Hands-on Cloud Computing Services

Lezione 2

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

AA.2022/23

UNIVERSITA DEGLI STUDI DI ROMA

\ """ TOR VERGATA




Recap

» Amazon Web Services: regions, services, ..
» Elastic Compute Cloud (EC2)

> Instance, AMI, Security Group
> SSH, public/private keys

» Example web app: Photogallery



Deploying Photogallery on EC2

Running Photogallery

$ export FLASK_APP=galleryApp.py
$ flask run -h 0.0.0.0 -p <numero di porta>
$ # Note: \-- requires root privileges for port 80

or, using the script run. sh:

$ bash run.sh

> Create a new EC2 instance to deploy the app

» Connect via SSH to the instance:
$ ssh -i <file.pem> ec2-user@<Public IP/Public DNS>



Deploying Photogallery on EC2 (contd.)

> Install the required software:

$ sudo yum install python3
$ sudo pip3 install flask

» Copy the app files from your PC using scp:

$ scp -i <chiaveprivata.pem> -r <cartellalocale> \
ec2-user@<istanza ec2>:/home/ec2-user/

> Start the application:
$ cd photogallery/
$ bash run.sh
» Open http://EC2-PUBLIC-IP/ in a browser
> Test: what if we “close” port 80 in the security group?



Replicating App Instances

» Current configuration is neither scalable or fault-tolerant
> Let's run multiple replicas of the web server
> We need a load balancer

Elastic
Load
Balancer

EC2
Instance



Preliminary Tasks

> We run the app as a systemd service, automatically started at boot

/etc/systemd/system/photogallery.service

[Unit]
Description=Simple systemd service for Photogallery.

[Service]

Type=simple
WorkingDirectory=/home/ec2-user/photogallery
ExecStart=/bin/bash /home/ec2-user/photogallery/run.sh

[Install]
WantedBy=multi-user.target



Preliminary Tasks (contd.)

Starting and enabling the service

$ sudo systemctl daemon-reload
$ sudo systemctl start photogallery.service
$ sudo systemctl enable photogallery.service

Register an AMI

We also create an AMI using a snapshot of the running instance. We
will be able to re-use the AMI to create new instances where the
application is already installed and configured to start.



Preliminary Tasks (contd.)

Note: each AMI is associated with a snapshot of the root ELB volume
attached to the instance. Keeping this snapshot has a (small) cost:
https://aws.amazon.com/premiumsupport/knowledge-center/
ebs-snapshot-billing/


https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/
https://aws.amazon.com/premiumsupport/knowledge-center/ebs-snapshot-billing/

Run Commands at Launch: cloud-init and User Data

> Creating a custom AMI allowed us to create new EC2 instances
without manually configuring the application every time

> Any smarter approaches?

» Cloud providers allow you to run commands when instances are
launched:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
user—-data.html

> In AWS, you can use the User Data option to specify:

> a Bash script
> cloud-init directives
(https://cloudinit.readthedocs.io/en/latest/)


https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://cloudinit.readthedocs.io/en/latest/

Next step

Elastic
Load
Balancer

10



Amazon VPC

v

Provision logically isolated sections of the AWS cloud
> Define virtual networks (IP ranges, subnets, gateways,...)

> May create a hardware Virtual Private Network (VPN) connection
between your own datacenter and your VPC (hybrid cloud)

v

No additional charges for creating and using the VPC itself.
So far, we have used the default VPC

v

11



Amazon VPC: main building blocks

» In each AZ, we can define one or more subnets
> Routing Tables attached to subnets
> Internet Gateway

12



VPC Configuration: the hard way

>
| 2

v

Create a new Virtual Private Cloud (VPC)
We associate a block of (private) IP addresses to the VPC

> Subnets will be created within this block of addressess
» We can pick, e.g., 10.0.0.0/16

We can create subnets: each subnet is associated with an
Availability Zone (AZ)

Let's pick an AZ and create a subnet (e.g., 10.0.1.0/24)

If you want (for debugging), you can require that EC2 instances in
the subnet are also assigned a public IP address

Create an Internet Gateway (IG) to allow instances in the VPC to
reach Internet; associate it with the VPC

Create a Route Table for the VPC and attach it to the subnet(s)
Add a new rule in the table: 0.0.0.0\0 - target: IG
Repeat the above steps for each subnet you want.

13



VPC Configuration: the easy way

> AWS released a new Ul to ease VPC configuration

> Most the elements you need automatically created along with the
VPC

> You may only need to create an Internet Gateway (IG) to allow
instances in the VPC to reach Internet and associate it with the
VPC Add a new rule to the routing table(s): 0.0.0.0\0 - target: IG

14



Elastic Load Balancing (ELB)

> ELB automatically distributes incoming traffic across multiple
targets (e.g., EC2 instances, containers, and IP addresses) in one or
more Availability Zones

> It monitors the health of its registered targets and routes traffic
only to the healthy targets
> 4 types of ELB:

> Application Load Balancer (layer 5)
» Network Load Balancer (layer 4)

» Gateway Load Balancer (layer 3)

> Classic Load Balancer (legacy)

> We'll use the Application LB today

15



ELB Configuration

v

v

Create an ELB instance listening for HTTP requests on port 80
Health check: use HTTP requests on port 80 with path /

ELB needs a security group: configure one to accept traffic on port
80

Create a few EC2 instances using our custom AMI in our subnets
Register the instances to the ELB

Wait a few minutes (DNS...) and then try to connect at the ELB
URL with the browser

16



ELB Configuration

v

>
>
>

Create an ELB instance listening for HTTP requests on port 80
Health check: use HTTP requests on port 80 with path /

ELB needs a security group: configure one to accept traffic on port
80

Create a few EC2 instances using our custom AMI in our subnets
Register the instances to the ELB

Wait a few minutes (DNS...) and then try to connect at the ELB
URL with the browser

Note:

>
| 2

EC2 instances don't need a public IP address any more
EC2 instances can now use a stricter security group:
> Allowed source: 0.0.0.0/0 — <ID of ELB sec group>

16



Auto scaling

> We want to dynamically provision the number of active instances
> Let's use the Auto Scaling service of EC2

. : Availability Zone !

Amazon EC2

el &

Internet Application
Gateway Load Balancer

Avallability Zone

Amazon EC2




Auto Scaling + Photogallery

vvyyypy

vVvyyy

Before starting, terminate manually launched instances
Create a Launch Template for Photogallery
Create an Auto Scaling Group that uses the new Launch Template

Specify the VPC and the subnets where new instances should be
launched

Enable load balancing, associating the group with our ELB

Set minimum and maximum number of instances (e.g., 2 and 5)
Set an auto scaling policy

Verify that new instances are automatically created

18



