= TOR VERGATA Macroarea di Ingegneria

UNIVERSITA DEGLI STUDI DI ROMA Dipartimento di Ingegneria Civile e Ingegneria Informatica

A

Virtualization

Corso di Sistemi Distribuiti e Cloud Computing
A.A. 2022/23

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Virtualization

» High-level abstraction to hide details of underlying
implementation

» Abstraction of computing resources
— Logical view different from physical one

Logical view (virtual system)

Physical view Virtualization technologies
(real system)

Real system
Hw and sw resources

 How? Decouple user-perceived architecture and

behavior of hw and sw resources from their physical
realization

+ Goals:
— Aqility, flexibility, performance, reliability, security, ...

Valeria Cardellini - SDCC 2022/23



Valeria Cardellini - SDCC 2022/23

Virtualization of resources

System (hw and sw) resources virtualization
— Virtual machine, container, ...

Storage virtualization
— Storage Area Network (SAN), ...

Network virtualization
— Virtual LAN (VLAN), Virtual Private Network (VPN), ...

Data center virtualization

3 major components:

— Guest .

— Host

— Virtualization layer P y g \
. ) g .m P

Guest: interacts with |s S _|7

virtualization layer rather [ Virtalzation Laver |
than with host

Host: original
environment where
guest is supposed to be
managed

Host

Virtualization layer: responsible for recreating same or
different environment where guest will operate

Valeria Cardellini - SDCC 2022/23 3



Taxonomy of virtualization techniques

[Vinualization Model ]

[ How it is done? ] [ Technique ]
[ 1 [ 1 | 1
— Emulation Application
T —
¢ Execution | p Level High-Level VM ] Programming
Environment rocess Level igh-Leve Language
g 4 -
TS
—— . .  Storage ] i
= “—— Multiprogramming Os;,)er?tmg
Virtualization —— - ystem
'::“ Network Hardware-Assisted
Virtualization
1 Full Virtualization
— System Level — Hardware
SR | Paravirtualization
— Partial Virtualization

Execution environment virtualization is the oldest,
most popular and developed area = our focus

Valeria Cardellini - SDCC 2022/23

Virtual Machine

 Virtual Machine (VM) allows to represent hw/sw
resources of a machine differently from their reality
— E.g., VM hw resources (CPU, network card, ...) different from
physical resources of the real machine
— E.g., swresources (OS, ...) different from sw resources of
the real machine
« A single physical machine can be used to host
several computing environments
— Multiple VMs on the same physical machine

VM1 VM2 VM3

Virtualization layer

Valeria Cardellini - SDCC 2022/23



Virtualizzazione: cenni storici

« |l concetto di VM é un’idea “vecchia”, essendo
stato definito negli anni '60 in un contesto
centralizzato

— ldeato per consentire al software legacy (esistente) di
essere eseguito su mainframe molto costosi e condividere
in modo trasparente le (scarse) risorse fisiche

— Ad es. il mainframe IBM System/360-67

« Negli anni ‘80, con il passaggio ai PC il problema
della condivisione trasparente delle risorse di
calcolo viene risolto dai SO multitasking

— L’interesse per la virtualizzazione svanisce

Valeria Cardellini - SDCC 2022/23

Virtualizzazione: cenni storici

 Alla fine degli anni '90, I'interesse rinasce per rendere
meno onerosa la programmazione hw special-
purpose
— VMware fondata nel 1998

« Si acuisce il problema dei costi di gestione e di
sottoutilizzo di piattaforme hw e sw eterogenee
— L’hw cambia piu velocemente del sw (middleware e

applicazioni)

— Aumenta il costo di gestione e diminuisce la portabilita

» Diventa nuovamente importante la condivisione
dell’hw e delle capacita di calcolo non usate per
ridurre i costi dell'infrastruttura

* E’ una delle tecnologie abilitanti del Cloud computing

Valeria Cardellini - SDCC 2022/23



Virtualizzazione: vantaggi

» Facilita la compatibilita, portabilita, interoperabilita e
migrazione di applicazioni ed ambienti
— Indipendenza dall’hw
— Create Once, Run Anywhere

— VM legacy: eseguire vecchi SO o vecchie applicazioni su
nuove piattaforme

Program
Program r Interface A
Implementation of
__________ interface s, = mimicking A on B
Hardware/software system A | | _________ Inteface B =~
Hardware/software system B

Valeria Cardellini - SDCC 2022/23

Virtualizzazione: vantaggi

» Permette il consolidamento dei server in un data center,
con vantaggi economici, gestionali ed energetici
— Multiplexing di molteplici VM sullo stesso server
— Obiettivo: ridurre il numero totale di server usati, utilizzandoli in
modo piu efficiente
— Vantaggi:
* Riduzione di costi, consumi energetici e spazio occupato

+ Semplificazione nella gestione, manutenzione ed upgrade dei

server
* Riduzione dei tempi di downtime, tramite live migration di VM

Virtual Virtual Virtual
; ; Machine 3

HTTP App. DB Machine 1 Machine 2 achine

Server Server Server HTTP App. DB

Server Server Server

OSs 1 0s 2 0s 3 - 0S 1 0s 2 oS3

Hardware Hardware Hardware
Virtual Machine Monitor(VMM)
Hardware

Valeria Cardellini - SDCC 2022/23



Virtualizzazione: vantaggi

» Permette di isolare componenti malfunzionanti o
soggetti ad attacchi di sicurezza, incrementando
affidabilita e sicurezza delle applicazioni

— Macchine virtuali di differenti applicazioni non possono avere
accesso alle rispettive risorse

— Bug del software, crash, virus in una VM non possono
danneggiare altre VM in esecuzione sulla stessa macchina

fisica
» Permette di isolare le prestazioni di diverse VM

— Tramite lo scheduling delle risorse fisiche che sono
condivise tra molteplici VM in esecuzione sulla stessa
macchina fisica

* Permette di bilanciare il carico sui server
— Tramite la migrazione della VM da un server ad un altro

Valeria Cardellini - SDCC 2022/23

Uso di ambienti di esecuzione virtualizzati

10

* In ambito personale e didattico

— Per eseguire simultaneamente diversi SO sulla stessa
macchina

— Per semplificare I'installazione di sw

* |In ambito professionale
— Per debugging, testing e sviluppo di applicazioni

* In ambito aziendale
— Per consolidare l'infrastruttura del data center

— Per garantire business continuity: incapsulando interi
sistemi in singoli file (system image) che possono essere
replicati, migrati o reinstallati su qualsiasi server

Valeria Cardellini - SDCC 2022/23

1



Interfaces in computer system

Lo
API
Libraries W
ABI '
* System calls
Operating System ‘ A3
ISA |
i System ISA User ISA
Hardware
Applications:

 use library functions (A1)
* make system calls (A2)
« execute machine instructions (A3)

Valeria Cardellini - SDCC 2022/23 12

Interfaces in computer system and virtualization

At which level can virtualization be implemented?

 Strictly related to computer system interfaces

— Hw/sw interface (user-level ISA: primarily for computation,
non-privileged machine instructions called by every program)
[interface 4]

— Hw/sw interface (system ISA: primarily for system resource
management, privileged machine instructions) [interface 3]

— System calls [interface 2] o Application o
» ABI (Application Binary Interface): ., |Librries X
interface 2 + interface 4 perting syt /ﬁ
— Library calls (API) [interface 1] Execum:‘-vh‘ardm U
. . . . . . System interconnect tx:snl‘:ﬁ'gn Haies
 Virtualization goal: mimic behavior (oue)
of these interfaces e =
networking
Smith and Nair, , IEEE Computers, 2005

Valeria Cardellini - SDCC 2022/23 13



Levels of virtualization implementation

 Virtualization can be implemented at various
operational levels:
— ISA level

— Hardware level (aka system VMs)

Our

focus

— Operating system level (aka containers)
— Library level

— User application level (aka process VMS)

Valeria Cardellini - SDCC 2022/23

Levels of virtualization implementation

14

o |SA level

— Goal: emulate a given ISA by ISA of host machine

* E.g., MIPS binary code can run on x86-based host with
help of ISA emulation

— ISA emulation can be done through code
interpretation or dynamic binary translation

