare metal?

– Will containers replace VMs in Cloud offering?

Valeria Cardellini - SDCC 2022/23
104

Hypervisors and containers in Cloud
• Recent virtualization trend: combine security and

isolation provided by hypervisors with speed and
flexibility of containers

• Firecracker: open source, tiny VMM by Amazon for
creating and managing secure and efficient
containers and serverless functions
– Based on KVM but with minimalist design (excludes all non-

essential functionality: no BIOS, no PCI, etc.)

– Runs app in microVM: < 125 ms startup time and < 5 MB

memory footprint

– Written in Rust

Agache et al., Firecracker: Lightweight Virtualization for Serverless
Applications, NSDI 2020

Valeria Cardellini - SDCC 2022/23
105

New lightweight virtualization approaches

• Deployment strategies examined so far

Valeria Cardellini - SDCC 2022/23 106

New lightweight approaches to virtualization
• Microservices, serverless computing, IoT and

edge/fog computing demand for low-overhead (or
lightweight) virtualization techniques
– OS-level virtualization is not enough

– How to have tiny, one-shot virtualized environments that

run with great density and self-scale their resource needs?

– How to improve security?

• Lightweight OSs and unikernels
– Idea: avoid OS overhead and reduce attack surface

– OS overhead: services and tools coming with common OSs

(shells, editors, core utils, and package managers) are not

required

– Attack surface: images contain only the code that is strictly

necessary for app to run, resulting in minimal attack surface

Valeria Cardellini - SDCC 2022/23
107

Lightweight operating systems

• Minimal, container-focused OSs, typically with a
monolithic kernel architecture
– E.g.,: Fedora CoreOS, Rancher OS

• Fedora CoreOS
– Minimal, monolithic and compact Linux distribution

• Only minimal functionalities required for deploying apps inside
containers, together with built-in mechanisms for service
discovery, container management and configuration sharing

– Designed for large-scale deployments, mostly targeting

enterprises, with focus on automation, ease of application

deployment, security, and scalability

– Also installed on bare metal

Valeria Cardellini - SDCC 2022/23
108

Unikernels
• Unikernel

– Specialized, single-address-space machine image
constructed by using library OS

• Sort of very lightweight VM specialized to single app:

executable directly into kernel, resulting in monolithic

process that runs entirely in kernel mode

• Built by compiling high-level language directly into

specialized machine image that runs directly on hypervisor

(or bare metal)

Valeria Cardellini - SDCC 2022/23
109

VM
container

unikernel

Unikernels: pros and cons
• Pros:

– Lightweight and small (minimal memory footprint)

– Fast (no context switching)

– Secure (reduced attack surface)

– Fast boot (measured in ms)

• Cons:
– Significant engineering effort in order to port apps to

unikernel

– Limited debugging tools

– Single language runtime

See https://www.youtube.com/watch?v=oHcHTFleNtg

• Good news: cons almost solved with recent
products

Valeria Cardellini - SDCC 2022/23
110

Unikernels: products
• Some unikernel products (and supported programming

language):
– MirageOS (OCaml)

– OSv (C++, Go, Python and Java, …)

– Unikraft

• OSv
– Unikernel designed to run single unmodified Linux

application securely as microVM on top of hypervisor (e.g.,

KVM, Xen, Firecracker)

– Goal: isolation benefits of hypervisors without overhead of

guest OS

– To run app on OSv, you need to build an image by fusing OSv

kernel and app files together

Valeria Cardellini - SDCC 2022/23
111

Unikernels: products

• Early unikernel frameworks required
to write apps from scratch

• Unikraft
– Fast, secure and open-source Unikernel

Development Kit

– Goal: build unikernels easily, quickly and

without time-consuming expert work

– Supports multiple hypervisors (e.g., Xen

and KVM) and CPU architectures

– Ability to run wide range of apps (even

complex: Redis, Nginx, Memcached)

and languages

– POSIX compliant

– Written in C

Valeria Cardellini - SDCC 2022/23
112

Kuenzer et al., Unikraft: fast, specialized unikernels the easy way, EuroSys 2021

Performance of virtualization approaches
• Performance studies compare hypervisor vs.

lightweight virtualization
• Overall result: overhead introduced by containers is

almost negligible
– Fast instantiation time

– Small per-instance memory footprint

– High density

•… but paid in terms of security

Valeria Cardellini - SDCC 2022/23
113

Virtualization Boot time Image size Memory
footprint

Programming
language
dependance

Live
migration
support

VM ~5/10 sec ~1 GB ~100 MB No Yes

Container ~0.8/1 sec ~50 MB ~5 MB No Non-native

Unikernel <50 msec <50 MB ~8 MB Yes No

Source: Consolidate IoT edge computing with lightweight virtualization

Performance of virtualization approaches
Va

le
ria

 C
ar

de
llin

i -
SD

C
C

 2
02

2/
23

114

• Startup time for 10, 20 and 30

instances (includes overhead

of overall provisioning time

caused by OpenStack)

• Difficulties in securing containers due

to growth of Linux syscall API

From [1] From [2]

[1] Time provisioning evaluation of KVM, Docker and Unikernels in a cloud platform,
CCGrid’16

[2] My VM is lighter (and safer) than your container, SOSP’17

• VM boot times grow linearly with VM size