» Code interpretation is slow: every source instruction is
interpreted by emulator in order to execute native ISA
instructions

* Dynamic binary translation is faster: converts in blocks
rather than instruction by instruction

Valeria Cardellini - SDCC 2022/23

15



Levels of virtualization implementation

« Hardware level (aka system VMSs)

— Goal: virtualize host resources, such as its
processors, memory, and I/O devices

— Based on Virtual Machine Monitor (VMM), aka
hypervisor

* VMM handles interaction with underlying hw platform for
CPU, memory, and |/O resource access

Valeria Cardellini - SDCC 2022/23 16

Levels of virtualization implementation

« Hardware level (aka system VMSs)

— Provides a complete environment in which
multiple VMs can coexist
* VMM manages hardware resources and shares them

among multiple VMs and provide isolation and
protection of VMs

 When a VM performs a privileged instruction or
operation that directly interacts with shared hw, VMM
intercepts the instruction, checks it for correctness, and

performs it Multiple instances of combinations
<applications, OS>
— Examples: VMware, KVM, |
Xen, Parallels, VirtualBox ' e

I
m
Operating system

Virtual machine monitor

Hardware

Valeria Cardellini - SDCC 2022/23

17



Levels of virtualization implementation

« Operating system level (aka containers)
— Goal: create multiple isolated containers
— Examples: Docker, Linux Containers

* Library level

— Goal: create execution environment to run apps in a
host environment that does not suite native apps
» Rather than creating a VM to run full OS and apps

— Examples:

. : runs Windows apps on top of POSIX-compliant OS
by translating Windows API calls into POSIX calls on-the-fly

Valeria Cardellini - SDCC 2022/23 18

Levels of virtualization implementation

« User application level (aka process VMSs)
— Virtual platform that executes an individual process
— Provides virtual ABI or APl environment for user
applications

— Application compiled into intermediary, portable
code (e.g., Java bytecode) and executed in runtime
environment provided by process VM

— Examples: JVM, .NET CLR Multiple instances of combinations
<application, runtime system>

|
'
Application =
System Calls User ISA |:E
I Runtime system
I I
System ISA | ABI Operating system
(T4
( Hardware | Hardware

Valeria Cardellini - SDCC 2022/23 19




Levels of virtualization implementation: summing up

Relative merits of virtualization at different levels

Level of
Virtualization

Functional
Description

Example
Packages

Merits, App Flexibility/
Isolation, Implementation
Complexity

Instruction Set
Architecture

Hardware-Level
Virtualization

Operating System
Level

Run-Time Library
Level

Emulation of a guest
ISA by host

Virtualization on
top of bare-metal
hardware

Isolated containers of
user app with isolated
resources

Creating VM via run-
time library through
API hooks

Dynamo, Bird,
Bochs, Crusoe

XEN,
VMWare,
Virtual PC

Docker Engine,

Jail, FVM

Wine, vCUDA,

WABI, LxRun

Low performance, high app
flexibility, median complexity
and isolation

High performance and complexity,

median app flexibility, and good
app isolation

Highest performance, low app
flexibility and best isolation, and
average complexity

Average performance, low app
flexibility and isolation, and low
complexity

User Application Deploy HLL VMs at JVM, .NET Low performance and app
Level user app level CLR, flexibility, very high complexity
Panot and app isolation

Level of Higher Application Implementation Application
Implementation Performance Flexibility Complexity Isolation
Instruction Set X XXXXX XXX XXX
Architecture (ISA)
Hardware-Level XXXXX XXX XXXXX XXXX
Virtualization
Operating XXXXX XX XXX XX
System Level
Run-Time Library XXX XX XX XX
Support
User Application XX XX XXXXX XXXXX

Valeria Cardellini - SDCC 2022/23

Level

System-level virtualization: terminology

20

Let’s focus on system-level virtualization
(achieved through VMM or hypervisor)

Host: base platform on top of which VMs are
executed; made of:
— Physical machine
— Possible host OS

- VMM

Guest: everything inside a single VM

— Guest OS and applications executed inside the VM

Valeria Cardellini - SDCC 2022/23

21



System-level virtualization: taxonomy

 Let’s classify solutions according to:
1. Where to deploy VMM

» System VMM (aka type-1, native or bare-
metal hypervisor)

» Hosted VMM (aka type-2 hypervisor)

2. How to virtualize instruction execution?
 Full virtualization
— Software-assisted
— Hardware-assisted
* Para-virtualization

Valeria Cardellini - SDCC 2022/23 22

System-level virtualization: taxonomy

Virtualization
OS level Hardware level
| Where? | | How? |
Type-1 Type-2 Para-virtualization Full virtualization
|
! l : I

Monolithic Micro-kernel _ _

Valeria Cardellini - SDCC 2022/23
23



VMM di sistema o VMM ospitato

In quale livello dell’architettura di sistema si colloca il VMM?
— Direttamente sull’hardware: VMM di sistema
— Sopra il SO host: VMM ospitato

guest
A

— 4 ) 4 )
Application Application ( Application ] Application
— Q
Guest Guest Guest 0S-1 LGuest 0S-n J %
0S-1 -
OS-n VM-1 VM-n z)h
VM-1 VM-n Virtual Machine Monitor
g J \_ J

\ [

Jsoy

Virtual Machine MonitorI Host OS I -
<
Hardware I Hardware I
N~

VMM di sistema VMM ospitato

host

Valeria Cardellini - SDCC 2022/23
24

VMM di sistema o VMM ospitato

« VMM di sistema (type-1): eseguito direttamente sull’hw,
offre funzionalita di virtualizzazione integrate in un SO
semplificato

— L’hypervisor pud avere un’architettura a microkernel (solo
funzioni di base, no device driver) o monolitica

— Esempi: Xen, KVM, VMware ESX, Hyper-V

« VMM ospitato (type-2): eseguito sul SO host, accede
alle risorse hw tramite le chiamate di sistema del SO host

— Interagisce con il SO host tramite 'ABI ed emula I'I|SA di hw
virtuale per i SO guest

— Vantaggio: pud usare il SO host per gestire le periferiche ed
utilizzare servizi di basso livello (es. scheduling delle risorse)

— Vantaggio: non occorre modificare il SO guest
— Svantaggio: degrado delle prestazioni rispetto a VMM di sistema

— Esempi: Bochs, Parallels Desktop, VirtualBox
Valeria Cardellini - SDCC 2022/23

25



Virtualizzazione completa o paravirtualizzazione

Quale modalita di dialogo tra la VM ed il VMM per
I'accesso alle risorse fisiche, ovvero come gestire
I'esecuzione di istruzioni privilegiate?

— Virtualizzazione completa

— Paravirtualizzazione

Confronto qualitativo di diverse soluzioni di virtualizzazione

Valeria Cardellini - SDCC 2022/23 26

Virtualizzazione completa o paravirtualizzazione

 Virtualizzazione completa (full)

— I VMM espone ad ogni VM interfacce hw simulate
funzionalmente identiche a quelle della sottostante macchina
fisica

— I VMM intercetta le richieste di accesso privilegiato all’hw
(ad es. istruzioni di I1/0) e ne emula il comportamento atteso

— Esempi: KVM, VMware ESXi, Microsoft Hyper-V

* Paravirtualizzazione

— I VMM espone ad ogni VM interfacce hw simulate
funzionalmente simili (ma non identiche) a quelle della
sottostante macchina fisica

— Non viene emulato I'hw, ma viene creato uno strato
minimale di sw (Virtual Hardware API) per assicurare la
gestione delle VM ed il loro isolamento

— Esempi: Xen, Oracle VM (basato su Xen), PikeOS

Valeria Cardellini - SDCC 2022/23 27



Virtualizzazione completa: pro e contro

« Vantagai
— Non occorre modificare il SO guest

— Isolamento completo tra le istanze di VM: sicurezza, facilita
di emulare diverse architetture

« Svantaggi

— VMM piu complesso

— Necessaria la collaborazione del processore per
implementazione efficace: perché?

Valeria Cardellini - SDCC 2022/23 28

Problemi per realizzare la virtualizzazione di sistema

» L’architettura non virtualizzata del UK User Apps
processore opera secondo almeno  ring2

Direct
2 livelli (ring) di protezione: Ring 1 Exgeution
supervisor e user and OS

: Requests
Ring 0 -:m
— Ring 0: privilegi massimi

o e —
Ring 3: privilegi minimi
» Con la virtualizzazione: Architettura x86 senza virtualizzazione
— VMM opera in supervisor mode (ring 0)
— SO guest e applicazioni (quindi la VM) operano in user mode
(ring 3 o ring 1 per SO guest)
— Problema del ring deprivileging: il SO guest opera in un ring
che non gli € proprio = non pud eseguire istruzioni privilegiate
(e.g., 1idt in x86, load interrupt descriptor table)
— Problema del ring compression: poiché applicazioni e SO guest

eseguono allo stesso livello, occorre proteggere lo spazio del
SO

Valeria Cardellini - SDCC 2022/23 29



Virtualizzazione completa: soluzioni

« Come risolvere il ring deprivileging?

— Trap-and-emulate: quando il SO guest tenta di eseguire
un’istruzione privilegiata, occorre notificare un’eccezione
(trap) al VMM e trasferirgli il controllo; il VMM controlla la
correttezza dell’operazione richiesta e ne esegue ("emula") il

comportamento

— Le istruzioni non privilegiate eseguite dal SO guest sono

invece eseguite direttamente

guest

user processes

privileged instruction

operating

g system
o
©

uin}al —

user mode

VMM

Valeria Cardellini - SDCC 2022/23

emulate action — update

VMM

L

VCPU

kernel mode

30

Popek and Goldberg virtualization requirements

defined a set of conditions
sufficient for a computer architecture to support system

virtualization efficiently

» Privileged instructions: cause a trap if executed in user

mode

— Privileged state: determines resource allocation (privilege

mode, addressing context, exception vectors, ... )

« Sensitive instructions: change underlying resources
(e.g., doing I/O or changing page tables) or observe
information that indicates current privilege level (thus
exposing that guest OS does not run on bare metal)

— Can be control- or behavior-sensitive
« control sensitive: changes privileged state
* behavior sensitive: exposes privileged state

* [nnocuous instructions: not sensitive

Valeria Cardellini - SDCC 2022/23

31



Popek and Goldberg virtualization requirements

* Theorem: “For any conventional third-generation
computer, an effective VMM may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

* In other words... trap-and-emulate: it is sufficient that
all the instructions that could affect the correct
functioning of VMM (sensitive instructions) always trap
and pass control to VMM

« Seems easy but...

Valeria Cardellini - SDCC 2022/23 32

Popek and Goldberg virtualization requirements

* Implementation of trap-and-emulate is challenging:
common architectures are non-virtualizable according
to Popek and Goldberg’s theorem

— x86: many instructions are non-virtualizable, because are
sensitive but un-privileged
* E.g., pushf (push flags) is not privileged
— MIPS: mostly virtualizable, but...

« Kernel registers $k0, $k1 (needed to save/restore state) are
user-accessible

— ARM: mostly virtualizable, but
* Some instructions are undefined in user-mode

Valeria Cardellini - SDCC 2022/23 33



Virtualizzazione completa: soluzioni

» Come realizzare il meccanismo di trap?

— Alivello hardware se il processore fornisce supporto alla
virtualizzazione = hardware-assisted CPU virtualization

— A livello software se il processore non fornisce supporto alla
virtualizzazione = fast binary translation

Valeria Cardellini - SDCC 2022/23

34

Hardware-assisted CPU virtualization

* Hardware-assisted CPU virtualization (Intel VT-x and
AMD-V) provides two new CPU operating modes
(root mode and non-root mode), each supporting all 4

x86 protection rings
- VMM runs in root mode

(Root-Ring 0), while guest

OSs run in guest mode in

their original privilege levels

(Non-Root Ring 0): no
longer ring deprivileging
and ring compression
problems

- VMM can control guest
execution through VM
control data structures in
memory

Valeria Cardellini - SDCC 2022/23

Ring 3 Direct
Execution
. f User
Non-root Ri 2 o
Mc())r(li;oo ng Requests
Privilege Ring 1
Levels
Ring 0 e EeN] OS Requests
Trap to VMM
Root Mode without Binary
Privilege VMM Translation or

Levels Paravirtualization

Host Computer
System Hardware
x86 architecture with full virtualization

and hardware-assisted CPU
virtualization

35



Hardware-assisted CPU virtualization: VT-x

VMEntry

VMEXit

Virtual-machine control structure

/

host-state

guest-state

« VMX root: intended for hypervisor operations (like x86
without VT-x)

* VMX non-root: intended to support VMs

» When executing VMEntry operation, processor state is
loaded from guest-state of VM scheduled to run, then
control is transferred from hypervisor to VM

» VMEXxit saves processor state in guest-state area of
running VM,; it loads processor state from host-state,

then transfers control to hypervisor
Valeria Cardellini - SDCC 2022/23

36

Fast binary translation

Il meccanismo di trap al VMM per le istruzioni privilegiate &
offerto solo dai processori con supporto hardware per la
virtualizzazione (Intel VT-x e AMD-V)

— 1A-32 non lo &: come realizzare la virtualizzazione completa in

mancanza del supporto hw?

Fast binary translation: il VMM scansiona il codice prima
della sua esecuzione per sostituire blocchi contenenti
istruzioni privilegiate con blocchi funzionalmente equivalents
e contenenti istruzioni per la notifica di eccezioni al VMM

| blocchi tradotti sono
eseguiti direttamente sull’hw
e conservati in una cache
per eventuali riusi futuri

Maggiore complessita del
VMM e minori prestazioni

Architettura x86 con virtualizzazione
completa e fast binary translation

Valeria Cardellini - SDCC 2022/23

. Direct
Ring 3 ( execution
) of user
ng 2 [ ] requests
Ring 1
Binary
Ring 0 translation
of OS

Host computer

requests
system hardware J

37



Paravirtualization

« Non-transparent virtualization solution

- Guest OS kernel must be modified to let it invoke the virtual
APl exposed by hypervisor

» Non-virtualizable instructions are replaced by
hypercalls that communicate directly with hypervisor

- Hypercall: software trap from guest OS to hypervisor, just as
syscall is software trap from app to kernel

hypercall : hypervisor = syscall : kernel gy, 3

- N
( Application j ( Application j Ring 1 S

Direct
execution
of user
requests

‘Hypercalls’ to the

Para-virtualized Para-virtualized . Para-virtualized iz
guest operating guest operating Ring 0 guest OS virtualization
system system layer replace
N A o . e nonvirtualizable
L Hypervisor/ VMM ) 2 Virtualization s OS instructions
Hardware Host computer
~ - system hardware
Valeria Cardellini - SDCC 2022123 x86 architecture with paravirtualization ..

Paravirtualization: hypercall execution

Native Paravirtualized
Ring3
Application Application |
i
|
|
Ring2 :
13
|
|
i 1
Ringl v
(E Kernel
|
!4 2
Ring0 |
Kernel L Hypervisor —
> System Call

————— » Fast System Call

----- » Hypercall

* When application running in VM issues a guest OS system call,
through the hypercall the control flow jumps to hypervisor, which then
passes control back to guest OS

Source: “The Definitive Guide to XEN hypervisor”

Valeria Cardellini - SDCC 2022/23 39



Paravirtualization: pros & cons

* Pros (vs full virtualization):
- Relatively easier and more practical implementation
- Reduced overhead with respect to fast binary translation

- Does not require virtualization extensions from host CPU as
hw-assisted virtualization does

« Cons:

- Requires source code of OSs to be available

* OSs that cannot be ported (e.g., Windows) can use ad-hoc
device drivers that remap the execution of critical instructions
to the virtual APl exposed by the VMM

- Cost of maintaining paravirtualized OSs
» Paravirtualized OS cannot longer run on hardware directly

Valeria Cardellini - SDCC 2022/23

Summing up different approaches

Paravirtualization Fast Binary Translation HW-Assisted
Ring3 | UserApps User Apps _J ’\_ User Apps
Ring2 | | @
= T >
) Paravirtualized = —
Ring1 | Guest S 3 _ Guest0S ’| < ‘,
R - I
= -}
Ring 0 T & VMM 2 [ Guest OS }l
.
S }
S VMM
| HostHW . HostHW | | Host HW

Valeria Cardellini - SDCC 2022/23

INIWA 01 deu] 1sanbay SO



VMM reference architecture

3 main modules

— Dispatcher. VMM entry point that reroutes privileged
instructions issued by VMs to one of the other two modules

— Allocator (or scheduler): decides about the system
resources to be provided to VM

— Interpreter. executes a proper routine when VM executes a
privileged instruction

Virtual Machine Instance

Instructions (ISA)

& — " _
o SR

| N
Dispatcher Interpreter

Routines
Allocator

Virtual Machine Manager

Valeria Cardellini - SDCC 2022/23

VMM reference architecture: scheduler

42

* VMM scheduler: additional scheduling layer with
respect to traditional CPU scheduling

VMM
Guest 0OS Guest 0S Guest 0S
[ Process ] [ Process ] [ Process ]
process process process
scheduler scheduler scheduler

Y © O

Vsl | VMM Scheduler

Virtual Machine Monitor

* How to schedule virtual CPUs on physical CPUs?

Valeria Cardellini - SDCC 2022/23

43



Memory virtualization

* |n a non-virtualized environment

— One-level memory mapping: from virtual memory to physical
memory provided by page tables

— MMU and TLB hardware components to optimize virtual memory

performance

* In a virtualized environment
— All VMs share the same machine memory and VMM needs to

partition it among VMs

— Two-level memory mapping: from guest virtual memory to

guest physical memory to host physical memory

« Some terms

— Guest virtual memory: memory visible to apps; continuous virtual

address space presented by guest OS to apps
— Guest physical memory: memory visible to guest OS

— Host/machine physical memory: actual hw memory visible to

VMM

Valeria Cardellini - SDCC 2022/23

Two-level memory mapping

44

VM1

VM2

Processl Process?2

Processl

Process2

/

Virtual VA
memory

\U

Physical PA
memory

IR
o

Machine MA
memory

» Going from guest virtual memory to host physical memory
requires two-level memory mapping

GVA (guest virtual address) = GPA (guest physical
address) = HMA (host machine address)

» Guest physical address # host machine address: why?
- Hints: many VMs; what does guest OS expect about its memory?

Valeria Cardellini - SDCC 2022/23

45



Shadow pag

e tables

» To avoid unbearable performance drop due to extra
memory mapping, VMM maintains shadow page tables
(SPTs) and uses them to accelerate address mapping

— So to achieve direct mapping from GVA to HPA

» SPT directly maps GVA to HPA

— Guest OS creates and manages page tables (PTs)
for its virtual address space without modification

* But these PTs are not used by MMU hardware

— VMM creates and manages PTs that map virtual

pages directly to machine pages

« These VMM PTs are the shadow page tables and

are loaded into MMU

— VMM needs to keep SPTs consistent with changes

made by each guest OS to its PTs

Valeria Cardellini - SDCC 2022/23

Memory mapping with SPTs

Virtual VA
memory

Physical PA

memory
Machine MA /
memory

46

VM1

VM2

Processl Process?2 Processl

Process2

E /

/

Virtual VA
memory

Physical PA
memory

ke

Machine MA
memory

* VMM uses TLB hardware to map virtual memory directly
to machine memory to avoid the two levels of translation

on every access (red arrow)

Valeria Cardellini - SDCC 2022/23

47



Shadow page tables consistency

* When guest OS changes its PTs, VMM needs to
update SPTs to enable a direct lookup

* How?
— VMM maps guest OS PTs as read only
— When guest OS writes to PTs, trap to VMM
— VMM applies write to SPT and guest OS PT, then returns
— Aka memory tracing
— Adds overhead

Valeria Cardellini - SDCC 2022/23 48

Challenges in memory virtualization with SPT

» Address translation

— Guest OS expects contiguous,
zero-based physical memory, but
underlying machine memory may
be non contiguous: VMM must
preserve this illusion

« Page table shadowing VM Exis

— SPT implementation is complex
— VMM intercepts paging operations
and constructs copy of PTs
» Overheads

— SPTs consume significant host,
memory '

— SPTs need to be kept consistent
with guest PTs

— VM exits add to execution time
Valeria Cardellini - SDCC 2022/23 49

Memory



Hw support for memory virtualization

« SPT is a software-managed solution: let's consider
a more efficient hardware solution

» Second Level Address
Translation (SLAT) is the
hardware-assisted solution
for memory virtualization
(Intel EPT and AMD RVI) to
translate GVA into HPA

» Using SLAT significant
performance gain with
respect to SPT: around 50%

for MMU intensive piiﬂ;’t’ir
benchmarks (EPT)
Valeria Cardellini - SDCC 2022/23 50

Case study: Xen x’eﬁ

» The most notable example of paravirtualization
(developed at University of Cambridge)

— Open-source type-1 (system VMM) hypervisor with microkernel
design

— Offers to guest OS a virtual interface (hypercall API) to whom
guest OS must refer to access machine physical resources

— Supports both paravirtualization (PV) and hardware-assisted
virtualization (HVM)

» With paravirtualization Xen requires PV-enabled guest OSs and
PV drivers (part of Linux kernel and other OSs)

— OSs ported to Xen: Linux, NetBSD, FreeBSD and
OpenSolaris

* With HVM also unmodified guest OSs (e.g., Windows)
— Foundation for commercial virtualization products (e.g., Oracle
VM and Qubes OS)
— Powers laaS providers (Alibaba, Amazon, IBM, Rackspace, ...)

* In 2017 Amazon began a shift to KVM for new EC2 instance types
Valeria Cardellini - SDCC 2022/23 51




Xen: pros and cons

* Pros

— Thin hypervisor model
» 300K lines of code on x86, 65K on Arm
« Small footprint and interface (around 1MB in size)
» Scalable: up to 4,095 host CPUs with 16Tb of RAM
* More robust and secure than other hypervisors, see

» But still vulnerable to attacks
— Continuously improved

— Flexibility in management
* Tuning for performance

— Low overhead (within 2%) with respect to bare metal
machine without virtualization

— Supports VM live migration
« Cons
- 1/0 performance still remains challenging

Valeria Cardellini - SDCC 2022/23

Xen architecture

52

* Goal of Cambridge group who designed Xen (late
1990s, first release in 2003)

- Design VMM capable of scaling to ~100 VMs running
applications without any modifications to ABI

» Microkernel design

« What can be paravirtualized?

- Privileged instructions

* Privileged instructions issued by guest OS are replaced with

hypercalls
- Page tables (memory access)
- Disk access and I/O devices

- Interrupts and timers

Valeria Cardellini - SDCC 2022/23

53



Xen architecture

VM, (DomU,) VM, (DomU,) VM, (DomU,)

Applications Applicéiions . Applications

Guest OS Guest OS Guest OS

Dom0 Kernel

| Naie Driver

https://wiki.xen.org/wiki/Xen Project Software Overview

Valeria Cardellini - SDCC 2022/23

Xen architecture: hypervisor

54

* In charge of scheduling, memory management,
interrupt and device control

* Per-domain and per-vCPU info management

VM, (DomU,) VM, (DomU,) VM, (DomU,)

Applications Applications Applications

Guest OS Guest OS Guest OS

Valeria Cardellini - SDCC 2022/23

55



Xen architecture: domains

« 2 kinds of domains: control domain that starts and
manages all the others unprivileged domains

» Guest domains: DomU (unprivileged)
- Represent VM instances, each running its OS and apps
- Run on virtual CPUs (vCPUs)

- Totally isolated from hw (i.e., no privilege to access hw or I/O
functionality)

* DomO (control domain): specialized VM having special
privileges that is, capability to access hw directly,
handles all access to system’s 1/O functions and
interacts with the other VMs

- Mandatory, initial domain started by Xen on boot

— Contains drivers for all devices and systems services: Device
Emulation (DS), XenStore/XenBus (XS), and Toolstack (TS)

Valeria Cardellini - SDCC 2022/23 56

DomO components: XenStore and Toolstack

« XenStore: information storage space shared between
domains managed by xenstored daemon
— Stores configuration and status information
— Implemented as hierarchical key-value storage

* When values are changed in the store, a watch function notifies listeners
(e.g., drivers) of changes of the key they have subscribed to

— Communicates with guest VMSs via shared memory using DomO
privileges
» Toolstack: allows a user to manage VM lifecycle (create,
shutdown, pause, migrate) and configuration
— To create a new VM, a user provides a configuration file describing
memory and CPU allocations and device configurations
— Toolstack parses this file and writes this information in XenStore

— Takes advantage of DomO privileges to map guest memory, to load
kernel and virtual BIOS and to set up initial communication channels
with XenStore and with virtual console when a new VM is created

Valeria Cardellini - SDCC 2022/23 57




Valeria Cardellini - SDCC 2022/23

CPU schedulers in Xen

» Hypervisor scheduler decides, among all the virtual

CPUs (vCPUs) of the various VMs, which ones should
execute on the physical CPUs (pCPUs)

- Further scheduling level with respect to those provided by OS
(scheduling of processes and scheduling of user-level threads
within processes)

» Xen allows to choose among different CPU schedulers

— Credit scheduler is the default one in Xen

» Scheduling algorithm goals:

— Make sure that domains get fair share of CPU

* Proportional share algorithm: allocates pCPU in proportion to the
number of shares (weights) assigned to vCPUs

— Keep the CPU busy

» Work-conserving algorithm: does not allow pCPU to be idle when
there is work to be done

— Schedule with low latency

Valeria Cardellini - SDCC 2022/23

Credit scheduler

58

Proportional fair share and work-conserving scheduler

Each domain is assigned a weight and optionally a cap
(tunable parameters)

— Weight: relative CPU allocation per domain (default 256)

— Cap: maximum amount of CPU a domain can use

* cap = 0 (default): vCPU can receive any extra CPU (i.e., work-conserving)

» cap # 0: limits amount of CPU that vCPU receives (e.g., 100 = 1 pCPU, 50 =
0.5 pCPU)

— The scheduler transforms the weight into a credit allocation for each
vCPU; as a vCPU runs, it consumes credits
For each pCPU, the scheduler maintains a queue of vCPUs,
with all the under-credit vCPUs first, followed by over-credit
vCPUs; the scheduler picks the first vCPU in the queue

Automatically load balances vCPUs across pCPUs on SMP
host

— Before a pCPU goes idle, it will consider other pCPUs in order to find
any runnable vCPU; this approach guarantees that no pCPU idles when
there is runnable work in the system

59



Performance comparison of hypervisors

» Developments in virtualization techniques and CPU
architectures have reduced the performance cost of
virtualization but still some overhead

— Especially when multiple VMs compete for hw resources

» We consider two performance comparison studies

— Papers on the course site
— “Old” studies but overall message still valid

« Take-home message
— No one-size-fits-all solution exists
— Different hypervisors show different performance
characteristics for varying workloads

Valeria Cardellini - SDCC 2022/23

Performance comparison of hypervisors

(IM 2013)
— Microsoft Hyper-V, KVM, VMware vSphere and Xen, all with
hardware-assisted virtualization settings
— Analyzed components: CPU, memory, disk I/O and network 1/O

* Results
— Performance depends on type of virtualized hw resource, but no
single hypervisor always outperforms the others
» vSphere performs the best, but the others perform respectably
* CPU and memory: lowest levels of overhead
 1/0O and network: Xen overhead for small disk operations

« Takeaway: consider application type because different
hypervisors may be best suited for different workloads

Valeria Cardellini - SDCC 2022/23

60

61



Performance comparison of hypervisors

(BigData
2013)

» Use Hadoop MapReduce apps to evaluate and
compare the performance impact of three hypervisors
— Commercial one (undisclosed), Xen, and KVM

* Results
— For CPU-intensive benchmarks, negligible performance
difference among hypervisors
— For I/O-intensive benchmarks significant performance
variations

« Commercial hypervisor best at disk writing, KVM best for disk
reading

+ Xen best when combination of disk reading and writing with
CPU-intensive computation

Valeria Cardellini - SDCC 2022/23

VM portability

62

« VM image: a single file for each VM which contains a
bootable OS, data files, and applications

 Virtual machine images come in different formats

* How to import and export VM images and avoid
vendor lock-in?

» Open Virtualization Format (OVF)

— Open industry standard (ISO 17203) for packaging and
distributing VMs

* Virtual-platform agnostic
— Image stored in .ova file (Open Virtual Appliance)
— VM configuration specified in XML format within a .ovx file

— Supported by many virtualization products (Citrix, Hyper-V,
VMware, VirtualBox, ...)

Valeria Cardellini - SDCC 2022/23

63



VM resizing and migration

« Useful techniques to deploy and manage
large-scale virtualized environments

— Dynamic resizing for vertical scaling (scale up,
scale down)

— Live migration

* Move VM between different physical machines (or data
centers) without stopping it

Valeria Cardellini - SDCC 2022/23

VM dynamic resizing

64

* Fine-grain mechanism with respect to VM migrating or
rebooting

— Example: app running on a VM starts consuming a lot of
resources and VM starts running out of RAM and CPU

— Solution: dynamically resize the VM (aka warm resize)
* Pros: more cost-effective and faster than VM reboot
« Cons: not supported by all virtualization products and
guest OSs

« What can be resized without stopping and rebooting
the VM?
— Number of virtual CPUs
— Memory

Valeria Cardellini - SDCC 2022/23

65



VM dynamic resizing: CPU

« To add or remove virtual CPUs (without VM turning off)
 Linux-based systems support CPU hot-plug/hot-unplug
https://www.kernel.org/doc/html/latest/core-api/cpu_hotplug.html
— Uses information in virtual file system sysfs (processor info is
in /sys/devices/system/cpu)
- /sys/devices/system/cpu/cpuX forcpuX (X=0,1,2,...)
— To turn on cpu #5:
echo 1 > /sys/devices/system/cpu/cpu5/online
— To turn off cpu #5:
echo @ > /sys/devices/system/cpu/cpu5/online
« Can be controlled using virsh

— Command line tool to configure and manage virtual machines,
available with some hypervisors (KVM, Xen)

— To set the number of vCPUs while VM is running (cannot
exceed the maximum number of vCPUs)

virsh setvcpus <vm_name> <vcpu_count> --current
Valeria Cardellini - SDCC 2022/23 66

VM dynamic resizing: memory

« Based on memory ballooning
— Mechanism used by many hypervisors (e.g., KVM, Xen and
VMware) to pass memory back and forth between hypervisor
and guest OSs

— In KVM.: virtio_balloon driver  Space for other Balloon

applications

|
« When balloon deflates: l

more memory for the VM

- Anyway, VM memory size
cannot exceed
maxMemory SOSSSSODSBEHE

* When balloon inflates

- Swap memory pages to
disk currentMemory

maxMemory
Valeria Cardellini - SDCC 2022/23 67



Migrazione di VM

* Vantaggi della migrazione

— Utile in cluster e data center virtuali per:
» Consolidare l'infrastruttura
* Avere flessibilita nel failover
» Bilanciare il carico

« Svantaggi e problemi
— Supporto da parte del VMM
— Overhead di migrazione non trascurabile
— Migrazione in ambito WAN non banale

Valeria Cardellini - SDCC 2022/23 68

Migrazione di VM

» Approcci per migrare istanze di macchine virtuali tra
macchine fisiche:
— Stop and copy: si spegne la VM sorgente e si trasferisce

I'immagine della VM sull’host di destinazione, ma il downtime
puo essere troppo lungo

* L'immagine della VM puo essere grande e la banda di rete limitata

‘ — Live migration: la VM sorgente € in funzione durante la
migrazione

— — > Computing Resources Sharing ‘ Tenant A
—> Live Migration of VMs ‘ Tenant B

Live migration largamente
usata da Google: piu di 1M
di migrazioni al mese

Virtual
Machines

Physical
Servers

( ‘| Local Area Netwak e ide Area
Im A etwork
, e

Il A 4

O0-O0 @] Shared Storage

Valeria Cardellini - SDCC 2022/23

69



Migrazione live di VM

* Prima di avviare la migrazione live
— Fase di setup: si seleziona I'host di destinazione (ad es. con
obiettivo di load balancing, energy efficiency, oppure server
consolidation)
« Cosa migrare? Memoria, storage e connessioni di

rete

« Come? In modo trasparente alle applicazioni in
esecuzione sulla VM

— Costo della migrazione live: vi € comunque un downtime
dell’applicazione
Virtual Machines > Migration Traffic Virtual Machines

------ 2> Application Traffic

D S R I ] >

...................

LAN Network

Migration Migration
Source Server Destination Server

Valeria Cardellini - SDCC 2022/23 70

Migrazione live di VM: storage e rete

* Per migrare lo storage:

— Usare storage condiviso da host sorgente e destinazione
* SAN (Storage Area Network) o piu economico NAS (Network
Attached Server) o file system distribuito (e.g., NFS, GlusterFS o
CEPH
— In assenza di storage condiviso: il VMM sorgente salva tutti i
dati della VM sorgente in un file di immagine, che viene
trasferito sull’host di destinazione

» Per migrare le connessioni di rete:

— La VM sorgente ha un indirizzo IP virtuale (eventualmente
anche MAC virtuale)

* || VMM conosce il mapping tra IP virtuale e VM

— Se host sorgente e destinazione sono su stessa sottorete IP,
non occorre fare forwarding su host sorgente

* Invio di risposta ARP non richiesta da parte dell’host destinazione
per avvisare che l'indirizzo IP & stato spostato in una nuova
locazione ed aggiornare quindi le tabelle ARP
Valeria Cardellini - SDCC 2022/23 71




Migrazione live di VM: memoria

» Per migrare la memoria (inclusi registri della CPU e
stato dei device driver):

1. Fase di pre-copy: il VMM copia in modo iterativo le pagine da
VM sorgente a VM di destinazione mentre la VM sorgente & in
esecuzione
» All'iterazione n copiate le pagine modificate durante iterazione n-1

2. Fase di stop-and-copy: la VM sorgente viene fermata e
vengono copiate pagine dirty, stato della CPU e dei device

+ Tempo di downtime: da qualche msec a qualche sec, in funzione di
dimensione della memoria, tipo di app e banda di rete

3. Fasi di commitment e reactivation: la VM di destinazione
carica lo stato e riprende I'esecuzione; la VM sorgente viene
rimossa (ed eventualmente spento I'host sorgente)

* Noto come approccio pre-copy

— La memoria é copiata prima che I'esecuzione della VM
riprenda a destinazione

— Soluzione comune (es. KVM, VMWare, Xen, Google CE)

Valeria Cardellini - SDCC 2022/23

VM live migration: overall process

72

VM running normally on | Stage 0: Pre-Migration

Host A Active VM on Host A

Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

¥

Al

Stage 1: Reservation
Initialize a container on the target host

Overhead due to copying Stage 2: Iterative Pre-copy
Enable shadow paging

Copy dirty pages in successive rounds. -
owmime e Yoo =
. Stage 3: Stop and copy
(VM Out of Service) Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B
Stage 4: Commitment !
VM state on Host A is released
- ]
— T T R EE T *‘ """""""""
VM 1/}
Hos:u;nmg RS Stage 5: Activation !
VM starts on Host B
Connects to local devices
Resumes normal operation
Clark et al., ”  NSDI 2005

C.
Valeria Cardellini - SDCC 2022/23

73



VM live migration: alternatives for memory

* Pre-copy cannot migrate in a transparent manner
memory-intensive apps
— E.g., for write-intensive memory app, pre-copy is unable to
transfer memory faster than memory is dirtied by running app
» Two alternative approaches
— Post-copy
— Hybrid
* Post-copy

— CPU and device state are transferred immediately to
destination host followed by transfer of execution control to
destination host

— Memory is fetched on-demand if needed by the running VM
on the destination host (pull approach)

v/ Reduces downtime and total migration time

X Incurs app degradation due to page faults which must be

resolved over the network
Valeria Cardellini - SDCC 2022/23

VM live migration: alternatives for memory

74

* Hybrid
— Special case of post-copy migration: post-copy preceded by
a bounded pre-copy stage

— ldea: transfer a subset of the most frequently accessed
memory pages before VM execution is switched to the
destination, so to reduce app performance degradation after
the VM is resumed

v Pre-copy stage reduces the number of future network-bound
page faults as a large portion of VM memory is already pre-
copied

» No standard implementation of post-copy and hybrid
approaches in current hypervisors

Valeria Cardellini - SDCC 2022/23

75



Approaches for migrating memory

* Pre-copy Live Migration

CTransfer dirty pages Pause VM on source Transfer CPU state Resume VM on dest.

Migration time

* Post-copy Live Migration

Pause VM on source Transfer CPU state Resume VM on dest. Pull dirty pages
Migration time

» Hybrid Live Migration
Transfer dirty pages  Pause VMon src.  Transfer CPU state  Resume VM on dst. Pull dirty pages
Migration time

Courtesy of C.Vojtech, htip://bit.ly/2h7wSWB

Valeria Cardellini - SDCC 2022/23 76

Live VM migration and hypervisors

» Live VM migration is supported by open-source and
commercial hypervisors
— E.g., KVM, Hyper-V, Xen, VirtualBox

» Can be controlled using virsh with different options

$> virsh migrate --Llive [--undefinesource] [--copy-
storage-all] [--copy-storage-inc] domain desturi

$> virsh migrate-setmaxdowntime domain downtime
$> virsh migrate-setspeed domain bandwidth
$> virsh migrate-getspeed domain

Valeria Cardellini - SDCC 2022/23 77



VM migration in WAN environments

» How to achieve live migration of VMs across multiple
geo-distributed data centers?

— Key challenge: maintain network connectivity and preserve
open connections during and after migration

— Limited support in open-source and commercial hypervisors

VM state
migration

VM disk
migration

Valeria Cardellini - SDCC 2022/23 78

VM migration in WAN environments: storage

* Approaches to migrate storage in WAN

— Shared storage
» Cons: storage access time can be too slow

— On-demand fetching

» Transfer only some blocks to destination and then fetch
remaining blocks from source only when requested

» Cons: does not work if source crashes

— Pre-copy/write throttling

* Pre-copy VM disk image to destination whilst VM
continues to run, keep track of write operations on source
(delta) and then apply delta on destination

+ If the write rate at the source is too fast, use write throttling
to slow down the VM so that migration can proceed

Valeria Cardellini - SDCC 2022/23 79



VM migration in WAN environments: network

» Approaches to migrate network connections in WAN

— IP tunneling

» Set up an IP tunnel between the old IP address at source VM
and the new IP address at destination VM

» Use tunnel to forward all packets that arrive at source VM for
the old IP address

* Once migration has completed and the VM can respond at its
new location, update the DNS entry with the new IP address

* Tear down the tunnel when no connections remain that use the
old IP address

» Cons: does not work if source VM crashes

— Virtual Private Network (VPN)

+ Use MPLS-based VPN to create the abstraction of a private
network and address space shared by multiple data centers

— Software-Defined Networking
+ Change the control plane, no need to change IP address!

Valeria Cardellini - SDCC 2022/23 80

OS-level virtualization

« So far system-level virtualization

» Let’s now consider operating system (OS) level
virtualization (or container-based virtualization)

» Allows to run multiple isolated (sandboxed) user-
space instances on top of a single OS

— Such instances are called:
» containers
* jails
e zones
* virtual environments

Valeria Cardellini - SDCC 2022/23
81



OS-level virtualization

« OS kernel allows the existence of multiple isolated
user-space instances, called containers
« Each container has:

- Its own set of processes, file systems, users, network
interfaces with IP addresses, routing tables, firewall rules, ...

» Containers share the same OS kernel (e.g., Linux)

P p3[pgpo] | : [P5]Pg] [ ] \

Fa12s00/6) | | 016004 | ! * | 0170009 | !

E l/roots/wnl | E E |/roots/vm2 | E B, "8 E E
\ [ Kernel Code /

Valeria Cardellini - SDCC 2022/23
82

OS-level virtualization: mechanisms

* Which kernel mechanisms to manage containers?
— Need to isolate processes from each other in terms of sw
and hw (CPU, memory, ...) resources
» Main mechanisms offered by Unix-like OS kernel

— chroot (change root directory)

» Allows to change the apparent root folder for the current
running process and its children

— cgroups (Linux-specific)
* Manage resources for groups of processes
— namespaces (Linux-specific)
* Per-process resource isolation

MNT—Filesystem access and structure NET—Network access and structure

chroot ()—Controls location
of filesystem root

UTS—Host and domain name

A process in
isolation

USR—Usernames and identifiers

PID—Process identifiers and IPC—Communication by
process capabilities shared memory

Valeria Cardellini - SDCC 2022/23 83



Mechanisms: namespaces

Feature of Linux kernel that allows to isolate what a
set of processes can see in the operating
environment (processes, ports, files, ...)

Kernel resources are partitioned so that one set of
processes sees one set of resources, while another
set of processes sees a different set of resources

Different types of namespaces

Valeria Cardellini - SDCC 2022/23

Mechanisms: namespaces

84

mnt: isolates mount points

pid: isolates the PID space, so that each process only
sees itself and its children (PID 1, 2, 3, ...)

network: allows each container to have its dedicated
network stack: its own private routing table, set of IP
addresses, socket listing, firewall, and other
network-related resources

user: isolates user and group IDs, e.g., allowing a
non-root user on the host to be mapped with the root
user within the container

uts (Unix timesharing): provides dedicated host and
domain names

ipc: provides dedicated shared memory for IPC, e.g.,
different Posix message queues

Valeria Cardellini - SDCC 2022/23

85



Mechanisms: cgroups

* cgroups: control groups

» Allows to limit, measure and isolate the use of hw
resources (CPU, memory, block I/O, network) of a set
of processes

* Low-level filesystem interface similar to sysfs and
procfs
— Default location in /sys/fs/cgroup

Valeria Cardellini - SDCC 2022/23
86

OS-level virtualization: pros

* VMM-based (type 1) vs container-based
virtualization

I

Type 1l Type 2

In a nutshell: lightweight I " " |

vs. heavyweight
Valeria Cardellini - SDCC 2022/23

87



OS-level virtualization: pros

With respect to VMM-based virtualization

Minimal performance degradation

— Apps invoke system calls directly, without VMM indirection
Minimum startup and shutdown times

— Seconds (even msec) per container, minutes per VM
High density

— Hundreds of containers on a single physical machine (PM)
Smaller image (footprint)

— Does not include OS kernel

Ability to share memory pages among multiple
containers running on same PM

Increased portability and interoperability

Containerized apps independent of execution
environment

Valeria Cardellini - SDCC 2022/23

OS-level virtualization: cons

88

With respect to VMM-based virtualization

Less flexibility
— Cannot run different OS kernels simultaneously on same PM

Only native applications for supported OS kernel
— E.g., native app for Linux

Less isolation and higher performance interference
on shared system resources
— Process-level isolation

Greater risk of vulnerability and more threats
— Vulnerability in OS kernel can compromise entire system

— Since containers share OS kernel a single compromised
container could comprise host OS and other containers

Valeria Cardellini - SDCC 2022/23

89



OS-level virtualization: some products

 Docker
— The most popular application container
engine
 FreeBSD Jail ﬂ ﬂ ﬁ ca
« LXC (LinuX Containers)

— Supported by mainline Linux kernel

— Provides system containers (full OS image), while Docker
provides application containers

— LXD: system container manager built on top of LXC
» Podman

— Supports Open Container Initiative (OCI) containers

— Docker compatible CLI

OpenVZ and Virtuozzo Containers

Valeria Cardellini - SDCC 2022/23

OS-level virtualization: only Linux?

Full Full
os os

Host OSkemel

Applicaion containers Systemcontaners

90

* Windows and OS X support container-based
virtualization

— See Docker Desktop

» Alternative: install a VM with Linux as guest OS and
then install a container-based virtualization product
inside VM

X Performance loss

Valeria Cardellini - SDCC 2022/23

91



DevOps and CI/CD

» Containers help in the shift to DevOps and CI/CD
(Continuous Integration and Continuous Deployment)

» DevOps = Development and

Operations

— Development methodology with a
set of practices aimed at bridging
the gap between Development and
Operations, emphasizing
communication and collaboration,
continuous integration, quality
assurance and delivery with = ' T

TEST MONITOR

automated deployment g=h = ¥

N
e
i

DEV OPS
/

oot <[> % \ Qg ‘Ql DEPLOY

Valeria Cardellini - SDCC 2022/23 PLAN RELEASE
92

DevOps and CI/CD

» CI/CD = Continuous Integration and Continuous
Delivery/Deployment

— Continuous integration: sw development practice that
merges work of all developers working on the same project
— Continuous delivery ensures reliable and frequent releases

* In DevOps culture, the two practices are combined
to enable teams to ship software releases
effectively, reliably, and frequently

Valeria Cardellini - SDCC 2022/23
93



Containers and DevOps

» Containers are now a standard to build, package,

share, and deploy apps and all their dependencies
— Containers (more than VMs) allow developers to build code
collaboratively by sharing images while simplifying
deployment to different environments without further
configuration

Developers ITOps

BUILD SHIP RUN

Development Environments Secure Content & Collaboration Deploy, Manage, Scale

Valeria Cardellini - SDCC 2022/23
94

Containers and DevOps

« Some tools for DevOps

® kubernetes

git { i , ; gJenkins o

4 Jira

dGradIe { ;

Maven

Valeria Cardellini - SDCC 2022/23
95



Containers, microservices, and serverless

« Using containers

- App and all its dependencies into single package that can
run almost anywhere

- Using fewer resources than traditional VMs

« Containers are a key enabling technology for
microservices and serverless computing
— Wrap microservices and functions in containers

Valeria Cardellini - SDCC 2022/23

Docker

96

» Let’s go into Docker details
http://www.ce.uniromaZ2.it/courses/sdcc2223/slides/Docker.pdf

Valeria Cardellini - SDCC 2022/23

97



Container resizing

» As for VMs, we can resize and migrate containers

» Resizing (CPU, memory, I/0O) changes container limits

» Dynamic (i.e., on running container without stopping
it)? Depends on container engine and underlying OS

« Resizing with Docker
$docker update [OPTIONS] CONTAINER [CONTAINER...]

— Some example
$ docker update --cpu-shares 512 containerID
$ docker update --cpu-shares 512 -m 300M containerID

— Low-level solution: cgroups limits can be changed on the fly

Valeria Cardellini - SDCC 2022/23

Live migration of containers

98

« As for VM migration, we need to:
— Save state
— Transfer state
— Restore from state

» State saving, transferring and restoring happen with
frozen apps: migration downtime
— Use memory pre-copy or memory post-copy

« No native support in container engines, requires
additional tool

« We also need to migrate container image (and
volumes) and network connections

Valeria Cardellini - SDCC 2022/23

99



Live migration of containers

+ Use tool to support live migration (in Docker
and other container engines) through checkpointing
and restoration technique

— During checkpoint, CRIU freezes running container at source
host and collects information about its CPU state, memory
content, and process tree

— Collected information is passed on to destination host, and
container is resumed

— How to (experimental)
Before . i After
I During Migration I : .
Migration | I Migration
Node B | | : : : | Node B
Cont: g d P A | 1
g:e:tlgjr I Pre-dump i : Dljmp 3 i Runningin Node B |
- I ; ! Transfef th | Freeze the i | Transfirthe g h i
Memory copy i Memory copy ' r:nnesr:;:y = | Containerin | (e:nt State: S.ate i c:,s,t:;:etr :1 I
~ | 1 n i pages | NodeA | i | information!  Noge B l R
| : 1 e—— :
Node A Container running in Node A ; X " ; ) Node A
| ‘ ‘ : : Downtime ' Cleared
Container
! N|
) Migration time 1
|
Valeria Cardellini - SDCC 2022/23 100

Container security

 \Where attacks come from in a containerized
environment?

Container 1 ""> — Application attacks container
[ App A ] [ App B j : = = Container attacks other containers
i Host (H) - wun P Host attacks container
u H

» Example of attack: container escape and privilege
escalation

— Attacker can leverage containerized app’s vulnerabilities to
breach its isolation boundary, gaining access to host
system’s resources

— Once attacker accesses host, it can escalate its privilege to

access other containers or run harmful code on host
Valeria Cardellini - SDCC 2022/23 101



Containers in the Cloud

» Containers and container development platforms as
first-class Cloud services

» Container-as-a-Service (CaaS)
- (ECS)

* Two launch modes: EC2 and Fargate (run containers without
having to provision or manage EC2 instances)

Valeria Cardellini - SDCC 2022/23 102

Container orchestration

» Platforms for managing the deployment of multi-
container packaged applications in large-scale
clusters

» Allow to configure, provision, deploy, monitor, and
dynamically control containerized apps
— Used to integrate and manage containers at scale

 Examples
— Docker Swarm (see Docker slides)
— Kubernetes (next lesson)
— Amazon Elastic Container Service
— Google Kubernetes Engine
— Marathon

Fully managed Cloud services

Valeria Cardellini - SDCC 2022/23
103



Hypervisors and containers in Cloud

» Which virtualization technology for laaS providers?

— Pros of hypervisor-based virtualization: greater security,
isolation, and flexibility (different OSs on same PM)

— Container-based virtualization pros: smaller-size deployment
and thus larger density, reduced startup and shutdown times

» Some question
— Containers inside VMs or on top of bare metal?
— Will containers replace VMs in Cloud offering?

Valeria Cardellini - SDCC 2022/23 104

Hypervisors and containers in Cloud

* Recent virtualization trend: combine security and
isolation provided by hypervisors with speed and
flexibility of containers

. . open source, tiny VMM by Amazon for
creating and managing secure and efficient
containers and serverless functions

— Based on KVM but with minimalist design (excludes all non-
essential functionality: no BIOS, no PCI, etc.)

— Runs app in microVM: < 125 ms startup time and <5 MB
memory footprint

— Written in Rust

Agache et al.,
, NSDI 2020

Valeria Cardellini - SDCC 2022/23 105



New lightweight virtualization approaches

» Deployment strategies examined so far

e B
e 3

Application

)

Application RT & Libs

L J

4 3\ -

~ N

J/

RT & Libraries [ e ] | Container

\

N\

a ( ) f
Application OS [RT & Libraries] 0s
) L ) \ J ” \
[ RT & Libraries | | Virtual Machine Container § Virtual Machine Unikernel / App
_ J \_ y, J - J
0S | Hypervisor oS Hypervisor Hypervisor
. J ~ J -« J \C J J
e ) ( ) ' N [ N =\
Hardware Hardware Hardware Hardware Hardware
J & J . 7 J . J
Operating System  Virtual Machine Container on Container on Unikernel
on Native HW on Hypervisor Native HW VM & Hypervisor  on Hypervisor
Valeria Cardellini - SDCC 2022/23 106

New lightweight approaches to virtualization

« Microservices, serverless computing, loT and
edge/fog computing demand for low-overhead (or
lightweight) virtualization techniques
— OS-level virtualization is not enough

— How to have tiny, one-shot virtualized environments that
run with great density and self-scale their resource needs?

— How to improve security?

» Lightweight OSs and unikernels
— |dea: avoid OS overhead and reduce attack surface

— OS overhead: services and tools coming with common OSs
(shells, editors, core utils, and package managers) are not
required

— Attack surface: images contain only the code that is strictly
necessary for app to run, resulting in minimal attack surface

Valeria Cardellini - SDCC 2022/23
107



Lightweight operating systems

« Minimal, container-focused OSs, typically with a
monolithic kernel architecture

— E.g.,: Fedora CoreOS, Rancher OS

— Minimal, monolithic and compact Linux distribution

» Only minimal functionalities required for deploying apps inside
containers, together with built-in mechanisms for service
discovery, container management and configuration sharing

— Designed for large-scale deployments, mostly targeting
enterprises, with focus on automation, ease of application

deployment, security, and scalability
— Also installed on bare metal

Valeria Cardellini - SDCC 2022/23
108

Unikernels

* Unikernel
— Specialized, single-address-space machine image

constructed by using library OS
» Sort of very lightweight VM specialized to single app:
executable directly into kernel, resulting in monolithic
process that runs entirely in kernel mode
* Built by compiling high-level language directly into
specialized machine image that runs directly on hypervisor
(or bare metal)

=l [y .
VM <<= container
unikernel
=Rk

Lib | App
Lib | App
Lib | App

Lib | App
Lib | App
Lib | App

Kernel
Kernel
Kernel

Kernel Kernel [Kernel Kernel
Hypervisor Hypervisor
Hardware Hardware Hardware
Unikernel

Valeria Cardellini - SDCC 2022/23 M Container 0



Unikernels: pros and cons

* Pros:

Lightweight and small (minimal memory footprint)
Fast (no context switching)

Secure (reduced attack surface)

Fast boot (measured in ms)

 Cons:

Significant engineering effort in order to port apps to
unikernel

Limited debugging tools
Single language runtime
See

* Good news: cons almost solved with recent
products

Valeria Cardellini - SDCC 2022/23

Unikernels: products

110

» Some unikernel products (and supported programming

lan

guage):
MirageOS (OCaml)
OSv (C++, Go, Python and Java, ...)

Unikraft

Unikernel designed to run single unmodified Linux
application securely as microVM on top of hypervisor (e.qg.,
KVM, Xen, Firecracker)

Goal: isolation benefits of hypervisors without overhead of
guest OS

To run app on OSv, you need to build an image by fusing OSv
kernel and app files together

Valeria Cardellini - SDCC 2022/23

M



Unikernels: products

 Early unikernel frameworks required
to write apps from scratch

e Unikraft

— Fast, secure anq open-source Unikernel CECRIC
Development Kit I IC0000C0

— Goal: build unikernels easily, quickly and m m || |
without time-consuming expert work ONNC__ IO .

— Supports multiple hypervisors (e.g., Xen OOmMENEEC L1000
and KVM) and CPU architectures Lo IR a0C]

— Ability to run wide range of apps (even P
complex: Redis, Nginx, Memcached) IHEIEIIEEE
and languages ——

— POSIX compliant

— Writtenin C

Kuenzer et al., Unikraft: fast, specialized unikernels the easy way, EuroSys 2021
Valeria Cardellini - SDCC 2022/23

112

Performance of virtualization approaches

» Performance studies compare hypervisor vs.
lightweight virtualization

» Overall result: overhead introduced by containers is
almost negligible
— Fast instantiation time
— Small per-instance memory footprint
— High density
. but paid in terms of security

Virtualization | Boot time Image size Memory Programming | Live
footprint language migration
dependance support

~5/10 sec ~1 GB ~100 MB
Container ~0.8/1 sec ~50 MB ~5 MB No Non-native
Unikernel <50 msec <50 MB ~8 MB Yes No

Source: Consolidate IoT edge computing with lightweight virtualization
Valeria Cardellini - SDCC 2022/23

113



Valeria Cardellini - SDCC 2022/23

Performance of virtualization approaches

From [1] From [2]
400 : : ‘ :
. OS/Container Startup Instance Startup g
S 350 |
10 20 30 1)
19.92 E 300 |
20- o 250
13.43 z 200 1 L I I I !
7157 2002 2004 2006 2008 2010 2012 2014 2016 2018
3 Linux Release Year
510 °% - . . .
£ » Difficulties in securing containers due
5 to growth of Linux syscall API
ol 222 0s2 KL - 1000
— — g 800
%, 7, . %, %, %, %, 7, %, ~
o g, A, o g, A, o g, A, ()] 600
% Y Yy £
) = 400 +
» Startup time for 10, 20 and 30 g8 200

instances (includes overhead 0
of overall provisioning time
caused by OpenStack)

0 200 400 600 800 1000
VM image size (MB)

* VM boot times grow linearly with VM size

[1] Time provisioning evaluation of KVM, Docker and Unikernels in a cloud platform,
CCGrid’16

[2] My VM is lighter (and safer) than your container, SOSP’17 14




